Jit64: Make DoubleToSingle a common asm routine

This commit is contained in:
booto 2019-05-21 23:37:22 -04:00 committed by MerryMage
parent 9136abf07e
commit c4799e5977
6 changed files with 88 additions and 81 deletions

View File

@ -236,6 +236,8 @@ void Jit64AsmRoutineManager::GenerateCommon()
GenFres();
mfcr = AlignCode4();
GenMfcr();
cdts = AlignCode4();
GenConvertDoubleToSingle();
GenQuantizedLoads();
GenQuantizedSingleLoads();

View File

@ -115,7 +115,8 @@ void Jit64::stfXXX(UGeckoInstruction inst)
{
RCX64Reg Rs = fpr.Bind(s, RCMode::Read);
RegCache::Realize(Rs);
ConvertDoubleToSingle(XMM0, Rs);
MOVAPD(XMM0, Rs);
CALL(asm_routines.cdts);
}
MOVD_xmm(R(RSCRATCH), XMM0);
}

View File

@ -868,89 +868,9 @@ void EmuCodeBlock::Force25BitPrecision(X64Reg output, const OpArg& input, X64Reg
}
}
// Since the following float conversion functions are used in non-arithmetic PPC float
// instructions, they must convert floats bitexact and never flush denormals to zero or turn SNaNs
// into QNaNs. This means we can't use CVTSS2SD/CVTSD2SS. The x87 FPU doesn't even support
// flush-to-zero so we can use FLD+FSTP even on denormals.
// If the number is a NaN, make sure to set the QNaN bit back to its original value.
// Another problem is that officially, converting doubles to single format results in undefined
// behavior. Relying on undefined behavior is a bug so no software should ever do this.
// Super Mario 64 (on Wii VC) accidentally relies on this behavior. See issue #11173
alignas(16) static const __m128i double_exponent = _mm_set_epi64x(0, 0x7ff0000000000000);
alignas(16) static const __m128i double_fraction = _mm_set_epi64x(0, 0x000fffffffffffff);
alignas(16) static const __m128i double_sign_bit = _mm_set_epi64x(0, 0x8000000000000000);
alignas(16) static const __m128i double_explicit_top_bit = _mm_set_epi64x(0, 0x0010000000000000);
alignas(16) static const __m128i double_top_two_bits = _mm_set_epi64x(0, 0xc000000000000000);
alignas(16) static const __m128i double_bottom_bits = _mm_set_epi64x(0, 0x07ffffffe0000000);
alignas(16) static const __m128i double_qnan_bit = _mm_set_epi64x(0xffffffffffffffff,
0xfff7ffffffffffff);
// This is the same algorithm used in the interpreter (and actual hardware)
// The documentation states that the conversion of a double with an outside the
// valid range for a single (or a single denormal) is undefined.
// But testing on actual hardware shows it always picks bits 0..1 and 5..34
// unless the exponent is in the range of 874 to 896.
void EmuCodeBlock::ConvertDoubleToSingle(X64Reg dst, X64Reg src)
{
MOVAPD(XMM1, R(src));
// Grab Exponent
PAND(XMM1, MConst(double_exponent));
PSRLQ(XMM1, 52);
MOVD_xmm(R(RSCRATCH), XMM1);
// Check if the double is in the range of valid single subnormal
SUB(16, R(RSCRATCH), Imm16(874));
CMP(16, R(RSCRATCH), Imm16(896 - 874));
FixupBranch NoDenormalize = J_CC(CC_A);
// Denormalise
// shift = (905 - Exponent) plus the 21 bit double to single shift
MOV(16, R(RSCRATCH), Imm16(905 + 21));
MOVD_xmm(XMM0, R(RSCRATCH));
PSUBQ(XMM0, R(XMM1));
// xmm1 = fraction | 0x0010000000000000
MOVAPD(XMM1, R(src));
PAND(XMM1, MConst(double_fraction));
POR(XMM1, MConst(double_explicit_top_bit));
// fraction >> shift
PSRLQ(XMM1, R(XMM0));
// OR the sign bit in.
MOVAPD(XMM0, R(src));
PAND(XMM0, MConst(double_sign_bit));
PSRLQ(XMM0, 32);
POR(XMM1, R(XMM0));
FixupBranch end = J(false); // Goto end
SetJumpTarget(NoDenormalize);
// Don't Denormalize
// We want bits 0, 1
MOVAPD(XMM1, R(src));
PAND(XMM1, MConst(double_top_two_bits));
PSRLQ(XMM1, 32);
// And 5 through to 34
MOVAPD(XMM0, R(src));
PAND(XMM0, MConst(double_bottom_bits));
PSRLQ(XMM0, 29);
// OR them togther
POR(XMM1, R(XMM0));
// End
SetJumpTarget(end);
MOVDDUP(dst, R(XMM1));
}
// Converting single->double is a bit easier because all single denormals are double normals.
void EmuCodeBlock::ConvertSingleToDouble(X64Reg dst, X64Reg src, bool src_is_gpr)
{

View File

@ -9,6 +9,7 @@
#include "Common/CPUDetect.h"
#include "Common/CommonTypes.h"
#include "Common/FloatUtils.h"
#include "Common/Intrinsics.h"
#include "Common/JitRegister.h"
#include "Common/x64ABI.h"
#include "Common/x64Emitter.h"
@ -25,6 +26,87 @@
using namespace Gen;
alignas(16) static const __m128i double_fraction = _mm_set_epi64x(0, 0x000fffffffffffff);
alignas(16) static const __m128i double_sign_bit = _mm_set_epi64x(0, 0x8000000000000000);
alignas(16) static const __m128i double_explicit_top_bit = _mm_set_epi64x(0, 0x0010000000000000);
alignas(16) static const __m128i double_top_two_bits = _mm_set_epi64x(0, 0xc000000000000000);
alignas(16) static const __m128i double_bottom_bits = _mm_set_epi64x(0, 0x07ffffffe0000000);
// Since the following float conversion functions are used in non-arithmetic PPC float
// instructions, they must convert floats bitexact and never flush denormals to zero or turn SNaNs
// into QNaNs. This means we can't use CVTSS2SD/CVTSD2SS. The x87 FPU doesn't even support
// flush-to-zero so we can use FLD+FSTP even on denormals.
// If the number is a NaN, make sure to set the QNaN bit back to its original value.
// Another problem is that officially, converting doubles to single format results in undefined
// behavior. Relying on undefined behavior is a bug so no software should ever do this.
// Super Mario 64 (on Wii VC) accidentally relies on this behavior. See issue #11173
// This is the same algorithm used in the interpreter (and actual hardware)
// The documentation states that the conversion of a double with an outside the
// valid range for a single (or a single denormal) is undefined.
// But testing on actual hardware shows it always picks bits 0..1 and 5..34
// unless the exponent is in the range of 874 to 896.
void CommonAsmRoutines::GenConvertDoubleToSingle()
{
// Input in XMM0, output to XMM0
// Clobbers RSCRATCH/RSCRATCH2/XMM1
const void* start = GetCodePtr();
// Grab Exponent
MOVQ_xmm(R(RSCRATCH), XMM0);
MOV(64, R(RSCRATCH2), R(RSCRATCH));
SHR(64, R(RSCRATCH), Imm8(52));
AND(16, R(RSCRATCH), Imm16(0x7ff));
// Check if the double is in the range of valid single subnormal
SUB(16, R(RSCRATCH), Imm16(874));
CMP(16, R(RSCRATCH), Imm16(896 - 874));
FixupBranch Denormalize = J_CC(CC_NA);
// Don't Denormalize
// We want bits 0, 1
MOVAPD(XMM1, R(XMM0));
PAND(XMM1, MConst(double_top_two_bits));
PSRLQ(XMM1, 32);
// And 5 through to 34
PAND(XMM0, MConst(double_bottom_bits));
PSRLQ(XMM0, 29);
// OR them togther
POR(XMM0, R(XMM1));
RET();
// Denormalise
SetJumpTarget(Denormalize);
// shift = (905 - Exponent) plus the 21 bit double to single shift
NEG(16, R(RSCRATCH));
ADD(16, R(RSCRATCH), Imm16((905 + 21) - 874));
MOVQ_xmm(XMM1, R(RSCRATCH));
// XMM0 = fraction | 0x0010000000000000
PAND(XMM0, MConst(double_fraction));
POR(XMM0, MConst(double_explicit_top_bit));
// fraction >> shift
PSRLQ(XMM0, R(XMM1));
// OR the sign bit in.
SHR(64, R(RSCRATCH2), Imm8(32));
AND(32, R(RSCRATCH2), Imm32(0x80000000));
MOVQ_xmm(XMM1, R(RSCRATCH2));
POR(XMM0, R(XMM1));
RET();
JitRegister::Register(start, GetCodePtr(), "JIT_cdts");
}
void CommonAsmRoutines::GenFrsqrte()
{
const void* start = GetCodePtr();

View File

@ -31,6 +31,7 @@ public:
void GenMfcr();
protected:
void GenConvertDoubleToSingle();
const u8* GenQuantizedLoadRuntime(bool single, EQuantizeType type);
const u8* GenQuantizedStoreRuntime(bool single, EQuantizeType type);
void GenQuantizedLoads();

View File

@ -25,6 +25,7 @@ struct CommonAsmRoutinesBase
const u8* frsqrte;
const u8* fres;
const u8* mfcr;
const u8* cdts;
// In: array index: GQR to use.
// In: ECX: Address to read from.