From ac63e54473db5cc3fc3f3e2aedaaac530b9177d5 Mon Sep 17 00:00:00 2001 From: EmptyChaos Date: Fri, 2 Sep 2016 10:11:08 +0000 Subject: [PATCH] [UnitTests] Add CoreTimingTest --- Source/UnitTests/Core/CMakeLists.txt | 1 + Source/UnitTests/Core/CoreTimingTest.cpp | 313 +++++++++++++++++++++++ 2 files changed, 314 insertions(+) create mode 100644 Source/UnitTests/Core/CoreTimingTest.cpp diff --git a/Source/UnitTests/Core/CMakeLists.txt b/Source/UnitTests/Core/CMakeLists.txt index 5bb809d9df..604318361a 100644 --- a/Source/UnitTests/Core/CMakeLists.txt +++ b/Source/UnitTests/Core/CMakeLists.txt @@ -1,2 +1,3 @@ add_dolphin_test(MMIOTest MMIOTest.cpp) add_dolphin_test(PageFaultTest PageFaultTest.cpp) +add_dolphin_test(CoreTimingTest CoreTimingTest.cpp) diff --git a/Source/UnitTests/Core/CoreTimingTest.cpp b/Source/UnitTests/Core/CoreTimingTest.cpp new file mode 100644 index 0000000000..305232e8a3 --- /dev/null +++ b/Source/UnitTests/Core/CoreTimingTest.cpp @@ -0,0 +1,313 @@ +// Copyright 2016 Dolphin Emulator Project +// Licensed under GPLv2+ +// Refer to the license.txt file included. + +#include + +#include +#include + +#include "Core/ConfigManager.h" +#include "Core/Core.h" +#include "Core/CoreTiming.h" +#include "Core/PowerPC/PowerPC.h" + +// Numbers are chosen randomly to make sure the correct one is given. +static constexpr std::array CB_IDS{{42, 144, 93, 1026, UINT64_C(0xFFFF7FFFF7FFFF)}}; +static constexpr int MAX_SLICE_LENGTH = 20000; // Copied from CoreTiming internals + +static std::bitset s_callbacks_ran_flags; +static u64 s_expected_callback = 0; +static s64 s_lateness = 0; + +template +void CallbackTemplate(u64 userdata, s64 lateness) +{ + static_assert(IDX < CB_IDS.size(), "IDX out of range"); + s_callbacks_ran_flags.set(IDX); + EXPECT_EQ(CB_IDS[IDX], userdata); + if (s_expected_callback) // In SharedSlot, we don't care about this + EXPECT_EQ(CB_IDS[IDX], s_expected_callback); + EXPECT_EQ(s_lateness, lateness); +} + +class ScopeInit final +{ +public: + ScopeInit() + { + Core::DeclareAsCPUThread(); + SConfig::Init(); + PowerPC::Init(PowerPC::CORE_INTERPRETER); + CoreTiming::Init(); + } + ~ScopeInit() + { + CoreTiming::Shutdown(); + PowerPC::Shutdown(); + SConfig::Shutdown(); + Core::UndeclareAsCPUThread(); + } +}; + +void AdvanceAndCheck(u32 idx, int downcount, int expected_lateness = 0, int cpu_downcount = 0) +{ + s_callbacks_ran_flags = 0; + s_expected_callback = CB_IDS[idx]; + s_lateness = expected_lateness; + + PowerPC::ppcState.downcount = cpu_downcount; // Pretend we executed X cycles of instructions. + CoreTiming::Advance(); + + EXPECT_EQ(decltype(s_callbacks_ran_flags)().set(idx), s_callbacks_ran_flags); + EXPECT_EQ(downcount, PowerPC::ppcState.downcount); +} + +TEST(CoreTiming, BasicOrder) +{ + ScopeInit guard; + + CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>); + CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>); + CoreTiming::EventType* cb_c = CoreTiming::RegisterEvent("callbackC", CallbackTemplate<2>); + CoreTiming::EventType* cb_d = CoreTiming::RegisterEvent("callbackD", CallbackTemplate<3>); + CoreTiming::EventType* cb_e = CoreTiming::RegisterEvent("callbackE", CallbackTemplate<4>); + + // Enter slice 0 + CoreTiming::Advance(); + + // D -> B -> C -> A -> E + CoreTiming::ScheduleEvent(1000, cb_a, CB_IDS[0]); + EXPECT_EQ(1000, PowerPC::ppcState.downcount); + CoreTiming::ScheduleEvent(500, cb_b, CB_IDS[1]); + EXPECT_EQ(500, PowerPC::ppcState.downcount); + CoreTiming::ScheduleEvent(800, cb_c, CB_IDS[2]); + EXPECT_EQ(500, PowerPC::ppcState.downcount); + CoreTiming::ScheduleEvent(100, cb_d, CB_IDS[3]); + EXPECT_EQ(100, PowerPC::ppcState.downcount); + CoreTiming::ScheduleEvent(1200, cb_e, CB_IDS[4]); + EXPECT_EQ(100, PowerPC::ppcState.downcount); + + AdvanceAndCheck(3, 400); + AdvanceAndCheck(1, 300); + AdvanceAndCheck(2, 200); + AdvanceAndCheck(0, 200); + AdvanceAndCheck(4, MAX_SLICE_LENGTH); +} + +TEST(CoreTiming, SharedSlot) +{ + ScopeInit guard; + + CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>); + CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>); + CoreTiming::EventType* cb_c = CoreTiming::RegisterEvent("callbackC", CallbackTemplate<2>); + CoreTiming::EventType* cb_d = CoreTiming::RegisterEvent("callbackD", CallbackTemplate<3>); + CoreTiming::EventType* cb_e = CoreTiming::RegisterEvent("callbackE", CallbackTemplate<4>); + + CoreTiming::ScheduleEvent(1000, cb_a, CB_IDS[0]); + CoreTiming::ScheduleEvent(1000, cb_b, CB_IDS[1]); + CoreTiming::ScheduleEvent(1000, cb_c, CB_IDS[2]); + CoreTiming::ScheduleEvent(1000, cb_d, CB_IDS[3]); + CoreTiming::ScheduleEvent(1000, cb_e, CB_IDS[4]); + + // Enter slice 0 + CoreTiming::Advance(); + EXPECT_EQ(1000, PowerPC::ppcState.downcount); + + s_callbacks_ran_flags = 0; + s_lateness = 0; + s_expected_callback = 0; + PowerPC::ppcState.downcount = 0; + CoreTiming::Advance(); + EXPECT_EQ(MAX_SLICE_LENGTH, PowerPC::ppcState.downcount); + EXPECT_EQ(0x1FULL, s_callbacks_ran_flags.to_ullong()); +} + +TEST(CoreTiming, PredictableLateness) +{ + ScopeInit guard; + + CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>); + CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>); + + // Enter slice 0 + CoreTiming::Advance(); + + CoreTiming::ScheduleEvent(100, cb_a, CB_IDS[0]); + CoreTiming::ScheduleEvent(200, cb_b, CB_IDS[1]); + + AdvanceAndCheck(0, 90, 10, -10); // (100 - 10) + AdvanceAndCheck(1, MAX_SLICE_LENGTH, 50, -50); +} + +namespace ChainSchedulingTest +{ +static int s_reschedules = 0; + +static void RescheduleCallback(u64 userdata, s64 lateness) +{ + --s_reschedules; + EXPECT_TRUE(s_reschedules >= 0); + EXPECT_EQ(s_lateness, lateness); + + if (s_reschedules > 0) + CoreTiming::ScheduleEvent(1000, reinterpret_cast(userdata), userdata); +} +} + +TEST(CoreTiming, ChainScheduling) +{ + using namespace ChainSchedulingTest; + + ScopeInit guard; + + CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>); + CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>); + CoreTiming::EventType* cb_c = CoreTiming::RegisterEvent("callbackC", CallbackTemplate<2>); + CoreTiming::EventType* cb_rs = + CoreTiming::RegisterEvent("callbackReschedule", RescheduleCallback); + + // Enter slice 0 + CoreTiming::Advance(); + + CoreTiming::ScheduleEvent(800, cb_a, CB_IDS[0]); + CoreTiming::ScheduleEvent(1000, cb_b, CB_IDS[1]); + CoreTiming::ScheduleEvent(2200, cb_c, CB_IDS[2]); + CoreTiming::ScheduleEvent(1000, cb_rs, reinterpret_cast(cb_rs)); + EXPECT_EQ(800, PowerPC::ppcState.downcount); + + s_reschedules = 3; + AdvanceAndCheck(0, 200); // cb_a + AdvanceAndCheck(1, 1000); // cb_b, cb_rs + EXPECT_EQ(2, s_reschedules); + + PowerPC::ppcState.downcount = 0; + CoreTiming::Advance(); // cb_rs + EXPECT_EQ(1, s_reschedules); + EXPECT_EQ(200, PowerPC::ppcState.downcount); + + AdvanceAndCheck(2, 800); // cb_c + + PowerPC::ppcState.downcount = 0; + CoreTiming::Advance(); // cb_rs + EXPECT_EQ(0, s_reschedules); + EXPECT_EQ(MAX_SLICE_LENGTH, PowerPC::ppcState.downcount); +} + +namespace ScheduleIntoPastTest +{ +static CoreTiming::EventType* s_cb_next = nullptr; + +static void ChainCallback(u64 userdata, s64 lateness) +{ + EXPECT_EQ(CB_IDS[0] + 1, userdata); + EXPECT_EQ(0, lateness); + + CoreTiming::ScheduleEvent(-1000, s_cb_next, userdata - 1); +} +} + +// This can happen when scheduling from outside the CPU Thread. +// Also, if the callback is very late, it may reschedule itself for the next period which +// is also in the past. +TEST(CoreTiming, ScheduleIntoPast) +{ + using namespace ScheduleIntoPastTest; + + ScopeInit guard; + + s_cb_next = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>); + CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>); + CoreTiming::EventType* cb_chain = CoreTiming::RegisterEvent("callbackChain", ChainCallback); + + // Enter slice 0 + CoreTiming::Advance(); + + CoreTiming::ScheduleEvent(1000, cb_chain, CB_IDS[0] + 1); + EXPECT_EQ(1000, PowerPC::ppcState.downcount); + + AdvanceAndCheck(0, MAX_SLICE_LENGTH, 1000); // Run cb_chain into late cb_a + + // Schedule late from wrong thread + // The problem with scheduling CPU events from outside the CPU Thread is that g_global_timer + // is not reliable outside the CPU Thread. It's possible for the other thread to sample the + // global timer right before the timer is updated by Advance() then submit a new event using + // the stale value, i.e. effectively half-way through the previous slice. + // NOTE: We're only testing that the scheduler doesn't break, not whether this makes sense. + Core::UndeclareAsCPUThread(); + CoreTiming::g_global_timer -= 1000; + CoreTiming::ScheduleEvent(0, cb_b, CB_IDS[1], CoreTiming::FromThread::NON_CPU); + CoreTiming::g_global_timer += 1000; + Core::DeclareAsCPUThread(); + AdvanceAndCheck(1, MAX_SLICE_LENGTH, MAX_SLICE_LENGTH + 1000); +} + +TEST(CoreTiming, Overclocking) +{ + ScopeInit guard; + + CoreTiming::EventType* cb_a = CoreTiming::RegisterEvent("callbackA", CallbackTemplate<0>); + CoreTiming::EventType* cb_b = CoreTiming::RegisterEvent("callbackB", CallbackTemplate<1>); + CoreTiming::EventType* cb_c = CoreTiming::RegisterEvent("callbackC", CallbackTemplate<2>); + CoreTiming::EventType* cb_d = CoreTiming::RegisterEvent("callbackD", CallbackTemplate<3>); + CoreTiming::EventType* cb_e = CoreTiming::RegisterEvent("callbackE", CallbackTemplate<4>); + + // Overclock + SConfig::GetInstance().m_OCEnable = true; + SConfig::GetInstance().m_OCFactor = 2.0; + + // Enter slice 0 + // Updates s_last_OC_factor. + CoreTiming::Advance(); + + CoreTiming::ScheduleEvent(100, cb_a, CB_IDS[0]); + CoreTiming::ScheduleEvent(200, cb_b, CB_IDS[1]); + CoreTiming::ScheduleEvent(400, cb_c, CB_IDS[2]); + CoreTiming::ScheduleEvent(800, cb_d, CB_IDS[3]); + CoreTiming::ScheduleEvent(1600, cb_e, CB_IDS[4]); + EXPECT_EQ(200, PowerPC::ppcState.downcount); + + AdvanceAndCheck(0, 200); // (200 - 100) * 2 + AdvanceAndCheck(1, 400); // (400 - 200) * 2 + AdvanceAndCheck(2, 800); // (800 - 400) * 2 + AdvanceAndCheck(3, 1600); // (1600 - 800) * 2 + AdvanceAndCheck(4, MAX_SLICE_LENGTH * 2); + + // Underclock + SConfig::GetInstance().m_OCFactor = 0.5; + CoreTiming::Advance(); + + CoreTiming::ScheduleEvent(100, cb_a, CB_IDS[0]); + CoreTiming::ScheduleEvent(200, cb_b, CB_IDS[1]); + CoreTiming::ScheduleEvent(400, cb_c, CB_IDS[2]); + CoreTiming::ScheduleEvent(800, cb_d, CB_IDS[3]); + CoreTiming::ScheduleEvent(1600, cb_e, CB_IDS[4]); + EXPECT_EQ(50, PowerPC::ppcState.downcount); + + AdvanceAndCheck(0, 50); // (200 - 100) / 2 + AdvanceAndCheck(1, 100); // (400 - 200) / 2 + AdvanceAndCheck(2, 200); // (800 - 400) / 2 + AdvanceAndCheck(3, 400); // (1600 - 800) / 2 + AdvanceAndCheck(4, MAX_SLICE_LENGTH / 2); + + // Try switching the clock mid-emulation + SConfig::GetInstance().m_OCFactor = 1.0; + CoreTiming::Advance(); + + CoreTiming::ScheduleEvent(100, cb_a, CB_IDS[0]); + CoreTiming::ScheduleEvent(200, cb_b, CB_IDS[1]); + CoreTiming::ScheduleEvent(400, cb_c, CB_IDS[2]); + CoreTiming::ScheduleEvent(800, cb_d, CB_IDS[3]); + CoreTiming::ScheduleEvent(1600, cb_e, CB_IDS[4]); + EXPECT_EQ(100, PowerPC::ppcState.downcount); + + AdvanceAndCheck(0, 100); // (200 - 100) + SConfig::GetInstance().m_OCFactor = 2.0; + AdvanceAndCheck(1, 400); // (400 - 200) * 2 + AdvanceAndCheck(2, 800); // (800 - 400) * 2 + SConfig::GetInstance().m_OCFactor = 0.1f; + AdvanceAndCheck(3, 80); // (1600 - 800) / 10 + SConfig::GetInstance().m_OCFactor = 1.0; + AdvanceAndCheck(4, MAX_SLICE_LENGTH); +}