New frsqrte implementation; verified accurate.
This is similar to the old implementation, but it uses smaller tables, and handles more edge cases correctly. (hwtest coming soon.)
This commit is contained in:
parent
129e76e60d
commit
a9a2d3d98d
|
@ -6,7 +6,6 @@
|
||||||
|
|
||||||
#include "Common/CPUDetect.h"
|
#include "Common/CPUDetect.h"
|
||||||
#include "Common/MathUtil.h"
|
#include "Common/MathUtil.h"
|
||||||
#include "Core/PowerPC/LUT_frsqrtex.h"
|
|
||||||
#include "Core/PowerPC/Interpreter/Interpreter.h"
|
#include "Core/PowerPC/Interpreter/Interpreter.h"
|
||||||
|
|
||||||
using namespace MathUtil;
|
using namespace MathUtil;
|
||||||
|
@ -333,31 +332,68 @@ inline double ApproximateReciprocal(double val)
|
||||||
|
|
||||||
inline double ApproximateReciprocalSquareRoot(double val)
|
inline double ApproximateReciprocalSquareRoot(double val)
|
||||||
{
|
{
|
||||||
if (val < 0)
|
static const int expected_base[] = {
|
||||||
return PPC_NAN;
|
0x3ffa000, 0x3c29000, 0x38aa000, 0x3572000,
|
||||||
if (val == 0.0)
|
0x3279000, 0x2fb7000, 0x2d26000, 0x2ac0000,
|
||||||
return INFINITY;
|
0x2881000, 0x2665000, 0x2468000, 0x2287000,
|
||||||
|
0x20c1000, 0x1f12000, 0x1d79000, 0x1bf4000,
|
||||||
|
0x1a7e800, 0x17cb800, 0x1552800, 0x130c000,
|
||||||
|
0x10f2000, 0x0eff000, 0x0d2e000, 0x0b7c000,
|
||||||
|
0x09e5000, 0x0867000, 0x06ff000, 0x05ab800,
|
||||||
|
0x046a000, 0x0339800, 0x0218800, 0x0105800,
|
||||||
|
};
|
||||||
|
static const int expected_dec[] = {
|
||||||
|
0x7a4, 0x700, 0x670, 0x5f2,
|
||||||
|
0x584, 0x524, 0x4cc, 0x47e,
|
||||||
|
0x43a, 0x3fa, 0x3c2, 0x38e,
|
||||||
|
0x35e, 0x332, 0x30a, 0x2e6,
|
||||||
|
0x568, 0x4f3, 0x48d, 0x435,
|
||||||
|
0x3e7, 0x3a2, 0x365, 0x32e,
|
||||||
|
0x2fc, 0x2d0, 0x2a8, 0x283,
|
||||||
|
0x261, 0x243, 0x226, 0x20b,
|
||||||
|
};
|
||||||
|
|
||||||
union
|
union {
|
||||||
{
|
|
||||||
double valf;
|
double valf;
|
||||||
u64 vali;
|
long long vali;
|
||||||
};
|
};
|
||||||
valf = val;
|
valf = val;
|
||||||
|
long long mantissa = vali & ((1LL << 52) - 1);
|
||||||
|
long long sign = vali & (1ULL << 63);
|
||||||
|
long long exponent = vali & (0x7FFLL << 52);
|
||||||
|
|
||||||
u32 fsa = vali >> 32;
|
// Special case 0
|
||||||
u32 idx = (fsa >> 5) % (sizeof(frsqrtex_lut) / sizeof(frsqrtex_lut[0]));
|
if (mantissa == 0 && exponent == 0)
|
||||||
|
return sign ? -INFINITY : INFINITY;
|
||||||
|
// Special case NaN-ish numbers
|
||||||
|
if (exponent == (0x7FFLL << 52))
|
||||||
|
{
|
||||||
|
if (mantissa == 0)
|
||||||
|
return sign ? NAN : 0.0;
|
||||||
|
return 0.0 + valf;
|
||||||
|
}
|
||||||
|
// Negative numbers return NaN
|
||||||
|
if (sign)
|
||||||
|
return NAN;
|
||||||
|
|
||||||
s32 e = fsa >> (32 - 12);
|
if (!exponent)
|
||||||
e &= 2047;
|
{
|
||||||
e -= 1023;
|
// "Normalize" denormal values
|
||||||
s32 oe = -((e + 1) / 2);
|
do
|
||||||
oe -= ((e + 1) & 1);
|
{
|
||||||
|
exponent -= 1LL << 52;
|
||||||
|
mantissa <<= 1;
|
||||||
|
} while (!(mantissa & (1LL << 52)));
|
||||||
|
mantissa &= (1LL << 52) - 1;
|
||||||
|
exponent += 1LL << 52;
|
||||||
|
}
|
||||||
|
|
||||||
u32 outb = frsqrtex_lut[idx] << 20;
|
bool odd_exponent = !(exponent & (1LL << 52));
|
||||||
u32 outa = ((oe + 1023) & 2047) << 20;
|
exponent = ((0x3FFLL << 52) - ((exponent - (0x3FELL << 52)) / 2)) & (0x7FFLL << 52);
|
||||||
outa |= frsqrtex_lut[idx] >> 12;
|
|
||||||
|
|
||||||
vali = ((u64)outa << 32) + (u64)outb;
|
int i = (int)(mantissa >> 37);
|
||||||
|
vali = sign | exponent;
|
||||||
|
int index = i / 2048 + (odd_exponent ? 16 : 0);
|
||||||
|
vali |= (long long)(expected_base[index] - expected_dec[index] * (i % 2048)) << 26;
|
||||||
return valf;
|
return valf;
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in New Issue