Starting point for the new MMIO interface

Design doc:
    https://docs.google.com/document/d/11qcGCWLne1wYvmtFaSrOKZt_vHxXrcWcZsdWJ-MJnyo/edit

The code is currently not used. Migration plan:
    1. Implement MMIO access via MMIO::Mapping in parallel to the current
       method.
    2. Implement all existing MMIO handlers via the new interface.
    3. Remove the old hwRead/hwReadWii/hwReadIOBridge code.
    4. Implement JIT optimizations for MMIO accesses.
This commit is contained in:
Pierre Bourdon 2014-01-19 13:41:26 +01:00
parent 1e94853301
commit 9fe58d28ba
9 changed files with 766 additions and 1 deletions

View File

@ -107,6 +107,7 @@ set(SRCS ActionReplay.cpp
HW/Memmap.cpp HW/Memmap.cpp
HW/MemmapFunctions.cpp HW/MemmapFunctions.cpp
HW/MemoryInterface.cpp HW/MemoryInterface.cpp
HW/MMIO.cpp
HW/ProcessorInterface.cpp HW/ProcessorInterface.cpp
HW/SI.cpp HW/SI.cpp
HW/SI_DeviceAMBaseboard.cpp HW/SI_DeviceAMBaseboard.cpp

View File

@ -145,6 +145,7 @@
<ClCompile Include="HW\Memmap.cpp" /> <ClCompile Include="HW\Memmap.cpp" />
<ClCompile Include="HW\MemmapFunctions.cpp" /> <ClCompile Include="HW\MemmapFunctions.cpp" />
<ClCompile Include="HW\MemoryInterface.cpp" /> <ClCompile Include="HW\MemoryInterface.cpp" />
<ClCompile Include="HW\MMIO.cpp" />
<ClCompile Include="HW\ProcessorInterface.cpp" /> <ClCompile Include="HW\ProcessorInterface.cpp" />
<ClCompile Include="HW\SI.cpp" /> <ClCompile Include="HW\SI.cpp" />
<ClCompile Include="HW\SI_Device.cpp" /> <ClCompile Include="HW\SI_Device.cpp" />
@ -342,6 +343,8 @@
<ClInclude Include="HW\HW.h" /> <ClInclude Include="HW\HW.h" />
<ClInclude Include="HW\Memmap.h" /> <ClInclude Include="HW\Memmap.h" />
<ClInclude Include="HW\MemoryInterface.h" /> <ClInclude Include="HW\MemoryInterface.h" />
<ClInclude Include="HW\MMIO.h" />
<ClInclude Include="HW\MMIOHandlers.h" />
<ClInclude Include="HW\ProcessorInterface.h" /> <ClInclude Include="HW\ProcessorInterface.h" />
<ClInclude Include="HW\SI.h" /> <ClInclude Include="HW\SI.h" />
<ClInclude Include="HW\SI_Device.h" /> <ClInclude Include="HW\SI_Device.h" />

View File

@ -510,6 +510,9 @@
<ClCompile Include="HW\MemmapFunctions.cpp"> <ClCompile Include="HW\MemmapFunctions.cpp">
<Filter>HW %28Flipper/Hollywood%29</Filter> <Filter>HW %28Flipper/Hollywood%29</Filter>
</ClCompile> </ClCompile>
<ClCompile Include="HW\MMIO.cpp">
<Filter>HW %28Flipper/Hollywood%29</Filter>
</ClCompile>
<ClCompile Include="HW\SystemTimers.cpp"> <ClCompile Include="HW\SystemTimers.cpp">
<Filter>HW %28Flipper/Hollywood%29</Filter> <Filter>HW %28Flipper/Hollywood%29</Filter>
</ClCompile> </ClCompile>
@ -1037,6 +1040,12 @@
<ClInclude Include="HW\Memmap.h"> <ClInclude Include="HW\Memmap.h">
<Filter>HW %28Flipper/Hollywood%29</Filter> <Filter>HW %28Flipper/Hollywood%29</Filter>
</ClInclude> </ClInclude>
<ClInclude Include="HW\MMIO.h">
<Filter>HW %28Flipper/Hollywood%29</Filter>
</ClInclude>
<ClInclude Include="HW\MMIOHandlers.h">
<Filter>HW %28Flipper/Hollywood%29</Filter>
</ClInclude>
<ClInclude Include="HW\SystemTimers.h"> <ClInclude Include="HW\SystemTimers.h">
<Filter>HW %28Flipper/Hollywood%29</Filter> <Filter>HW %28Flipper/Hollywood%29</Filter>
</ClInclude> </ClInclude>
@ -1219,4 +1228,4 @@
<ItemGroup> <ItemGroup>
<Text Include="CMakeLists.txt" /> <Text Include="CMakeLists.txt" />
</ItemGroup> </ItemGroup>
</Project> </Project>

View File

@ -0,0 +1,383 @@
// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#include "MMIO.h"
#include "MMIOHandlers.h"
#include <functional>
namespace MMIO
{
// Base classes for the two handling method hierarchies. Note that a single
// class can inherit from both.
//
// At the moment the only common element between all the handling method is
// that they should be able to accept a visitor of the appropriate type.
template <typename T>
class ReadHandlingMethod
{
public:
virtual ~ReadHandlingMethod() {}
virtual void AcceptReadVisitor(ReadHandlingMethodVisitor<T>& v) const = 0;
};
template <typename T>
class WriteHandlingMethod
{
public:
virtual ~WriteHandlingMethod() {}
virtual void AcceptWriteVisitor(WriteHandlingMethodVisitor<T>& v) const = 0;
};
// Constant: handling method holds a single integer and passes it to the
// visitor. This is a read only handling method: storing to a constant does not
// mean anything.
template <typename T>
class ConstantHandlingMethod : public ReadHandlingMethod<T>
{
public:
explicit ConstantHandlingMethod(T value) : value_(value)
{
}
virtual ~ConstantHandlingMethod() {}
virtual void AcceptReadVisitor(ReadHandlingMethodVisitor<T>& v) const
{
v.VisitConstant(value_);
}
private:
T value_;
};
template <typename T>
ReadHandlingMethod<T>* Constant(T value)
{
return new ConstantHandlingMethod<T>(value);
}
// Nop: extremely simple write handling method that does nothing at all, only
// respond to visitors and dispatch to the correct method. This is write only
// since reads should always at least return a value.
template <typename T>
class NopHandlingMethod : public WriteHandlingMethod<T>
{
public:
NopHandlingMethod() {}
virtual ~NopHandlingMethod() {}
virtual void AcceptWriteVisitor(WriteHandlingMethodVisitor<T>& v) const
{
v.VisitNop();
}
};
template <typename T>
WriteHandlingMethod<T>* Nop()
{
return new NopHandlingMethod<T>();
}
// Direct: handling method holds a pointer to the value where to read/write the
// data from, as well as a mask that is used to restrict reading/writing only
// to a given set of bits.
template <typename T>
class DirectHandlingMethod : public ReadHandlingMethod<T>,
public WriteHandlingMethod<T>
{
public:
DirectHandlingMethod(T* addr, u32 mask) : addr_(addr), mask_(mask)
{
}
virtual ~DirectHandlingMethod() {}
virtual void AcceptReadVisitor(ReadHandlingMethodVisitor<T>& v) const
{
v.VisitDirect(addr_, mask_);
}
virtual void AcceptWriteVisitor(WriteHandlingMethodVisitor<T>& v) const
{
v.VisitDirect(addr_, mask_);
}
private:
T* addr_;
u32 mask_;
};
template <typename T>
ReadHandlingMethod<T>* DirectRead(const T* addr, u32 mask)
{
return new DirectHandlingMethod<T>(const_cast<T*>(addr), mask);
}
template <typename T>
ReadHandlingMethod<T>* DirectRead(volatile const T* addr, u32 mask)
{
return new DirectHandlingMethod<T>((T*)addr, mask);
}
template <typename T>
WriteHandlingMethod<T>* DirectWrite(T* addr, u32 mask)
{
return new DirectHandlingMethod<T>(addr, mask);
}
template <typename T>
WriteHandlingMethod<T>* DirectWrite(volatile T* addr, u32 mask)
{
return new DirectHandlingMethod<T>((T*)addr, mask);
}
// Complex: holds a lambda that is called when a read or a write is executed.
// This gives complete control to the user as to what is going to happen during
// that read or write, but reduces the optimization potential.
template <typename T>
class ComplexHandlingMethod : public ReadHandlingMethod<T>,
public WriteHandlingMethod<T>
{
public:
explicit ComplexHandlingMethod(std::function<T(u32)> read_lambda)
: read_lambda_(read_lambda), write_lambda_(InvalidWriteLambda())
{
}
explicit ComplexHandlingMethod(std::function<void(u32, T)> write_lambda)
: read_lambda_(InvalidReadLambda()), write_lambda_(write_lambda)
{
}
virtual ~ComplexHandlingMethod() {}
virtual void AcceptReadVisitor(ReadHandlingMethodVisitor<T>& v) const
{
v.VisitComplex(read_lambda_);
}
virtual void AcceptWriteVisitor(WriteHandlingMethodVisitor<T>& v) const
{
v.VisitComplex(write_lambda_);
}
private:
std::function<T(u32)> InvalidReadLambda() const
{
return [](u32) {
_dbg_assert_msg_(MEMMAP, 0, "Called the read lambda on a write "
"complex handler.");
return 0;
};
}
std::function<void(u32, T)> InvalidWriteLambda() const
{
return [](u32, T) {
_dbg_assert_msg_(MEMMAP, 0, "Called the write lambda on a read "
"complex handler.");
};
}
std::function<T(u32)> read_lambda_;
std::function<void(u32, T)> write_lambda_;
};
template <typename T>
ReadHandlingMethod<T>* ComplexRead(std::function<T(u32)> lambda)
{
return new ComplexHandlingMethod<T>(lambda);
}
template <typename T>
WriteHandlingMethod<T>* ComplexWrite(std::function<void(u32, T)> lambda)
{
return new ComplexHandlingMethod<T>(lambda);
}
// Invalid: specialization of the complex handling type with lambdas that
// display error messages.
template <typename T>
ReadHandlingMethod<T>* InvalidRead()
{
return ComplexRead<T>([](u32 addr) {
ERROR_LOG(MEMMAP, "Trying to read from an invalid MMIO (addr=%08x)",
addr);
return -1;
});
}
template <typename T>
WriteHandlingMethod<T>* InvalidWrite()
{
return ComplexWrite<T>([](u32 addr, T val) {
ERROR_LOG(MEMMAP, "Trying to write to an invalid MMIO (addr=%08x, val=%08x)",
addr, (u32)val);
});
}
// Converters to larger and smaller size. Probably the most complex of these
// handlers to implement. They do not define new handling method types but
// instead will internally use the types defined above.
template <typename T> struct SmallerAccessSize {};
template <> struct SmallerAccessSize<u16> { typedef u8 value; };
template <> struct SmallerAccessSize<u32> { typedef u16 value; };
template <typename T> struct LargerAccessSize {};
template <> struct LargerAccessSize<u8> { typedef u16 value; };
template <> struct LargerAccessSize<u16> { typedef u32 value; };
template <typename T>
ReadHandlingMethod<T>* ReadToSmaller(Mapping* mmio, u32 high_part_addr, u32 low_part_addr)
{
typedef typename SmallerAccessSize<T>::value ST;
const ReadHandler<ST>* high_part;
const ReadHandler<ST>* low_part;
mmio->GetHandlerForRead(high_part_addr, &high_part);
mmio->GetHandlerForRead(low_part_addr, &low_part);
// TODO(delroth): optimize
return ComplexRead<T>([high_part, low_part](u32 addr) {
return ((T)high_part->Read(addr) << (8 * sizeof (ST))) | low_part->Read(addr);
});
}
template <typename T>
WriteHandlingMethod<T>* WriteToSmaller(Mapping* mmio, u32 high_part_addr, u32 low_part_addr)
{
typedef typename SmallerAccessSize<T>::value ST;
const WriteHandler<ST>* high_part;
const WriteHandler<ST>* low_part;
mmio->GetHandlerForWrite(high_part_addr, &high_part);
mmio->GetHandlerForWrite(low_part_addr, &low_part);
// TODO(delroth): optimize
return ComplexWrite<T>([high_part, low_part](u32 addr, T val) {
high_part->Write(addr, val >> (8 * sizeof (ST)));
low_part->Write(addr, (ST)val);
});
}
template <typename T>
ReadHandlingMethod<T>* ReadToLarger(Mapping* mmio, u32 larger_addr, u32 shift)
{
typedef typename LargerAccessSize<T>::value LT;
const ReadHandler<LT>* large;
mmio->GetHandlerForRead(larger_addr, &large);
// TODO(delroth): optimize
return ComplexRead<T>([large, shift](u32 addr) {
return large->Read(addr & ~(sizeof (LT) - 1)) >> shift;
});
}
// Inplementation of the ReadHandler and WriteHandler class. There is a lot of
// redundant code between these two classes but trying to abstract it away
// brings more trouble than it fixes.
template <typename T>
ReadHandler<T>::ReadHandler() : m_Method(nullptr)
{
ResetMethod(InvalidRead<T>());
}
template <typename T>
ReadHandler<T>::ReadHandler(ReadHandlingMethod<T>* method)
: m_Method(nullptr)
{
ResetMethod(method);
}
template <typename T>
ReadHandler<T>::~ReadHandler()
{
}
template <typename T>
void ReadHandler<T>::Visit(ReadHandlingMethodVisitor<T>& visitor) const
{
m_Method->AcceptReadVisitor(visitor);
}
template <typename T>
void ReadHandler<T>::ResetMethod(ReadHandlingMethod<T>* method)
{
m_Method.reset(method);
struct FuncCreatorVisitor : public ReadHandlingMethodVisitor<T>
{
std::function<T(u32)> ret;
virtual void VisitConstant(T value)
{
ret = [value](u32) { return value; };
}
virtual void VisitDirect(const T* addr, u32 mask)
{
ret = [addr, mask](u32) { return *addr & mask; };
}
virtual void VisitComplex(std::function<T(u32)> lambda)
{
ret = lambda;
}
};
FuncCreatorVisitor v;
Visit(v);
m_ReadFunc = v.ret;
}
template <typename T>
WriteHandler<T>::WriteHandler() : m_Method(nullptr)
{
ResetMethod(InvalidWrite<T>());
}
template <typename T>
WriteHandler<T>::WriteHandler(WriteHandlingMethod<T>* method)
: m_Method(nullptr)
{
ResetMethod(method);
}
template <typename T>
WriteHandler<T>::~WriteHandler()
{
}
template <typename T>
void WriteHandler<T>::Visit(WriteHandlingMethodVisitor<T>& visitor) const
{
m_Method->AcceptWriteVisitor(visitor);
}
template <typename T>
void WriteHandler<T>::ResetMethod(WriteHandlingMethod<T>* method)
{
m_Method.reset(method);
struct FuncCreatorVisitor : public WriteHandlingMethodVisitor<T>
{
std::function<void(u32, T)> ret;
virtual void VisitNop()
{
ret = [](u32, T) {};
}
virtual void VisitDirect(T* ptr, u32 mask)
{
ret = [ptr, mask](u32, T val) { *ptr = val & mask; };
}
virtual void VisitComplex(std::function<void(u32, T)> lambda)
{
ret = lambda;
}
};
FuncCreatorVisitor v;
Visit(v);
m_WriteFunc = v.ret;
}
// Define all the public specializations that are exported in MMIOHandlers.h.
MMIO_PUBLIC_SPECIALIZATIONS();
}

156
Source/Core/Core/HW/MMIO.h Normal file
View File

@ -0,0 +1,156 @@
// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#pragma once
#include "Common.h"
#include <array>
#include <string>
#include <type_traits>
#include "MMIOHandlers.h"
namespace MMIO
{
// There are three main MMIO blocks on the Wii (only one on the GameCube):
// - 0xCC00xxxx: GameCube MMIOs (CP, PE, VI, PI, MI, DSP, DVD, SI, EI, AI, GP)
// - 0xCD00xxxx: Wii MMIOs and GC mirrors (IPC, DVD, SI, EI, AI)
// - 0xCD80xxxx: Mirror of 0xCD00xxxx.
//
// In practice, since the third block is a mirror of the second one, we can
// assume internally that there are only two blocks: one for GC, one for Wii.
enum Block
{
GC_BLOCK = 0,
WII_BLOCK = 1,
NUM_BLOCKS
};
const u32 BLOCK_SIZE = 0x10000;
const u32 NUM_MMIOS = NUM_BLOCKS * BLOCK_SIZE;
// Compute the internal unique ID for a given MMIO address. This ID is computed
// from a very simple formula: (1 + block_id) * lower_16_bits(address).
//
// The block ID can easily be computed by simply checking bit 24 (CC vs. CD).
inline u32 UniqueID(u32 address)
{
_dbg_assert_msg_(MEMMAP, ((address & 0xFFFF0000) == 0xCC000000) ||
((address & 0xFFFF0000) == 0xCD000000) ||
((address & 0xFFFF0000) == 0xCD800000),
"Trying to get the ID of a non-existing MMIO address.");
return (1 + ((address >> 24) & 1)) * (address & 0xFFFF);
}
// Some utilities functions to define MMIO mappings.
namespace Utils
{
// Allow grabbing pointers to the high and low part of a 32 bits pointer.
inline u16* LowPart(u32* ptr) { return (u16*)ptr; }
inline u16* LowPart(volatile u32* ptr) { return (u16*)ptr; }
inline u16* HighPart(u32* ptr) { return LowPart(ptr) + 1; }
inline u16* HighPart(volatile u32* ptr) { return LowPart(ptr) + 1; }
}
class Mapping
{
public:
// MMIO registration interface. Use this to register new MMIO handlers.
//
// Example usages can be found in just about any HW/ module in Dolphin's
// codebase.
#define REGISTER_FUNCS(Size) \
void RegisterRead(u32 addr, ReadHandlingMethod<u##Size>* read) \
{ \
u32 id = UniqueID(addr) / sizeof (u##Size); \
m_Read##Size##Handlers[id].ResetMethod(read); \
} \
void RegisterWrite(u32 addr, WriteHandlingMethod<u##Size>* write) \
{ \
u32 id = UniqueID(addr) / sizeof (u##Size); \
m_Write##Size##Handlers[id].ResetMethod(write); \
} \
void Register(u32 addr, ReadHandlingMethod<u##Size>* read, \
WriteHandlingMethod<u##Size>* write) \
{ \
RegisterRead(addr, read); \
RegisterWrite(addr, write); \
}
REGISTER_FUNCS(8) REGISTER_FUNCS(16) REGISTER_FUNCS(32)
#undef REGISTER_FUNCS
// Direct read/write interface.
//
// These functions allow reading/writing an MMIO register at a given
// address. They are used by the Memory:: access functions, which are
// called in interpreter mode, from Dolphin's own code, or from JIT'd code
// where the access address could not be predicted.
//
// Note that for reads we cannot simply return the read value because C++
// allows overloading only with parameter types, not return types.
#define READ_FUNC(Size) \
void Read(u32 addr, u##Size& val) const \
{ \
u32 id = UniqueID(addr) / sizeof (u##Size); \
val = m_Read##Size##Handlers[id].Read(addr); \
}
READ_FUNC(8) READ_FUNC(16) READ_FUNC(32)
#undef READ_FUNC
#define WRITE_FUNC(Size) \
void Write(u32 addr, u##Size val) const \
{ \
u32 id = UniqueID(addr) / sizeof (u##Size); \
m_Write##Size##Handlers[id].Write(addr, val); \
}
WRITE_FUNC(8) WRITE_FUNC(16) WRITE_FUNC(32)
#undef WRITE_FUNC
// Handlers access interface.
//
// Use when you care more about how to access the MMIO register for an
// address than the current value of that register. For example, this is
// what could be used to implement fast MMIO accesses in Dolphin's JIT.
//
// Two variants of each GetHandler function are provided: one that returns
// the handler directly and one that has a pointer parameter to return the
// value. This second variant is needed because C++ doesn't do overloads
// based on return type but only based on argument types.
#define GET_HANDLERS_FUNC(Type, Size) \
const Type##Handler<u##Size>& GetHandlerFor##Type##Size(u32 addr) const \
{ \
return m_##Type##Size##Handlers[UniqueID(addr) / sizeof (u##Size)]; \
} \
void GetHandlerFor##Type(u32 addr, const Type##Handler<u##Size>** h) const \
{ \
*h = &GetHandlerFor##Type##Size(addr); \
}
GET_HANDLERS_FUNC(Read, 8) GET_HANDLERS_FUNC(Read, 16) GET_HANDLERS_FUNC(Read, 32)
GET_HANDLERS_FUNC(Write, 8) GET_HANDLERS_FUNC(Write, 16) GET_HANDLERS_FUNC(Write, 32)
#undef GET_HANDLERS_FUNC
// Dummy 64 bits variants of these functions. While 64 bits MMIO access is
// not supported, we need these in order to make the code compile.
void Read(u32 addr, u64& val) const { _dbg_assert_(MEMMAP, 0); }
void Write(u32 addr, u64 val) const { _dbg_assert_(MEMMAP, 0); }
private:
// These arrays contain the handlers for each MMIO access type: read/write
// to 8/16/32 bits. They are indexed using the UniqueID(addr) function
// defined earlier, which maps an MMIO address to a unique ID by using the
// MMIO block ID.
//
// Each array contains NUM_MMIOS / sizeof (AccessType) because larger
// access types mean less possible adresses (assuming aligned only
// accesses).
#define HANDLERS(Size) \
std::array<ReadHandler<u##Size>, NUM_MMIOS / sizeof (u##Size)> m_Read##Size##Handlers; \
std::array<WriteHandler<u##Size>, NUM_MMIOS / sizeof (u##Size)> m_Write##Size##Handlers;
HANDLERS(8) HANDLERS(16) HANDLERS(32)
#undef HANDLERS
};
}

View File

@ -0,0 +1,201 @@
// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#pragma once
#include "Common.h"
#include <functional>
#include <memory>
// All the templated and very repetitive MMIO-related code is isolated in this
// file for easier reading. It mostly contains code related to handling methods
// (including the declaration of the public functions for creating handling
// method objects), visitors for these handling methods, and interface of the
// handler classes.
//
// This code is very genericized (aka. lots of templates) in order to handle
// u8/u16/u32 with the same code while providing type safety: it is impossible
// to mix code from these types, and the type system enforces it.
namespace MMIO
{
class Mapping;
// Read and write handling methods are separated for type safety. On top of
// that, some handling methods require different arguments for reads and writes
// (Complex, for example).
template <typename T> class ReadHandlingMethod;
template <typename T> class WriteHandlingMethod;
// Constant: use when the value read on this MMIO is always the same. This is
// only for reads.
template <typename T> ReadHandlingMethod<T>* Constant(T value);
// Nop: use for writes that shouldn't have any effect and shouldn't log an
// error either.
template <typename T> WriteHandlingMethod<T>* Nop();
// Direct: use when all the MMIO does is read/write the given value to/from a
// global variable, with an optional mask applied on the read/written value.
template <typename T> ReadHandlingMethod<T>* DirectRead(const T* addr, u32 mask = 0xFFFFFFFF);
template <typename T> ReadHandlingMethod<T>* DirectRead(volatile const T* addr, u32 mask = 0xFFFFFFFF);
template <typename T> WriteHandlingMethod<T>* DirectWrite(T* addr, u32 mask = 0xFFFFFFFF);
template <typename T> WriteHandlingMethod<T>* DirectWrite(volatile T* addr, u32 mask = 0xFFFFFFFF);
// Complex: use when no other handling method fits your needs. These allow you
// to directly provide a function that will be called when a read/write needs
// to be done.
template <typename T> ReadHandlingMethod<T>* ComplexRead(std::function<T(u32)>);
template <typename T> WriteHandlingMethod<T>* ComplexWrite(std::function<void(u32, T)>);
// Invalid: log an error and return -1 in case of a read. These are the default
// handlers set for all MMIO types.
template <typename T> ReadHandlingMethod<T>* InvalidRead();
template <typename T> WriteHandlingMethod<T>* InvalidWrite();
// {Read,Write}To{Smaller,Larger}: these functions are not themselves handling
// methods but will try to combine accesses to two handlers into one new
// handler object.
//
// This is used for example when 32 bit reads have the exact same handling as
// 16 bit. Handlers need to be registered for both 32 and 16, and it would be
// repetitive and unoptimal to require users to write the same handling code in
// both cases. Instead, an MMIO module can simply define all handlers in terms
// of 16 bit reads, then use ReadToSmaller<u32> to convert u32 reads to u16
// reads.
//
// Internally, these size conversion functions have some magic to make the
// combined handlers as fast as possible. For example, if the two underlying
// u16 handlers for a u32 reads are Direct to consecutive memory addresses,
// they can be transformed into a Direct u32 access.
//
// Warning: unlike the other handling methods, *ToSmaller are obviously not
// available for u8, and *ToLarger are not available for u32.
template <typename T> ReadHandlingMethod<T>* ReadToSmaller(Mapping* mmio, u32 high_part_addr, u32 low_part_addr);
template <typename T> WriteHandlingMethod<T>* WriteToSmaller(Mapping* mmio, u32 high_part_addr, u32 low_part_addr);
template <typename T> ReadHandlingMethod<T>* ReadToLarger(Mapping* mmio, u32 larger_addr, u32 shift);
// Use these visitors interfaces if you need to write code that performs
// different actions based on the handling method used by a handler. Write your
// visitor implementing that interface, then use handler->VisitHandlingMethod
// to run the proper function.
template <typename T>
class ReadHandlingMethodVisitor
{
public:
virtual void VisitConstant(T value) = 0;
virtual void VisitDirect(const T* addr, u32 mask) = 0;
virtual void VisitComplex(std::function<T(u32)> lambda) = 0;
};
template <typename T>
class WriteHandlingMethodVisitor
{
public:
virtual void VisitNop() = 0;
virtual void VisitDirect(T* addr, u32 mask) = 0;
virtual void VisitComplex(std::function<void(u32, T)> lambda) = 0;
};
// These classes are INTERNAL. Do not use outside of the MMIO implementation
// code. Unfortunately, because we want to make Read() and Write() fast and
// inlinable, we need to provide some of the implementation of these two
// classes here and can't just use a forward declaration.
template <typename T>
class ReadHandler : public NonCopyable
{
public:
ReadHandler();
// Takes ownership of "method".
ReadHandler(ReadHandlingMethod<T>* method);
~ReadHandler();
// Entry point for read handling method visitors.
void Visit(ReadHandlingMethodVisitor<T>& visitor) const;
T Read(u32 addr) const
{
return m_ReadFunc(addr);
}
// Internal method called when changing the internal method object. Its
// main role is to make sure the read function is updated at the same time.
void ResetMethod(ReadHandlingMethod<T>* method);
private:
std::unique_ptr<ReadHandlingMethod<T>> m_Method;
std::function<T(u32)> m_ReadFunc;
};
template <typename T>
class WriteHandler : public NonCopyable
{
public:
WriteHandler();
// Takes ownership of "method".
WriteHandler(WriteHandlingMethod<T>* method);
~WriteHandler();
// Entry point for write handling method visitors.
void Visit(WriteHandlingMethodVisitor<T>& visitor) const;
void Write(u32 addr, T val) const
{
m_WriteFunc(addr, val);
}
// Internal method called when changing the internal method object. Its
// main role is to make sure the write function is updated at the same
// time.
void ResetMethod(WriteHandlingMethod<T>* method);
private:
std::unique_ptr<WriteHandlingMethod<T>> m_Method;
std::function<void(u32, T)> m_WriteFunc;
};
// Boilerplate boilerplate boilerplate.
//
// This is used to be able to avoid putting the templates implementation in the
// header files and slow down compilation times. Instead, we declare 3
// specializations in the header file as already implemented in another
// compilation unit: u8, u16, u32.
//
// The "MaybeExtern" is there because that same macro is used for declaration
// (where MaybeExtern = "extern") and definition (MaybeExtern = "").
#define MMIO_GENERIC_PUBLIC_SPECIALIZATIONS(MaybeExtern, T) \
MaybeExtern template ReadHandlingMethod<T>* Constant<T>(T value); \
MaybeExtern template WriteHandlingMethod<T>* Nop<T>(); \
MaybeExtern template ReadHandlingMethod<T>* DirectRead(const T* addr, u32 mask); \
MaybeExtern template ReadHandlingMethod<T>* DirectRead(volatile const T* addr, u32 mask); \
MaybeExtern template WriteHandlingMethod<T>* DirectWrite(T* addr, u32 mask); \
MaybeExtern template WriteHandlingMethod<T>* DirectWrite(volatile T* addr, u32 mask); \
MaybeExtern template ReadHandlingMethod<T>* ComplexRead<T>(std::function<T(u32)>); \
MaybeExtern template WriteHandlingMethod<T>* ComplexWrite<T>(std::function<void(u32, T)>); \
MaybeExtern template ReadHandlingMethod<T>* InvalidRead<T>(); \
MaybeExtern template WriteHandlingMethod<T>* InvalidWrite<T>(); \
MaybeExtern template class ReadHandler<T>; \
MaybeExtern template class WriteHandler<T>
#define MMIO_SPECIAL_PUBLIC_SPECIALIZATIONS(MaybeExtern) \
MaybeExtern template ReadHandlingMethod<u16>* ReadToSmaller(Mapping* mmio, u32 high_part_addr, u32 low_part_addr); \
MaybeExtern template ReadHandlingMethod<u32>* ReadToSmaller(Mapping* mmio, u32 high_part_addr, u32 low_part_addr); \
MaybeExtern template WriteHandlingMethod<u16>* WriteToSmaller(Mapping* mmio, u32 high_part_addr, u32 low_part_addr); \
MaybeExtern template WriteHandlingMethod<u32>* WriteToSmaller(Mapping* mmio, u32 high_part_addr, u32 low_part_addr); \
MaybeExtern template ReadHandlingMethod<u8>* ReadToLarger(Mapping* mmio, u32 larger_addr, u32 shift); \
MaybeExtern template ReadHandlingMethod<u16>* ReadToLarger(Mapping* mmio, u32 larger_addr, u32 shift)
#define MMIO_PUBLIC_SPECIALIZATIONS(MaybeExtern) \
MMIO_GENERIC_PUBLIC_SPECIALIZATIONS(MaybeExtern, u8); \
MMIO_GENERIC_PUBLIC_SPECIALIZATIONS(MaybeExtern, u16); \
MMIO_GENERIC_PUBLIC_SPECIALIZATIONS(MaybeExtern, u32); \
MMIO_SPECIAL_PUBLIC_SPECIALIZATIONS(MaybeExtern);
MMIO_PUBLIC_SPECIALIZATIONS(extern)
}

View File

@ -34,6 +34,7 @@
#include "../ConfigManager.h" #include "../ConfigManager.h"
#include "../Debugger/Debugger_SymbolMap.h" #include "../Debugger/Debugger_SymbolMap.h"
#include "VideoBackendBase.h" #include "VideoBackendBase.h"
#include "MMIO.h"
namespace Memory namespace Memory
{ {
@ -83,6 +84,9 @@ u8 *m_pVirtualUncachedEXRAM; // wii only
u8 *m_pVirtualL1Cache; u8 *m_pVirtualL1Cache;
u8 *m_pVirtualFakeVMEM; u8 *m_pVirtualFakeVMEM;
// MMIO mapping object.
MMIO::Mapping* mmio_mapping;
// ================================= // =================================
// Read and write shortcuts // Read and write shortcuts
// ---------------- // ----------------
@ -348,6 +352,8 @@ void Init()
if (bFakeVMEM) flags |= MV_FAKE_VMEM; if (bFakeVMEM) flags |= MV_FAKE_VMEM;
base = MemoryMap_Setup(views, num_views, flags, &g_arena); base = MemoryMap_Setup(views, num_views, flags, &g_arena);
mmio_mapping = new MMIO::Mapping();
if (wii) if (wii)
InitHWMemFuncsWii(); InitHWMemFuncsWii();
else else
@ -382,6 +388,7 @@ void Shutdown()
MemoryMap_Shutdown(views, num_views, flags, &g_arena); MemoryMap_Shutdown(views, num_views, flags, &g_arena);
g_arena.ReleaseSpace(); g_arena.ReleaseSpace();
base = NULL; base = NULL;
delete mmio_mapping;
INFO_LOG(MEMMAP, "Memory system shut down."); INFO_LOG(MEMMAP, "Memory system shut down.");
} }

View File

@ -28,6 +28,7 @@
// Global declarations // Global declarations
class PointerWrap; class PointerWrap;
namespace MMIO { class Mapping; }
typedef void (*writeFn8 )(const u8, const u32); typedef void (*writeFn8 )(const u8, const u32);
typedef void (*writeFn16)(const u16,const u32); typedef void (*writeFn16)(const u16,const u32);
@ -83,6 +84,9 @@ enum
#endif #endif
}; };
// MMIO mapping object.
extern MMIO::Mapping* mmio_mapping;
// Init and Shutdown // Init and Shutdown
bool IsInitialized(); bool IsInitialized();
void Init(); void Init();

View File

@ -24,6 +24,7 @@
#include "../Core.h" #include "../Core.h"
#include "../PowerPC/PowerPC.h" #include "../PowerPC/PowerPC.h"
#include "VideoBackendBase.h" #include "VideoBackendBase.h"
#include "MMIO.h"
#ifdef USE_GDBSTUB #ifdef USE_GDBSTUB
#include "../PowerPC/GDBStub.h" #include "../PowerPC/GDBStub.h"