JitArm64: Encode logical immediates at compile-time where possible
Manually encoding and decoding logical immediates is error-prone. Using ORRI2R and friends lets us avoid doing the work manually, but in exchange, there is a runtime performance penalty. It's probably rather small, but still, it would be nice if we could let the compiler do the work at compile-time. And that's exactly what this commit does, so now I have no excuse for trying to manually write logical immediates anymore.
This commit is contained in:
parent
10861ed8ce
commit
9e80db123f
|
@ -1124,17 +1124,16 @@ public:
|
|||
}
|
||||
|
||||
// Wrapper around AND x, y, imm etc.
|
||||
// If you are sure the imm will work, no need to pass a scratch register.
|
||||
// If the imm is constant, preferably call EncodeLogicalImm directly instead of using these
|
||||
// functions, as this lets the computation of the imm encoding be performed during compilation.
|
||||
void ANDI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch = ARM64Reg::INVALID_REG);
|
||||
void ANDSI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch = ARM64Reg::INVALID_REG);
|
||||
void TSTI2R(ARM64Reg Rn, u64 imm, ARM64Reg scratch = ARM64Reg::INVALID_REG)
|
||||
// If you are sure the imm will work, preferably construct a LogicalImm directly instead,
|
||||
// since that is constexpr and thus can be done at compile-time for constant values.
|
||||
void ANDI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch);
|
||||
void ANDSI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch);
|
||||
void TSTI2R(ARM64Reg Rn, u64 imm, ARM64Reg scratch)
|
||||
{
|
||||
ANDSI2R(Is64Bit(Rn) ? ARM64Reg::ZR : ARM64Reg::WZR, Rn, imm, scratch);
|
||||
}
|
||||
void ORRI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch = ARM64Reg::INVALID_REG);
|
||||
void EORI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch = ARM64Reg::INVALID_REG);
|
||||
void ORRI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch);
|
||||
void EORI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch);
|
||||
|
||||
void ADDI2R_internal(ARM64Reg Rd, ARM64Reg Rn, u64 imm, bool negative, bool flags,
|
||||
ARM64Reg scratch);
|
||||
|
|
|
@ -799,7 +799,7 @@ void JitArm64::DoJit(u32 em_address, JitBlock* b, u32 nextPC)
|
|||
fpr.Flush(FlushMode::MaintainState);
|
||||
|
||||
LDR(IndexType::Unsigned, WA, PPC_REG, PPCSTATE_OFF(Exceptions));
|
||||
ORRI2R(WA, WA, EXCEPTION_FPU_UNAVAILABLE);
|
||||
ORR(WA, WA, LogicalImm(EXCEPTION_FPU_UNAVAILABLE, 32));
|
||||
STR(IndexType::Unsigned, WA, PPC_REG, PPCSTATE_OFF(Exceptions));
|
||||
|
||||
gpr.Unlock(WA);
|
||||
|
|
|
@ -24,7 +24,7 @@ void JitArm64::sc(UGeckoInstruction inst)
|
|||
ARM64Reg WA = gpr.GetReg();
|
||||
|
||||
LDR(IndexType::Unsigned, WA, PPC_REG, PPCSTATE_OFF(Exceptions));
|
||||
ORRI2R(WA, WA, EXCEPTION_SYSCALL);
|
||||
ORR(WA, WA, LogicalImm(EXCEPTION_SYSCALL, 32));
|
||||
STR(IndexType::Unsigned, WA, PPC_REG, PPCSTATE_OFF(Exceptions));
|
||||
|
||||
gpr.Unlock(WA);
|
||||
|
|
|
@ -401,7 +401,7 @@ void JitArm64::FloatCompare(UGeckoInstruction inst, bool upper)
|
|||
{
|
||||
fpscr_reg = gpr.GetReg();
|
||||
LDR(IndexType::Unsigned, fpscr_reg, PPC_REG, PPCSTATE_OFF(fpscr));
|
||||
ANDI2R(fpscr_reg, fpscr_reg, ~FPCC_MASK);
|
||||
AND(fpscr_reg, fpscr_reg, LogicalImm(~FPCC_MASK, 32));
|
||||
}
|
||||
|
||||
ARM64Reg V0Q = ARM64Reg::INVALID_REG;
|
||||
|
@ -450,7 +450,7 @@ void JitArm64::FloatCompare(UGeckoInstruction inst, bool upper)
|
|||
// A == B
|
||||
ORR(XA, XA, 64 - 63, 0, true);
|
||||
if (fprf)
|
||||
ORRI2R(fpscr_reg, fpscr_reg, PowerPC::CR_EQ << FPRF_SHIFT);
|
||||
ORR(fpscr_reg, fpscr_reg, LogicalImm(PowerPC::CR_EQ << FPRF_SHIFT, 32));
|
||||
|
||||
continue1 = B();
|
||||
|
||||
|
@ -458,7 +458,7 @@ void JitArm64::FloatCompare(UGeckoInstruction inst, bool upper)
|
|||
|
||||
MOVI2R(XA, PowerPC::ConditionRegister::PPCToInternal(PowerPC::CR_SO));
|
||||
if (fprf)
|
||||
ORRI2R(fpscr_reg, fpscr_reg, PowerPC::CR_SO << FPRF_SHIFT);
|
||||
ORR(fpscr_reg, fpscr_reg, LogicalImm(PowerPC::CR_SO << FPRF_SHIFT, 32));
|
||||
|
||||
if (a != b)
|
||||
{
|
||||
|
@ -467,7 +467,7 @@ void JitArm64::FloatCompare(UGeckoInstruction inst, bool upper)
|
|||
SetJumpTarget(pGreater);
|
||||
ORR(XA, XA, 0, 0, true);
|
||||
if (fprf)
|
||||
ORRI2R(fpscr_reg, fpscr_reg, PowerPC::CR_GT << FPRF_SHIFT);
|
||||
ORR(fpscr_reg, fpscr_reg, LogicalImm(PowerPC::CR_GT << FPRF_SHIFT, 32));
|
||||
|
||||
continue3 = B();
|
||||
|
||||
|
@ -475,7 +475,7 @@ void JitArm64::FloatCompare(UGeckoInstruction inst, bool upper)
|
|||
ORR(XA, XA, 64 - 62, 1, true);
|
||||
ORR(XA, XA, 0, 0, true);
|
||||
if (fprf)
|
||||
ORRI2R(fpscr_reg, fpscr_reg, PowerPC::CR_LT << FPRF_SHIFT);
|
||||
ORR(fpscr_reg, fpscr_reg, LogicalImm(PowerPC::CR_LT << FPRF_SHIFT, 32));
|
||||
|
||||
SetJumpTarget(continue2);
|
||||
SetJumpTarget(continue3);
|
||||
|
@ -532,7 +532,7 @@ void JitArm64::fctiwzx(UGeckoInstruction inst)
|
|||
const ARM64Reg WA = gpr.GetReg();
|
||||
|
||||
m_float_emit.FCVTS(WA, EncodeRegToDouble(VB), RoundingMode::Z);
|
||||
ORRI2R(EncodeRegTo64(WA), EncodeRegTo64(WA), 0xFFF8'0000'0000'0000ULL);
|
||||
ORR(EncodeRegTo64(WA), EncodeRegTo64(WA), LogicalImm(0xFFF8'0000'0000'0000ULL, 64));
|
||||
m_float_emit.FMOV(EncodeRegToDouble(VD), EncodeRegTo64(WA));
|
||||
|
||||
gpr.Unlock(WA);
|
||||
|
|
|
@ -611,7 +611,7 @@ void JitArm64::rlwinmx(UGeckoInstruction inst)
|
|||
else if (!inst.SH)
|
||||
{
|
||||
// Immediate mask
|
||||
ANDI2R(gpr.R(a), gpr.R(s), mask);
|
||||
AND(gpr.R(a), gpr.R(s), LogicalImm(mask, 32));
|
||||
}
|
||||
else if (inst.ME == 31 && 31 < inst.SH + inst.MB)
|
||||
{
|
||||
|
|
|
@ -550,7 +550,7 @@ void JitArm64::dcbx(UGeckoInstruction inst)
|
|||
else
|
||||
MOV(addr, gpr.R(b));
|
||||
|
||||
ANDI2R(addr, addr, ~31); // mask sizeof cacheline
|
||||
AND(addr, addr, LogicalImm(~31, 32)); // mask sizeof cacheline
|
||||
|
||||
BitSet32 gprs_to_push = gpr.GetCallerSavedUsed();
|
||||
BitSet32 fprs_to_push = fpr.GetCallerSavedUsed();
|
||||
|
@ -618,13 +618,13 @@ void JitArm64::dcbz(UGeckoInstruction inst)
|
|||
ARM64Reg base = is_imm_a ? gpr.R(b) : gpr.R(a);
|
||||
u32 imm_offset = is_imm_a ? gpr.GetImm(a) : gpr.GetImm(b);
|
||||
ADDI2R(addr_reg, base, imm_offset, addr_reg);
|
||||
ANDI2R(addr_reg, addr_reg, ~31);
|
||||
AND(addr_reg, addr_reg, LogicalImm(~31, 32));
|
||||
}
|
||||
else
|
||||
{
|
||||
// Both are registers
|
||||
ADD(addr_reg, gpr.R(a), gpr.R(b));
|
||||
ANDI2R(addr_reg, addr_reg, ~31);
|
||||
AND(addr_reg, addr_reg, LogicalImm(~31, 32));
|
||||
}
|
||||
}
|
||||
else
|
||||
|
@ -637,7 +637,7 @@ void JitArm64::dcbz(UGeckoInstruction inst)
|
|||
}
|
||||
else
|
||||
{
|
||||
ANDI2R(addr_reg, gpr.R(b), ~31);
|
||||
AND(addr_reg, gpr.R(b), LogicalImm(~31, 32));
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -217,7 +217,7 @@ void JitArm64::twx(UGeckoInstruction inst)
|
|||
fpr.Flush(FlushMode::MaintainState);
|
||||
|
||||
LDR(IndexType::Unsigned, WA, PPC_REG, PPCSTATE_OFF(Exceptions));
|
||||
ORRI2R(WA, WA, EXCEPTION_PROGRAM);
|
||||
ORR(WA, WA, LogicalImm(EXCEPTION_PROGRAM, 32));
|
||||
STR(IndexType::Unsigned, WA, PPC_REG, PPCSTATE_OFF(Exceptions));
|
||||
gpr.Unlock(WA);
|
||||
|
||||
|
@ -290,7 +290,7 @@ void JitArm64::mfspr(UGeckoInstruction inst)
|
|||
SUB(Xresult, Xresult, XB);
|
||||
|
||||
// a / 12 = (a * 0xAAAAAAAAAAAAAAAB) >> 67
|
||||
ORRI2R(XB, ARM64Reg::ZR, 0xAAAAAAAAAAAAAAAA);
|
||||
ORR(XB, ARM64Reg::ZR, LogicalImm(0xAAAAAAAAAAAAAAAA, 64));
|
||||
ADD(XB, XB, 1);
|
||||
UMULH(Xresult, Xresult, XB);
|
||||
|
||||
|
@ -440,20 +440,20 @@ void JitArm64::crXXX(UGeckoInstruction inst)
|
|||
switch (bit)
|
||||
{
|
||||
case PowerPC::CR_SO_BIT:
|
||||
ANDI2R(XA, XA, ~(u64(1) << PowerPC::CR_EMU_SO_BIT));
|
||||
AND(XA, XA, LogicalImm(~(u64(1) << PowerPC::CR_EMU_SO_BIT), 64));
|
||||
break;
|
||||
|
||||
case PowerPC::CR_EQ_BIT:
|
||||
FixGTBeforeSettingCRFieldBit(XA);
|
||||
ORRI2R(XA, XA, 1);
|
||||
ORR(XA, XA, LogicalImm(1, 64));
|
||||
break;
|
||||
|
||||
case PowerPC::CR_GT_BIT:
|
||||
ORRI2R(XA, XA, u64(1) << 63);
|
||||
ORR(XA, XA, LogicalImm(u64(1) << 63, 64));
|
||||
break;
|
||||
|
||||
case PowerPC::CR_LT_BIT:
|
||||
ANDI2R(XA, XA, ~(u64(1) << PowerPC::CR_EMU_LT_BIT));
|
||||
AND(XA, XA, LogicalImm(~(u64(1) << PowerPC::CR_EMU_LT_BIT), 64));
|
||||
break;
|
||||
}
|
||||
return;
|
||||
|
@ -475,23 +475,23 @@ void JitArm64::crXXX(UGeckoInstruction inst)
|
|||
switch (bit)
|
||||
{
|
||||
case PowerPC::CR_SO_BIT:
|
||||
ORRI2R(XA, XA, u64(1) << PowerPC::CR_EMU_SO_BIT);
|
||||
ORR(XA, XA, LogicalImm(u64(1) << PowerPC::CR_EMU_SO_BIT, 64));
|
||||
break;
|
||||
|
||||
case PowerPC::CR_EQ_BIT:
|
||||
ANDI2R(XA, XA, 0xFFFF'FFFF'0000'0000);
|
||||
AND(XA, XA, LogicalImm(0xFFFF'FFFF'0000'0000, 64));
|
||||
break;
|
||||
|
||||
case PowerPC::CR_GT_BIT:
|
||||
ANDI2R(XA, XA, ~(u64(1) << 63));
|
||||
AND(XA, XA, LogicalImm(~(u64(1) << 63), 64));
|
||||
break;
|
||||
|
||||
case PowerPC::CR_LT_BIT:
|
||||
ORRI2R(XA, XA, u64(1) << PowerPC::CR_EMU_LT_BIT);
|
||||
ORR(XA, XA, LogicalImm(u64(1) << PowerPC::CR_EMU_LT_BIT, 64));
|
||||
break;
|
||||
}
|
||||
|
||||
ORRI2R(XA, XA, u64(1) << 32);
|
||||
ORR(XA, XA, LogicalImm(u64(1) << 32, 64));
|
||||
return;
|
||||
}
|
||||
|
||||
|
@ -709,12 +709,12 @@ void JitArm64::mcrfs(UGeckoInstruction inst)
|
|||
|
||||
LDR(IndexType::Unsigned, WA, PPC_REG, PPCSTATE_OFF(fpscr));
|
||||
LSR(WCR, WA, shift);
|
||||
ANDI2R(WCR, WCR, 0xF);
|
||||
AND(WCR, WCR, LogicalImm(0xF, 32));
|
||||
|
||||
if (mask != 0)
|
||||
{
|
||||
const u32 inverted_mask = ~mask;
|
||||
ANDI2R(WA, WA, inverted_mask);
|
||||
AND(WA, WA, LogicalImm(inverted_mask, 32));
|
||||
STR(IndexType::Unsigned, WA, PPC_REG, PPCSTATE_OFF(fpscr));
|
||||
}
|
||||
|
||||
|
|
|
@ -102,7 +102,7 @@ void JitArm64::GenerateAsm()
|
|||
ARM64Reg pc_masked = ARM64Reg::W25;
|
||||
ARM64Reg cache_base = ARM64Reg::X27;
|
||||
ARM64Reg block = ARM64Reg::X30;
|
||||
ORRI2R(pc_masked, ARM64Reg::WZR, JitBaseBlockCache::FAST_BLOCK_MAP_MASK << 3);
|
||||
ORR(pc_masked, ARM64Reg::WZR, LogicalImm(JitBaseBlockCache::FAST_BLOCK_MAP_MASK << 3, 32));
|
||||
AND(pc_masked, pc_masked, DISPATCHER_PC, ArithOption(DISPATCHER_PC, ShiftType::LSL, 1));
|
||||
MOVP2R(cache_base, GetBlockCache()->GetFastBlockMap());
|
||||
LDR(block, cache_base, EncodeRegTo64(pc_masked));
|
||||
|
@ -116,7 +116,7 @@ void JitArm64::GenerateAsm()
|
|||
FixupBranch pc_missmatch = B(CC_NEQ);
|
||||
|
||||
LDR(IndexType::Unsigned, pc_and_msr2, PPC_REG, PPCSTATE_OFF(msr));
|
||||
ANDI2R(pc_and_msr2, pc_and_msr2, JitBaseBlockCache::JIT_CACHE_MSR_MASK);
|
||||
AND(pc_and_msr2, pc_and_msr2, LogicalImm(JitBaseBlockCache::JIT_CACHE_MSR_MASK, 32));
|
||||
LDR(IndexType::Unsigned, pc_and_msr, block, offsetof(JitBlockData, msrBits));
|
||||
CMP(pc_and_msr, pc_and_msr2);
|
||||
FixupBranch msr_missmatch = B(CC_NEQ);
|
||||
|
@ -238,7 +238,7 @@ void JitArm64::GenerateFres()
|
|||
UBFX(ARM64Reg::X2, ARM64Reg::X1, 52, 11); // Grab the exponent
|
||||
m_float_emit.FMOV(ARM64Reg::X0, ARM64Reg::D0);
|
||||
CMP(ARM64Reg::X2, 895);
|
||||
ANDI2R(ARM64Reg::X3, ARM64Reg::X1, Common::DOUBLE_SIGN);
|
||||
AND(ARM64Reg::X3, ARM64Reg::X1, LogicalImm(Common::DOUBLE_SIGN, 64));
|
||||
FixupBranch small_exponent = B(CCFlags::CC_LO);
|
||||
|
||||
MOVI2R(ARM64Reg::X4, 1148LL);
|
||||
|
@ -251,14 +251,14 @@ void JitArm64::GenerateFres()
|
|||
LDP(IndexType::Signed, ARM64Reg::W2, ARM64Reg::W3, ARM64Reg::X2, 0);
|
||||
UBFX(ARM64Reg::X1, ARM64Reg::X1, 37, 10); // Grab lower part of mantissa
|
||||
MOVI2R(ARM64Reg::W4, 1);
|
||||
ANDI2R(ARM64Reg::X0, ARM64Reg::X0, Common::DOUBLE_SIGN | Common::DOUBLE_EXP);
|
||||
AND(ARM64Reg::X0, ARM64Reg::X0, LogicalImm(Common::DOUBLE_SIGN | Common::DOUBLE_EXP, 64));
|
||||
MADD(ARM64Reg::W1, ARM64Reg::W3, ARM64Reg::W1, ARM64Reg::W4);
|
||||
SUB(ARM64Reg::W1, ARM64Reg::W2, ARM64Reg::W1, ArithOption(ARM64Reg::W1, ShiftType::LSR, 1));
|
||||
ORR(ARM64Reg::X0, ARM64Reg::X0, ARM64Reg::X1, ArithOption(ARM64Reg::X1, ShiftType::LSL, 29));
|
||||
RET();
|
||||
|
||||
SetJumpTarget(small_exponent);
|
||||
TSTI2R(ARM64Reg::X1, Common::DOUBLE_EXP | Common::DOUBLE_FRAC);
|
||||
TST(ARM64Reg::X1, LogicalImm(Common::DOUBLE_EXP | Common::DOUBLE_FRAC, 64));
|
||||
FixupBranch zero = B(CCFlags::CC_EQ);
|
||||
MOVI2R(ARM64Reg::X4,
|
||||
Common::BitCast<u64>(static_cast<double>(std::numeric_limits<float>::max())));
|
||||
|
@ -289,15 +289,15 @@ void JitArm64::GenerateFrsqrte()
|
|||
// inf, even the mantissa matches. But the mantissa does not match for most other inputs, so in
|
||||
// the normal case we calculate the mantissa using the table-based algorithm from the interpreter.
|
||||
|
||||
TSTI2R(ARM64Reg::X1, Common::DOUBLE_EXP | Common::DOUBLE_FRAC);
|
||||
TST(ARM64Reg::X1, LogicalImm(Common::DOUBLE_EXP | Common::DOUBLE_FRAC, 64));
|
||||
m_float_emit.FMOV(ARM64Reg::X0, ARM64Reg::D0);
|
||||
FixupBranch zero = B(CCFlags::CC_EQ);
|
||||
ANDI2R(ARM64Reg::X2, ARM64Reg::X1, Common::DOUBLE_EXP);
|
||||
AND(ARM64Reg::X2, ARM64Reg::X1, LogicalImm(Common::DOUBLE_EXP, 64));
|
||||
MOVI2R(ARM64Reg::X3, Common::DOUBLE_EXP);
|
||||
CMP(ARM64Reg::X2, ARM64Reg::X3);
|
||||
FixupBranch nan_or_inf = B(CCFlags::CC_EQ);
|
||||
FixupBranch negative = TBNZ(ARM64Reg::X1, 63);
|
||||
ANDI2R(ARM64Reg::X3, ARM64Reg::X1, Common::DOUBLE_FRAC);
|
||||
AND(ARM64Reg::X3, ARM64Reg::X1, LogicalImm(Common::DOUBLE_FRAC, 64));
|
||||
FixupBranch normal = CBNZ(ARM64Reg::X2);
|
||||
|
||||
// "Normalize" denormal values
|
||||
|
@ -306,18 +306,18 @@ void JitArm64::GenerateFrsqrte()
|
|||
MOVI2R(ARM64Reg::X2, 0x00C0'0000'0000'0000);
|
||||
LSLV(ARM64Reg::X4, ARM64Reg::X1, ARM64Reg::X4);
|
||||
SUB(ARM64Reg::X2, ARM64Reg::X2, ARM64Reg::X3, ArithOption(ARM64Reg::X3, ShiftType::LSL, 52));
|
||||
ANDI2R(ARM64Reg::X3, ARM64Reg::X4, Common::DOUBLE_FRAC - 1);
|
||||
AND(ARM64Reg::X3, ARM64Reg::X4, LogicalImm(Common::DOUBLE_FRAC - 1, 64));
|
||||
|
||||
SetJumpTarget(normal);
|
||||
LSR(ARM64Reg::X2, ARM64Reg::X2, 48);
|
||||
ANDI2R(ARM64Reg::X2, ARM64Reg::X2, 0x10);
|
||||
AND(ARM64Reg::X2, ARM64Reg::X2, LogicalImm(0x10, 64));
|
||||
MOVP2R(ARM64Reg::X1, &Common::frsqrte_expected);
|
||||
ORR(ARM64Reg::X2, ARM64Reg::X2, ARM64Reg::X3, ArithOption(ARM64Reg::X8, ShiftType::LSR, 48));
|
||||
EORI2R(ARM64Reg::X2, ARM64Reg::X2, 0x10);
|
||||
EOR(ARM64Reg::X2, ARM64Reg::X2, LogicalImm(0x10, 64));
|
||||
ADD(ARM64Reg::X2, ARM64Reg::X1, ARM64Reg::X2, ArithOption(ARM64Reg::X2, ShiftType::LSL, 3));
|
||||
LDP(IndexType::Signed, ARM64Reg::W1, ARM64Reg::W2, ARM64Reg::X2, 0);
|
||||
UBFX(ARM64Reg::X3, ARM64Reg::X3, 37, 11);
|
||||
ANDI2R(ARM64Reg::X0, ARM64Reg::X0, Common::DOUBLE_SIGN | Common::DOUBLE_EXP);
|
||||
AND(ARM64Reg::X0, ARM64Reg::X0, LogicalImm(Common::DOUBLE_SIGN | Common::DOUBLE_EXP, 64));
|
||||
MSUB(ARM64Reg::W3, ARM64Reg::W3, ARM64Reg::W2, ARM64Reg::W1);
|
||||
ORR(ARM64Reg::X0, ARM64Reg::X0, ARM64Reg::X3, ArithOption(ARM64Reg::X3, ShiftType::LSL, 26));
|
||||
RET();
|
||||
|
@ -354,17 +354,17 @@ void JitArm64::GenerateConvertDoubleToSingle()
|
|||
LSR(ARM64Reg::X1, ARM64Reg::X0, 32);
|
||||
FixupBranch denormal = B(CCFlags::CC_LS);
|
||||
|
||||
ANDI2R(ARM64Reg::X1, ARM64Reg::X1, 0xc0000000);
|
||||
AND(ARM64Reg::X1, ARM64Reg::X1, LogicalImm(0xc0000000, 64));
|
||||
BFXIL(ARM64Reg::X1, ARM64Reg::X0, 29, 30);
|
||||
RET();
|
||||
|
||||
SetJumpTarget(denormal);
|
||||
LSR(ARM64Reg::X3, ARM64Reg::X0, 21);
|
||||
MOVZ(ARM64Reg::X0, 905);
|
||||
ORRI2R(ARM64Reg::W3, ARM64Reg::W3, 0x80000000);
|
||||
ORR(ARM64Reg::W3, ARM64Reg::W3, LogicalImm(0x80000000, 32));
|
||||
SUB(ARM64Reg::W2, ARM64Reg::W0, ARM64Reg::W2);
|
||||
LSRV(ARM64Reg::W2, ARM64Reg::W3, ARM64Reg::W2);
|
||||
ANDI2R(ARM64Reg::X3, ARM64Reg::X1, 0x80000000);
|
||||
AND(ARM64Reg::X3, ARM64Reg::X1, LogicalImm(0x80000000, 64));
|
||||
ORR(ARM64Reg::X1, ARM64Reg::X3, ARM64Reg::X2);
|
||||
RET();
|
||||
}
|
||||
|
@ -375,7 +375,7 @@ void JitArm64::GenerateConvertSingleToDouble()
|
|||
UBFX(ARM64Reg::W1, ARM64Reg::W0, 23, 8);
|
||||
FixupBranch normal_or_nan = CBNZ(ARM64Reg::W1);
|
||||
|
||||
ANDI2R(ARM64Reg::W1, ARM64Reg::W0, 0x007fffff);
|
||||
AND(ARM64Reg::W1, ARM64Reg::W0, LogicalImm(0x007fffff, 32));
|
||||
FixupBranch denormal = CBNZ(ARM64Reg::W1);
|
||||
|
||||
// Zero
|
||||
|
@ -383,10 +383,10 @@ void JitArm64::GenerateConvertSingleToDouble()
|
|||
RET();
|
||||
|
||||
SetJumpTarget(denormal);
|
||||
ANDI2R(ARM64Reg::W2, ARM64Reg::W0, 0x80000000);
|
||||
AND(ARM64Reg::W2, ARM64Reg::W0, LogicalImm(0x80000000, 32));
|
||||
CLZ(ARM64Reg::X3, ARM64Reg::X1);
|
||||
LSL(ARM64Reg::X2, ARM64Reg::X2, 32);
|
||||
ORRI2R(ARM64Reg::X4, ARM64Reg::X3, 0xffffffffffffffc0);
|
||||
ORR(ARM64Reg::X4, ARM64Reg::X3, LogicalImm(0xffffffffffffffc0, 64));
|
||||
SUB(ARM64Reg::X2, ARM64Reg::X2, ARM64Reg::X3, ArithOption(ARM64Reg::X3, ShiftType::LSL, 52));
|
||||
ADD(ARM64Reg::X3, ARM64Reg::X4, 23);
|
||||
LSLV(ARM64Reg::X1, ARM64Reg::X1, ARM64Reg::X3);
|
||||
|
@ -397,12 +397,12 @@ void JitArm64::GenerateConvertSingleToDouble()
|
|||
|
||||
SetJumpTarget(normal_or_nan);
|
||||
CMP(ARM64Reg::W1, 0xff);
|
||||
ANDI2R(ARM64Reg::W2, ARM64Reg::W0, 0x40000000);
|
||||
AND(ARM64Reg::W2, ARM64Reg::W0, LogicalImm(0x40000000, 32));
|
||||
CSET(ARM64Reg::W4, CCFlags::CC_NEQ);
|
||||
ANDI2R(ARM64Reg::W3, ARM64Reg::W0, 0xc0000000);
|
||||
AND(ARM64Reg::W3, ARM64Reg::W0, LogicalImm(0xc0000000, 32));
|
||||
EOR(ARM64Reg::W2, ARM64Reg::W4, ARM64Reg::W2, ArithOption(ARM64Reg::W2, ShiftType::LSR, 30));
|
||||
MOVI2R(ARM64Reg::X1, 0x3800000000000000);
|
||||
ANDI2R(ARM64Reg::W4, ARM64Reg::W0, 0x3fffffff);
|
||||
AND(ARM64Reg::W4, ARM64Reg::W0, LogicalImm(0x3fffffff, 32));
|
||||
LSL(ARM64Reg::X3, ARM64Reg::X3, 32);
|
||||
CMP(ARM64Reg::W2, 0);
|
||||
CSEL(ARM64Reg::X1, ARM64Reg::X1, ARM64Reg::ZR, CCFlags::CC_NEQ);
|
||||
|
@ -423,9 +423,10 @@ void JitArm64::GenerateFPRF(bool single)
|
|||
constexpr ARM64Reg fprf_reg = ARM64Reg::W3;
|
||||
constexpr ARM64Reg fpscr_reg = ARM64Reg::W4;
|
||||
|
||||
const auto INPUT_EXP_MASK = single ? Common::FLOAT_EXP : Common::DOUBLE_EXP;
|
||||
const auto INPUT_FRAC_MASK = single ? Common::FLOAT_FRAC : Common::DOUBLE_FRAC;
|
||||
constexpr u32 OUTPUT_SIGN_MASK = 0xC;
|
||||
const int input_size = single ? 32 : 64;
|
||||
const u64 input_exp_mask = single ? Common::FLOAT_EXP : Common::DOUBLE_EXP;
|
||||
const u64 input_frac_mask = single ? Common::FLOAT_FRAC : Common::DOUBLE_FRAC;
|
||||
constexpr u32 output_sign_mask = 0xC;
|
||||
|
||||
// This code is duplicated for the most common cases for performance.
|
||||
// For the less common cases, we branch to an existing copy of this code.
|
||||
|
@ -439,7 +440,7 @@ void JitArm64::GenerateFPRF(bool single)
|
|||
LDR(IndexType::Unsigned, fpscr_reg, PPC_REG, PPCSTATE_OFF(fpscr));
|
||||
|
||||
CMP(input_reg, 0); // Grab sign bit (conveniently the same bit for floats as for integers)
|
||||
ANDI2R(exp_reg, input_reg, INPUT_EXP_MASK); // Grab exponent
|
||||
AND(exp_reg, input_reg, LogicalImm(input_exp_mask, input_size)); // Grab exponent
|
||||
|
||||
// Most branches handle the sign in the same way. Perform that handling before branching
|
||||
MOVI2R(ARM64Reg::W3, Common::PPC_FPCLASS_PN);
|
||||
|
@ -449,7 +450,7 @@ void JitArm64::GenerateFPRF(bool single)
|
|||
FixupBranch zero_or_denormal = CBZ(exp_reg);
|
||||
|
||||
// exp != 0
|
||||
MOVI2R(temp_reg, INPUT_EXP_MASK);
|
||||
MOVI2R(temp_reg, input_exp_mask);
|
||||
CMP(exp_reg, temp_reg);
|
||||
FixupBranch nan_or_inf = B(CCFlags::CC_EQ);
|
||||
|
||||
|
@ -458,25 +459,25 @@ void JitArm64::GenerateFPRF(bool single)
|
|||
|
||||
// exp == 0
|
||||
SetJumpTarget(zero_or_denormal);
|
||||
TSTI2R(input_reg, INPUT_FRAC_MASK);
|
||||
TST(input_reg, LogicalImm(input_frac_mask, input_size));
|
||||
FixupBranch denormal = B(CCFlags::CC_NEQ);
|
||||
|
||||
// exp == 0 && frac == 0
|
||||
LSR(ARM64Reg::W1, fprf_reg, 3);
|
||||
MOVI2R(fprf_reg, Common::PPC_FPCLASS_PZ & ~OUTPUT_SIGN_MASK);
|
||||
MOVI2R(fprf_reg, Common::PPC_FPCLASS_PZ & ~output_sign_mask);
|
||||
BFI(fprf_reg, ARM64Reg::W1, 4, 1);
|
||||
const u8* write_fprf_and_ret = GetCodePtr();
|
||||
emit_write_fprf_and_ret();
|
||||
|
||||
// exp == 0 && frac != 0
|
||||
SetJumpTarget(denormal);
|
||||
ORRI2R(fprf_reg, fprf_reg, Common::PPC_FPCLASS_PD & ~OUTPUT_SIGN_MASK);
|
||||
ORR(fprf_reg, fprf_reg, LogicalImm(Common::PPC_FPCLASS_PD & ~output_sign_mask, 32));
|
||||
B(write_fprf_and_ret);
|
||||
|
||||
// exp == EXP_MASK
|
||||
SetJumpTarget(nan_or_inf);
|
||||
TSTI2R(input_reg, INPUT_FRAC_MASK);
|
||||
ORRI2R(ARM64Reg::W1, fprf_reg, Common::PPC_FPCLASS_PINF & ~OUTPUT_SIGN_MASK);
|
||||
TST(input_reg, LogicalImm(input_frac_mask, input_size));
|
||||
ORR(ARM64Reg::W1, fprf_reg, LogicalImm(Common::PPC_FPCLASS_PINF & ~output_sign_mask, 32));
|
||||
MOVI2R(ARM64Reg::W2, Common::PPC_FPCLASS_QNAN);
|
||||
CSEL(fprf_reg, ARM64Reg::W1, ARM64Reg::W2, CCFlags::CC_EQ);
|
||||
B(write_fprf_and_ret);
|
||||
|
|
|
@ -244,7 +244,7 @@ void VertexLoaderARM64::ReadColor(VertexComponentFormat attribute, ColorFormat f
|
|||
LDR(IndexType::Unsigned, scratch2_reg, src_reg, offset);
|
||||
|
||||
if (format != ColorFormat::RGBA8888)
|
||||
ORRI2R(scratch2_reg, scratch2_reg, 0xFF000000);
|
||||
ORR(scratch2_reg, scratch2_reg, LogicalImm(0xFF000000, 32));
|
||||
STR(IndexType::Unsigned, scratch2_reg, dst_reg, m_dst_ofs);
|
||||
load_bytes = format == ColorFormat::RGB888 ? 3 : 4;
|
||||
break;
|
||||
|
@ -279,7 +279,7 @@ void VertexLoaderARM64::ReadColor(VertexComponentFormat attribute, ColorFormat f
|
|||
ORR(scratch1_reg, scratch1_reg, scratch2_reg, ArithOption(scratch2_reg, ShiftType::LSR, 2));
|
||||
|
||||
// A
|
||||
ORRI2R(scratch1_reg, scratch1_reg, 0xFF000000);
|
||||
ORR(scratch1_reg, scratch1_reg, LogicalImm(0xFF000000, 32));
|
||||
|
||||
STR(IndexType::Unsigned, scratch1_reg, dst_reg, m_dst_ofs);
|
||||
load_bytes = 2;
|
||||
|
|
Loading…
Reference in New Issue