Merge pull request #6794 from lioncash/float

FloatUtils: Minor cleanup
This commit is contained in:
Léo Lam 2018-05-09 19:36:33 +02:00 committed by GitHub
commit 91f59aa7e1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 83 additions and 96 deletions

View File

@ -5,85 +5,76 @@
#include "Common/FloatUtils.h"
#include <cmath>
#include <cstring>
namespace Common
{
u32 ClassifyDouble(double dvalue)
{
// TODO: Optimize the below to be as fast as possible.
IntDouble value(dvalue);
u64 sign = value.i & DOUBLE_SIGN;
u64 exp = value.i & DOUBLE_EXP;
u64 ivalue;
std::memcpy(&ivalue, &dvalue, sizeof(ivalue));
const u64 sign = ivalue & DOUBLE_SIGN;
const u64 exp = ivalue & DOUBLE_EXP;
if (exp > DOUBLE_ZERO && exp < DOUBLE_EXP)
{
// Nice normalized number.
return sign ? PPC_FPCLASS_NN : PPC_FPCLASS_PN;
}
else
const u64 mantissa = ivalue & DOUBLE_FRAC;
if (mantissa)
{
u64 mantissa = value.i & DOUBLE_FRAC;
if (mantissa)
{
if (exp)
{
return PPC_FPCLASS_QNAN;
}
else
{
// Denormalized number.
return sign ? PPC_FPCLASS_ND : PPC_FPCLASS_PD;
}
}
else if (exp)
{
// Infinite
return sign ? PPC_FPCLASS_NINF : PPC_FPCLASS_PINF;
}
else
{
// Zero
return sign ? PPC_FPCLASS_NZ : PPC_FPCLASS_PZ;
}
if (exp)
return PPC_FPCLASS_QNAN;
// Denormalized number.
return sign ? PPC_FPCLASS_ND : PPC_FPCLASS_PD;
}
if (exp)
{
// Infinite
return sign ? PPC_FPCLASS_NINF : PPC_FPCLASS_PINF;
}
// Zero
return sign ? PPC_FPCLASS_NZ : PPC_FPCLASS_PZ;
}
u32 ClassifyFloat(float fvalue)
{
// TODO: Optimize the below to be as fast as possible.
IntFloat value(fvalue);
u32 sign = value.i & FLOAT_SIGN;
u32 exp = value.i & FLOAT_EXP;
u32 ivalue;
std::memcpy(&ivalue, &fvalue, sizeof(ivalue));
const u32 sign = ivalue & FLOAT_SIGN;
const u32 exp = ivalue & FLOAT_EXP;
if (exp > FLOAT_ZERO && exp < FLOAT_EXP)
{
// Nice normalized number.
return sign ? PPC_FPCLASS_NN : PPC_FPCLASS_PN;
}
else
const u32 mantissa = ivalue & FLOAT_FRAC;
if (mantissa)
{
u32 mantissa = value.i & FLOAT_FRAC;
if (mantissa)
{
if (exp)
{
return PPC_FPCLASS_QNAN; // Quiet NAN
}
else
{
// Denormalized number.
return sign ? PPC_FPCLASS_ND : PPC_FPCLASS_PD;
}
}
else if (exp)
{
// Infinite
return sign ? PPC_FPCLASS_NINF : PPC_FPCLASS_PINF;
}
else
{
// Zero
return sign ? PPC_FPCLASS_NZ : PPC_FPCLASS_PZ;
}
if (exp)
return PPC_FPCLASS_QNAN; // Quiet NAN
// Denormalized number.
return sign ? PPC_FPCLASS_ND : PPC_FPCLASS_PD;
}
if (exp)
{
// Infinite
return sign ? PPC_FPCLASS_NINF : PPC_FPCLASS_PINF;
}
// Zero
return sign ? PPC_FPCLASS_NZ : PPC_FPCLASS_PZ;
}
const std::array<BaseAndDec, 32> frsqrte_expected = {{
@ -99,20 +90,20 @@ const std::array<BaseAndDec, 32> frsqrte_expected = {{
double ApproximateReciprocalSquareRoot(double val)
{
union
{
double valf;
s64 vali;
};
valf = val;
s64 mantissa = vali & ((1LL << 52) - 1);
s64 sign = vali & (1ULL << 63);
s64 exponent = vali & (0x7FFLL << 52);
s64 integral;
std::memcpy(&integral, &val, sizeof(integral));
s64 mantissa = integral & ((1LL << 52) - 1);
const s64 sign = integral & (1ULL << 63);
s64 exponent = integral & (0x7FFLL << 52);
// Special case 0
if (mantissa == 0 && exponent == 0)
{
return sign ? -std::numeric_limits<double>::infinity() :
std::numeric_limits<double>::infinity();
}
// Special case NaN-ish numbers
if (exponent == (0x7FFLL << 52))
{
@ -124,7 +115,7 @@ double ApproximateReciprocalSquareRoot(double val)
return 0.0;
}
return 0.0 + valf;
return 0.0 + val;
}
// Negative numbers return NaN
@ -143,15 +134,18 @@ double ApproximateReciprocalSquareRoot(double val)
exponent += 1LL << 52;
}
bool odd_exponent = !(exponent & (1LL << 52));
const bool odd_exponent = !(exponent & (1LL << 52));
exponent = ((0x3FFLL << 52) - ((exponent - (0x3FELL << 52)) / 2)) & (0x7FFLL << 52);
integral = sign | exponent;
int i = (int)(mantissa >> 37);
vali = sign | exponent;
int index = i / 2048 + (odd_exponent ? 16 : 0);
const int i = static_cast<int>(mantissa >> 37);
const int index = i / 2048 + (odd_exponent ? 16 : 0);
const auto& entry = frsqrte_expected[index];
vali |= (s64)(entry.m_base - entry.m_dec * (i % 2048)) << 26;
return valf;
integral |= static_cast<s64>(entry.m_base - entry.m_dec * (i % 2048)) << 26;
double result;
std::memcpy(&result, &integral, sizeof(result));
return result;
}
const std::array<BaseAndDec, 32> fres_expected = {{
@ -167,50 +161,43 @@ const std::array<BaseAndDec, 32> fres_expected = {{
// Used by fres and ps_res.
double ApproximateReciprocal(double val)
{
// We are using namespace std scoped here because the Android NDK is complete trash as usual
// For 32bit targets(mips, ARMv7, x86) it doesn't provide an implementation of std::copysign
// but instead provides just global namespace copysign implementations.
// The workaround for this is to just use namespace std within this function's scope
// That way on real toolchains it will use the std:: variant like normal.
using namespace std;
union
{
double valf;
s64 vali;
};
s64 integral;
std::memcpy(&integral, &val, sizeof(integral));
valf = val;
s64 mantissa = vali & ((1LL << 52) - 1);
s64 sign = vali & (1ULL << 63);
s64 exponent = vali & (0x7FFLL << 52);
const s64 mantissa = integral & ((1LL << 52) - 1);
const s64 sign = integral & (1ULL << 63);
s64 exponent = integral & (0x7FFLL << 52);
// Special case 0
if (mantissa == 0 && exponent == 0)
return copysign(std::numeric_limits<double>::infinity(), valf);
return std::copysign(std::numeric_limits<double>::infinity(), val);
// Special case NaN-ish numbers
if (exponent == (0x7FFLL << 52))
{
if (mantissa == 0)
return copysign(0.0, valf);
return 0.0 + valf;
return std::copysign(0.0, val);
return 0.0 + val;
}
// Special case small inputs
if (exponent < (895LL << 52))
return copysign(std::numeric_limits<float>::max(), valf);
return std::copysign(std::numeric_limits<float>::max(), val);
// Special case large inputs
if (exponent >= (1149LL << 52))
return copysign(0.0, valf);
return std::copysign(0.0, val);
exponent = (0x7FDLL << 52) - exponent;
int i = (int)(mantissa >> 37);
const int i = static_cast<int>(mantissa >> 37);
const auto& entry = fres_expected[i / 1024];
vali = sign | exponent;
vali |= (s64)(entry.m_base - (entry.m_dec * (i % 1024) + 1) / 2) << 29;
return valf;
integral = sign | exponent;
integral |= static_cast<s64>(entry.m_base - (entry.m_dec * (i % 1024) + 1) / 2) << 29;
double result;
std::memcpy(&result, &integral, sizeof(result));
return result;
}
} // namespace Common