Merge pull request #9869 from JosJuice/jitarm64-constexpr-isimmlogical

JitArm64: Encode logical immediates at compile-time where possible
This commit is contained in:
Markus Wick 2021-07-11 12:55:48 +02:00 committed by GitHub
commit 88fd9fd577
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 352 additions and 304 deletions

View File

@ -28,11 +28,6 @@ namespace Arm64Gen
{ {
namespace namespace
{ {
uint64_t LargestPowerOf2Divisor(uint64_t value)
{
return value & -(int64_t)value;
}
// For ADD/SUB // For ADD/SUB
std::optional<std::pair<u32, bool>> IsImmArithmetic(uint64_t input) std::optional<std::pair<u32, bool>> IsImmArithmetic(uint64_t input)
{ {
@ -45,214 +40,6 @@ std::optional<std::pair<u32, bool>> IsImmArithmetic(uint64_t input)
return std::nullopt; return std::nullopt;
} }
// For AND/TST/ORR/EOR etc
std::optional<std::tuple<u32, u32, u32>> IsImmLogical(u64 value, u32 width)
{
bool negate = false;
// Logical immediates are encoded using parameters n, imm_s and imm_r using
// the following table:
//
// N imms immr size S R
// 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr)
// 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr)
// 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr)
// 0 110sss xxxrrr 8 UInt(sss) UInt(rrr)
// 0 1110ss xxxxrr 4 UInt(ss) UInt(rr)
// 0 11110s xxxxxr 2 UInt(s) UInt(r)
// (s bits must not be all set)
//
// A pattern is constructed of size bits, where the least significant S+1 bits
// are set. The pattern is rotated right by R, and repeated across a 32 or
// 64-bit value, depending on destination register width.
//
// Put another way: the basic format of a logical immediate is a single
// contiguous stretch of 1 bits, repeated across the whole word at intervals
// given by a power of 2. To identify them quickly, we first locate the
// lowest stretch of 1 bits, then the next 1 bit above that; that combination
// is different for every logical immediate, so it gives us all the
// information we need to identify the only logical immediate that our input
// could be, and then we simply check if that's the value we actually have.
//
// (The rotation parameter does give the possibility of the stretch of 1 bits
// going 'round the end' of the word. To deal with that, we observe that in
// any situation where that happens the bitwise NOT of the value is also a
// valid logical immediate. So we simply invert the input whenever its low bit
// is set, and then we know that the rotated case can't arise.)
if (value & 1)
{
// If the low bit is 1, negate the value, and set a flag to remember that we
// did (so that we can adjust the return values appropriately).
negate = true;
value = ~value;
}
constexpr int kWRegSizeInBits = 32;
if (width == kWRegSizeInBits)
{
// To handle 32-bit logical immediates, the very easiest thing is to repeat
// the input value twice to make a 64-bit word. The correct encoding of that
// as a logical immediate will also be the correct encoding of the 32-bit
// value.
// The most-significant 32 bits may not be zero (ie. negate is true) so
// shift the value left before duplicating it.
value <<= kWRegSizeInBits;
value |= value >> kWRegSizeInBits;
}
// The basic analysis idea: imagine our input word looks like this.
//
// 0011111000111110001111100011111000111110001111100011111000111110
// c b a
// |<--d-->|
//
// We find the lowest set bit (as an actual power-of-2 value, not its index)
// and call it a. Then we add a to our original number, which wipes out the
// bottommost stretch of set bits and replaces it with a 1 carried into the
// next zero bit. Then we look for the new lowest set bit, which is in
// position b, and subtract it, so now our number is just like the original
// but with the lowest stretch of set bits completely gone. Now we find the
// lowest set bit again, which is position c in the diagram above. Then we'll
// measure the distance d between bit positions a and c (using CLZ), and that
// tells us that the only valid logical immediate that could possibly be equal
// to this number is the one in which a stretch of bits running from a to just
// below b is replicated every d bits.
uint64_t a = LargestPowerOf2Divisor(value);
uint64_t value_plus_a = value + a;
uint64_t b = LargestPowerOf2Divisor(value_plus_a);
uint64_t value_plus_a_minus_b = value_plus_a - b;
uint64_t c = LargestPowerOf2Divisor(value_plus_a_minus_b);
int d, clz_a, out_n;
uint64_t mask;
if (c != 0)
{
// The general case, in which there is more than one stretch of set bits.
// Compute the repeat distance d, and set up a bitmask covering the basic
// unit of repetition (i.e. a word with the bottom d bits set). Also, in all
// of these cases the N bit of the output will be zero.
clz_a = Common::CountLeadingZeros(a);
int clz_c = Common::CountLeadingZeros(c);
d = clz_a - clz_c;
mask = ((UINT64_C(1) << d) - 1);
out_n = 0;
}
else
{
// Handle degenerate cases.
//
// If any of those 'find lowest set bit' operations didn't find a set bit at
// all, then the word will have been zero thereafter, so in particular the
// last lowest_set_bit operation will have returned zero. So we can test for
// all the special case conditions in one go by seeing if c is zero.
if (a == 0)
{
// The input was zero (or all 1 bits, which will come to here too after we
// inverted it at the start of the function), for which we just return
// false.
return std::nullopt;
}
else
{
// Otherwise, if c was zero but a was not, then there's just one stretch
// of set bits in our word, meaning that we have the trivial case of
// d == 64 and only one 'repetition'. Set up all the same variables as in
// the general case above, and set the N bit in the output.
clz_a = Common::CountLeadingZeros(a);
d = 64;
mask = ~UINT64_C(0);
out_n = 1;
}
}
// If the repeat period d is not a power of two, it can't be encoded.
if (!MathUtil::IsPow2<u64>(d))
return std::nullopt;
// If the bit stretch (b - a) does not fit within the mask derived from the
// repeat period, then fail.
if (((b - a) & ~mask) != 0)
return std::nullopt;
// The only possible option is b - a repeated every d bits. Now we're going to
// actually construct the valid logical immediate derived from that
// specification, and see if it equals our original input.
//
// To repeat a value every d bits, we multiply it by a number of the form
// (1 + 2^d + 2^(2d) + ...), i.e. 0x0001000100010001 or similar. These can
// be derived using a table lookup on CLZ(d).
static const std::array<uint64_t, 6> multipliers = {{
0x0000000000000001UL,
0x0000000100000001UL,
0x0001000100010001UL,
0x0101010101010101UL,
0x1111111111111111UL,
0x5555555555555555UL,
}};
const int multiplier_idx = Common::CountLeadingZeros((u64)d) - 57;
// Ensure that the index to the multipliers array is within bounds.
DEBUG_ASSERT((multiplier_idx >= 0) && (static_cast<size_t>(multiplier_idx) < multipliers.size()));
const u64 multiplier = multipliers[multiplier_idx];
const u64 candidate = (b - a) * multiplier;
// The candidate pattern doesn't match our input value, so fail.
if (value != candidate)
return std::nullopt;
// We have a match! This is a valid logical immediate, so now we have to
// construct the bits and pieces of the instruction encoding that generates
// it.
// Count the set bits in our basic stretch. The special case of clz(0) == -1
// makes the answer come out right for stretches that reach the very top of
// the word (e.g. numbers like 0xffffc00000000000).
const int clz_b = (b == 0) ? -1 : Common::CountLeadingZeros(b);
int s = clz_a - clz_b;
// Decide how many bits to rotate right by, to put the low bit of that basic
// stretch in position a.
int r;
if (negate)
{
// If we inverted the input right at the start of this function, here's
// where we compensate: the number of set bits becomes the number of clear
// bits, and the rotation count is based on position b rather than position
// a (since b is the location of the 'lowest' 1 bit after inversion).
s = d - s;
r = (clz_b + 1) & (d - 1);
}
else
{
r = (clz_a + 1) & (d - 1);
}
// Now we're done, except for having to encode the S output in such a way that
// it gives both the number of set bits and the length of the repeated
// segment. The s field is encoded like this:
//
// imms size S
// ssssss 64 UInt(ssssss)
// 0sssss 32 UInt(sssss)
// 10ssss 16 UInt(ssss)
// 110sss 8 UInt(sss)
// 1110ss 4 UInt(ss)
// 11110s 2 UInt(s)
//
// So we 'or' (-d << 1) with our computed s to form imms.
return std::tuple{
static_cast<u32>(out_n),
static_cast<u32>(((-d << 1) | (s - 1)) & 0x3f),
static_cast<u32>(r),
};
}
float FPImm8ToFloat(u8 bits) float FPImm8ToFloat(u8 bits)
{ {
const u32 sign = bits >> 7; const u32 sign = bits >> 7;
@ -780,10 +567,18 @@ void ARM64XEmitter::EncodeLogicalImmInst(u32 op, ARM64Reg Rd, ARM64Reg Rn, u32 i
// Use Rn to determine bitness here. // Use Rn to determine bitness here.
bool b64Bit = Is64Bit(Rn); bool b64Bit = Is64Bit(Rn);
ASSERT_MSG(DYNAREC, b64Bit || !n, "64-bit logical immediate does not fit in 32-bit register");
Write32((b64Bit << 31) | (op << 29) | (0x24 << 23) | (n << 22) | (immr << 16) | (imms << 10) | Write32((b64Bit << 31) | (op << 29) | (0x24 << 23) | (n << 22) | (immr << 16) | (imms << 10) |
(DecodeReg(Rn) << 5) | DecodeReg(Rd)); (DecodeReg(Rn) << 5) | DecodeReg(Rd));
} }
void ARM64XEmitter::EncodeLogicalImmInst(u32 op, ARM64Reg Rd, ARM64Reg Rn, LogicalImm imm)
{
ASSERT_MSG(DYNAREC, imm.valid, "Invalid logical immediate");
EncodeLogicalImmInst(op, Rd, Rn, imm.r, imm.s, imm.n);
}
void ARM64XEmitter::EncodeLoadStorePair(u32 op, u32 load, IndexType type, ARM64Reg Rt, ARM64Reg Rt2, void ARM64XEmitter::EncodeLoadStorePair(u32 op, u32 load, IndexType type, ARM64Reg Rt, ARM64Reg Rt2,
ARM64Reg Rn, s32 imm) ARM64Reg Rn, s32 imm)
{ {
@ -1545,22 +1340,42 @@ void ARM64XEmitter::AND(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, bool inver
{ {
EncodeLogicalImmInst(0, Rd, Rn, immr, imms, invert); EncodeLogicalImmInst(0, Rd, Rn, immr, imms, invert);
} }
void ARM64XEmitter::AND(ARM64Reg Rd, ARM64Reg Rn, LogicalImm imm)
{
EncodeLogicalImmInst(0, Rd, Rn, imm);
}
void ARM64XEmitter::ANDS(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, bool invert) void ARM64XEmitter::ANDS(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, bool invert)
{ {
EncodeLogicalImmInst(3, Rd, Rn, immr, imms, invert); EncodeLogicalImmInst(3, Rd, Rn, immr, imms, invert);
} }
void ARM64XEmitter::ANDS(ARM64Reg Rd, ARM64Reg Rn, LogicalImm imm)
{
EncodeLogicalImmInst(3, Rd, Rn, imm);
}
void ARM64XEmitter::EOR(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, bool invert) void ARM64XEmitter::EOR(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, bool invert)
{ {
EncodeLogicalImmInst(2, Rd, Rn, immr, imms, invert); EncodeLogicalImmInst(2, Rd, Rn, immr, imms, invert);
} }
void ARM64XEmitter::EOR(ARM64Reg Rd, ARM64Reg Rn, LogicalImm imm)
{
EncodeLogicalImmInst(2, Rd, Rn, imm);
}
void ARM64XEmitter::ORR(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, bool invert) void ARM64XEmitter::ORR(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, bool invert)
{ {
EncodeLogicalImmInst(1, Rd, Rn, immr, imms, invert); EncodeLogicalImmInst(1, Rd, Rn, immr, imms, invert);
} }
void ARM64XEmitter::ORR(ARM64Reg Rd, ARM64Reg Rn, LogicalImm imm)
{
EncodeLogicalImmInst(1, Rd, Rn, imm);
}
void ARM64XEmitter::TST(ARM64Reg Rn, u32 immr, u32 imms, bool invert) void ARM64XEmitter::TST(ARM64Reg Rn, u32 immr, u32 imms, bool invert)
{ {
EncodeLogicalImmInst(3, Is64Bit(Rn) ? ARM64Reg::ZR : ARM64Reg::WZR, Rn, immr, imms, invert); EncodeLogicalImmInst(3, Is64Bit(Rn) ? ARM64Reg::ZR : ARM64Reg::WZR, Rn, immr, imms, invert);
} }
void ARM64XEmitter::TST(ARM64Reg Rn, LogicalImm imm)
{
EncodeLogicalImmInst(3, Is64Bit(Rn) ? ARM64Reg::ZR : ARM64Reg::WZR, Rn, imm);
}
// Add/subtract (immediate) // Add/subtract (immediate)
void ARM64XEmitter::ADD(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift) void ARM64XEmitter::ADD(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift)
@ -2067,13 +1882,13 @@ void ARM64XEmitter::MOVI2RImpl(ARM64Reg Rd, T imm)
(imm & 0xFFFF'FFFF'0000'0000) | (imm >> 32), (imm & 0xFFFF'FFFF'0000'0000) | (imm >> 32),
(imm << 48) | (imm & 0x0000'FFFF'FFFF'0000) | (imm >> 48)}) (imm << 48) | (imm & 0x0000'FFFF'FFFF'0000) | (imm >> 48)})
{ {
if (IsImmLogical(orr_imm, 64)) if (LogicalImm(orr_imm, 64))
try_base(orr_imm, Approach::ORRBase, false); try_base(orr_imm, Approach::ORRBase, false);
} }
} }
else else
{ {
if (IsImmLogical(imm, 32)) if (LogicalImm(imm, 32))
try_base(imm, Approach::ORRBase, false); try_base(imm, Approach::ORRBase, false);
} }
} }
@ -4127,10 +3942,9 @@ void ARM64XEmitter::ANDI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch)
if (!Is64Bit(Rn)) if (!Is64Bit(Rn))
imm &= 0xFFFFFFFF; imm &= 0xFFFFFFFF;
if (const auto result = IsImmLogical(imm, Is64Bit(Rn) ? 64 : 32)) if (const auto result = LogicalImm(imm, Is64Bit(Rn) ? 64 : 32))
{ {
const auto& [n, imm_s, imm_r] = *result; AND(Rd, Rn, result);
AND(Rd, Rn, imm_r, imm_s, n != 0);
} }
else else
{ {
@ -4144,10 +3958,9 @@ void ARM64XEmitter::ANDI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch)
void ARM64XEmitter::ORRI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch) void ARM64XEmitter::ORRI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch)
{ {
if (const auto result = IsImmLogical(imm, Is64Bit(Rn) ? 64 : 32)) if (const auto result = LogicalImm(imm, Is64Bit(Rn) ? 64 : 32))
{ {
const auto& [n, imm_s, imm_r] = *result; ORR(Rd, Rn, result);
ORR(Rd, Rn, imm_r, imm_s, n != 0);
} }
else else
{ {
@ -4161,10 +3974,9 @@ void ARM64XEmitter::ORRI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch)
void ARM64XEmitter::EORI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch) void ARM64XEmitter::EORI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch)
{ {
if (const auto result = IsImmLogical(imm, Is64Bit(Rn) ? 64 : 32)) if (const auto result = LogicalImm(imm, Is64Bit(Rn) ? 64 : 32))
{ {
const auto& [n, imm_s, imm_r] = *result; EOR(Rd, Rn, result);
EOR(Rd, Rn, imm_r, imm_s, n != 0);
} }
else else
{ {
@ -4178,10 +3990,9 @@ void ARM64XEmitter::EORI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch)
void ARM64XEmitter::ANDSI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch) void ARM64XEmitter::ANDSI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch)
{ {
if (const auto result = IsImmLogical(imm, Is64Bit(Rn) ? 64 : 32)) if (const auto result = LogicalImm(imm, Is64Bit(Rn) ? 64 : 32))
{ {
const auto& [n, imm_s, imm_r] = *result; ANDS(Rd, Rn, result);
ANDS(Rd, Rn, imm_r, imm_s, n != 0);
} }
else else
{ {
@ -4342,10 +4153,9 @@ bool ARM64XEmitter::TryCMPI2R(ARM64Reg Rn, u64 imm)
bool ARM64XEmitter::TryANDI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm) bool ARM64XEmitter::TryANDI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm)
{ {
if (const auto result = IsImmLogical(imm, Is64Bit(Rd) ? 64 : 32)) if (const auto result = LogicalImm(imm, Is64Bit(Rd) ? 64 : 32))
{ {
const auto& [n, imm_s, imm_r] = *result; AND(Rd, Rn, result);
AND(Rd, Rn, imm_r, imm_s, n != 0);
return true; return true;
} }
@ -4354,10 +4164,9 @@ bool ARM64XEmitter::TryANDI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm)
bool ARM64XEmitter::TryORRI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm) bool ARM64XEmitter::TryORRI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm)
{ {
if (const auto result = IsImmLogical(imm, Is64Bit(Rd) ? 64 : 32)) if (const auto result = LogicalImm(imm, Is64Bit(Rd) ? 64 : 32))
{ {
const auto& [n, imm_s, imm_r] = *result; ORR(Rd, Rn, result);
ORR(Rd, Rn, imm_r, imm_s, n != 0);
return true; return true;
} }
@ -4366,10 +4175,9 @@ bool ARM64XEmitter::TryORRI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm)
bool ARM64XEmitter::TryEORI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm) bool ARM64XEmitter::TryEORI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm)
{ {
if (const auto result = IsImmLogical(imm, Is64Bit(Rd) ? 64 : 32)) if (const auto result = LogicalImm(imm, Is64Bit(Rd) ? 64 : 32))
{ {
const auto& [n, imm_s, imm_r] = *result; EOR(Rd, Rn, result);
EOR(Rd, Rn, imm_r, imm_s, n != 0);
return true; return true;
} }

View File

@ -5,12 +5,17 @@
#include <cstring> #include <cstring>
#include <functional> #include <functional>
#include <optional>
#include <utility>
#include "Common/ArmCommon.h" #include "Common/ArmCommon.h"
#include "Common/Assert.h" #include "Common/Assert.h"
#include "Common/BitSet.h" #include "Common/BitSet.h"
#include "Common/BitUtils.h"
#include "Common/CodeBlock.h" #include "Common/CodeBlock.h"
#include "Common/Common.h" #include "Common/Common.h"
#include "Common/CommonTypes.h"
#include "Common/MathUtil.h"
namespace Arm64Gen namespace Arm64Gen
{ {
@ -496,6 +501,225 @@ public:
bool IsExtended() const { return m_type == TypeSpecifier::ExtendedReg; } bool IsExtended() const { return m_type == TypeSpecifier::ExtendedReg; }
}; };
struct LogicalImm
{
constexpr LogicalImm() {}
constexpr LogicalImm(u8 r_, u8 s_, bool n_) : r(r_), s(s_), n(n_), valid(true) {}
constexpr LogicalImm(u64 value, u32 width)
{
bool negate = false;
// Logical immediates are encoded using parameters n, imm_s and imm_r using
// the following table:
//
// N imms immr size S R
// 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr)
// 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr)
// 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr)
// 0 110sss xxxrrr 8 UInt(sss) UInt(rrr)
// 0 1110ss xxxxrr 4 UInt(ss) UInt(rr)
// 0 11110s xxxxxr 2 UInt(s) UInt(r)
// (s bits must not be all set)
//
// A pattern is constructed of size bits, where the least significant S+1 bits
// are set. The pattern is rotated right by R, and repeated across a 32 or
// 64-bit value, depending on destination register width.
//
// Put another way: the basic format of a logical immediate is a single
// contiguous stretch of 1 bits, repeated across the whole word at intervals
// given by a power of 2. To identify them quickly, we first locate the
// lowest stretch of 1 bits, then the next 1 bit above that; that combination
// is different for every logical immediate, so it gives us all the
// information we need to identify the only logical immediate that our input
// could be, and then we simply check if that's the value we actually have.
//
// (The rotation parameter does give the possibility of the stretch of 1 bits
// going 'round the end' of the word. To deal with that, we observe that in
// any situation where that happens the bitwise NOT of the value is also a
// valid logical immediate. So we simply invert the input whenever its low bit
// is set, and then we know that the rotated case can't arise.)
if (value & 1)
{
// If the low bit is 1, negate the value, and set a flag to remember that we
// did (so that we can adjust the return values appropriately).
negate = true;
value = ~value;
}
constexpr int kWRegSizeInBits = 32;
if (width == kWRegSizeInBits)
{
// To handle 32-bit logical immediates, the very easiest thing is to repeat
// the input value twice to make a 64-bit word. The correct encoding of that
// as a logical immediate will also be the correct encoding of the 32-bit
// value.
// The most-significant 32 bits may not be zero (ie. negate is true) so
// shift the value left before duplicating it.
value <<= kWRegSizeInBits;
value |= value >> kWRegSizeInBits;
}
// The basic analysis idea: imagine our input word looks like this.
//
// 0011111000111110001111100011111000111110001111100011111000111110
// c b a
// |<--d-->|
//
// We find the lowest set bit (as an actual power-of-2 value, not its index)
// and call it a. Then we add a to our original number, which wipes out the
// bottommost stretch of set bits and replaces it with a 1 carried into the
// next zero bit. Then we look for the new lowest set bit, which is in
// position b, and subtract it, so now our number is just like the original
// but with the lowest stretch of set bits completely gone. Now we find the
// lowest set bit again, which is position c in the diagram above. Then we'll
// measure the distance d between bit positions a and c (using CLZ), and that
// tells us that the only valid logical immediate that could possibly be equal
// to this number is the one in which a stretch of bits running from a to just
// below b is replicated every d bits.
u64 a = Common::LargestPowerOf2Divisor(value);
u64 value_plus_a = value + a;
u64 b = Common::LargestPowerOf2Divisor(value_plus_a);
u64 value_plus_a_minus_b = value_plus_a - b;
u64 c = Common::LargestPowerOf2Divisor(value_plus_a_minus_b);
int d = 0, clz_a = 0, out_n = 0;
u64 mask = 0;
if (c != 0)
{
// The general case, in which there is more than one stretch of set bits.
// Compute the repeat distance d, and set up a bitmask covering the basic
// unit of repetition (i.e. a word with the bottom d bits set). Also, in all
// of these cases the N bit of the output will be zero.
clz_a = Common::CountLeadingZeros(a);
int clz_c = Common::CountLeadingZeros(c);
d = clz_a - clz_c;
mask = ((UINT64_C(1) << d) - 1);
out_n = 0;
}
else
{
// Handle degenerate cases.
//
// If any of those 'find lowest set bit' operations didn't find a set bit at
// all, then the word will have been zero thereafter, so in particular the
// last lowest_set_bit operation will have returned zero. So we can test for
// all the special case conditions in one go by seeing if c is zero.
if (a == 0)
{
// The input was zero (or all 1 bits, which will come to here too after we
// inverted it at the start of the function), which is invalid.
return;
}
else
{
// Otherwise, if c was zero but a was not, then there's just one stretch
// of set bits in our word, meaning that we have the trivial case of
// d == 64 and only one 'repetition'. Set up all the same variables as in
// the general case above, and set the N bit in the output.
clz_a = Common::CountLeadingZeros(a);
d = 64;
mask = ~UINT64_C(0);
out_n = 1;
}
}
// If the repeat period d is not a power of two, it can't be encoded.
if (!MathUtil::IsPow2<u64>(d))
return;
// If the bit stretch (b - a) does not fit within the mask derived from the
// repeat period, then fail.
if (((b - a) & ~mask) != 0)
return;
// The only possible option is b - a repeated every d bits. Now we're going to
// actually construct the valid logical immediate derived from that
// specification, and see if it equals our original input.
//
// To repeat a value every d bits, we multiply it by a number of the form
// (1 + 2^d + 2^(2d) + ...), i.e. 0x0001000100010001 or similar. These can
// be derived using a table lookup on CLZ(d).
constexpr std::array<u64, 6> multipliers = {{
0x0000000000000001UL,
0x0000000100000001UL,
0x0001000100010001UL,
0x0101010101010101UL,
0x1111111111111111UL,
0x5555555555555555UL,
}};
const int multiplier_idx = Common::CountLeadingZeros((u64)d) - 57;
// Ensure that the index to the multipliers array is within bounds.
DEBUG_ASSERT((multiplier_idx >= 0) &&
(static_cast<size_t>(multiplier_idx) < multipliers.size()));
const u64 multiplier = multipliers[multiplier_idx];
const u64 candidate = (b - a) * multiplier;
// The candidate pattern doesn't match our input value, so fail.
if (value != candidate)
return;
// We have a match! This is a valid logical immediate, so now we have to
// construct the bits and pieces of the instruction encoding that generates
// it.
n = out_n;
// Count the set bits in our basic stretch. The special case of clz(0) == -1
// makes the answer come out right for stretches that reach the very top of
// the word (e.g. numbers like 0xffffc00000000000).
const int clz_b = (b == 0) ? -1 : Common::CountLeadingZeros(b);
s = clz_a - clz_b;
// Decide how many bits to rotate right by, to put the low bit of that basic
// stretch in position a.
if (negate)
{
// If we inverted the input right at the start of this function, here's
// where we compensate: the number of set bits becomes the number of clear
// bits, and the rotation count is based on position b rather than position
// a (since b is the location of the 'lowest' 1 bit after inversion).
s = d - s;
r = (clz_b + 1) & (d - 1);
}
else
{
r = (clz_a + 1) & (d - 1);
}
// Now we're done, except for having to encode the S output in such a way that
// it gives both the number of set bits and the length of the repeated
// segment. The s field is encoded like this:
//
// imms size S
// ssssss 64 UInt(ssssss)
// 0sssss 32 UInt(sssss)
// 10ssss 16 UInt(ssss)
// 110sss 8 UInt(sss)
// 1110ss 4 UInt(ss)
// 11110s 2 UInt(s)
//
// So we 'or' (-d << 1) with our computed s to form imms.
s = ((-d << 1) | (s - 1)) & 0x3f;
valid = true;
}
constexpr operator bool() const { return valid; }
u8 r = 0;
u8 s = 0;
bool n = false;
bool valid = false;
};
class ARM64XEmitter class ARM64XEmitter
{ {
friend class ARM64FloatEmitter; friend class ARM64FloatEmitter;
@ -531,6 +755,7 @@ private:
void EncodeLoadStoreRegisterOffset(u32 size, u32 opc, ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm); void EncodeLoadStoreRegisterOffset(u32 size, u32 opc, ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
void EncodeAddSubImmInst(u32 op, bool flags, u32 shift, u32 imm, ARM64Reg Rn, ARM64Reg Rd); void EncodeAddSubImmInst(u32 op, bool flags, u32 shift, u32 imm, ARM64Reg Rn, ARM64Reg Rd);
void EncodeLogicalImmInst(u32 op, ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, int n); void EncodeLogicalImmInst(u32 op, ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, int n);
void EncodeLogicalImmInst(u32 op, ARM64Reg Rd, ARM64Reg Rn, LogicalImm imm);
void EncodeLoadStorePair(u32 op, u32 load, IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, void EncodeLoadStorePair(u32 op, u32 load, IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn,
s32 imm); s32 imm);
void EncodeAddressInst(u32 op, ARM64Reg Rd, s32 imm); void EncodeAddressInst(u32 op, ARM64Reg Rd, s32 imm);
@ -772,10 +997,15 @@ public:
// Logical (immediate) // Logical (immediate)
void AND(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, bool invert = false); void AND(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, bool invert = false);
void AND(ARM64Reg Rd, ARM64Reg Rn, LogicalImm imm);
void ANDS(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, bool invert = false); void ANDS(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, bool invert = false);
void ANDS(ARM64Reg Rd, ARM64Reg Rn, LogicalImm imm);
void EOR(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, bool invert = false); void EOR(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, bool invert = false);
void EOR(ARM64Reg Rd, ARM64Reg Rn, LogicalImm imm);
void ORR(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, bool invert = false); void ORR(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms, bool invert = false);
void ORR(ARM64Reg Rd, ARM64Reg Rn, LogicalImm imm);
void TST(ARM64Reg Rn, u32 immr, u32 imms, bool invert = false); void TST(ARM64Reg Rn, u32 immr, u32 imms, bool invert = false);
void TST(ARM64Reg Rn, LogicalImm imm);
// Add/subtract (immediate) // Add/subtract (immediate)
void ADD(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift = false); void ADD(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift = false);
void ADDS(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift = false); void ADDS(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift = false);
@ -893,17 +1123,17 @@ public:
MOVI2R(Rd, (uintptr_t)ptr); MOVI2R(Rd, (uintptr_t)ptr);
} }
// Wrapper around AND x, y, imm etc. If you are sure the imm will work, no need to pass a scratch // Wrapper around AND x, y, imm etc.
// register. // If you are sure the imm will work, preferably construct a LogicalImm directly instead,
void ANDI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch = ARM64Reg::INVALID_REG); // since that is constexpr and thus can be done at compile-time for constant values.
void ANDSI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch = ARM64Reg::INVALID_REG); void ANDI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch);
void TSTI2R(ARM64Reg Rn, u64 imm, ARM64Reg scratch = ARM64Reg::INVALID_REG) void ANDSI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch);
void TSTI2R(ARM64Reg Rn, u64 imm, ARM64Reg scratch)
{ {
ANDSI2R(Is64Bit(Rn) ? ARM64Reg::ZR : ARM64Reg::WZR, Rn, imm, scratch); ANDSI2R(Is64Bit(Rn) ? ARM64Reg::ZR : ARM64Reg::WZR, Rn, imm, scratch);
} }
void ORRI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch = ARM64Reg::INVALID_REG); void ORRI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch);
void EORI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch = ARM64Reg::INVALID_REG); void EORI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch);
void CMPI2R(ARM64Reg Rn, u64 imm, ARM64Reg scratch = ARM64Reg::INVALID_REG);
void ADDI2R_internal(ARM64Reg Rd, ARM64Reg Rn, u64 imm, bool negative, bool flags, void ADDI2R_internal(ARM64Reg Rd, ARM64Reg Rn, u64 imm, bool negative, bool flags,
ARM64Reg scratch); ARM64Reg scratch);
@ -911,6 +1141,7 @@ public:
void ADDSI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch = ARM64Reg::INVALID_REG); void ADDSI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch = ARM64Reg::INVALID_REG);
void SUBI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch = ARM64Reg::INVALID_REG); void SUBI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch = ARM64Reg::INVALID_REG);
void SUBSI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch = ARM64Reg::INVALID_REG); void SUBSI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch = ARM64Reg::INVALID_REG);
void CMPI2R(ARM64Reg Rn, u64 imm, ARM64Reg scratch = ARM64Reg::INVALID_REG);
bool TryADDI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm); bool TryADDI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm);
bool TrySUBI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm); bool TrySUBI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm);

View File

@ -413,4 +413,13 @@ constexpr int CountLeadingZeros(uint32_t value)
#undef CONSTEXPR_FROM_INTRINSIC #undef CONSTEXPR_FROM_INTRINSIC
template <typename T>
constexpr T LargestPowerOf2Divisor(T value)
{
static_assert(std::is_unsigned<T>(),
"LargestPowerOf2Divisor only makes sense for unsigned types.");
return value & -static_cast<std::make_signed_t<T>>(value);
}
} // namespace Common } // namespace Common

View File

@ -799,7 +799,7 @@ void JitArm64::DoJit(u32 em_address, JitBlock* b, u32 nextPC)
fpr.Flush(FlushMode::MaintainState); fpr.Flush(FlushMode::MaintainState);
LDR(IndexType::Unsigned, WA, PPC_REG, PPCSTATE_OFF(Exceptions)); LDR(IndexType::Unsigned, WA, PPC_REG, PPCSTATE_OFF(Exceptions));
ORRI2R(WA, WA, EXCEPTION_FPU_UNAVAILABLE); ORR(WA, WA, LogicalImm(EXCEPTION_FPU_UNAVAILABLE, 32));
STR(IndexType::Unsigned, WA, PPC_REG, PPCSTATE_OFF(Exceptions)); STR(IndexType::Unsigned, WA, PPC_REG, PPCSTATE_OFF(Exceptions));
gpr.Unlock(WA); gpr.Unlock(WA);

View File

@ -24,7 +24,7 @@ void JitArm64::sc(UGeckoInstruction inst)
ARM64Reg WA = gpr.GetReg(); ARM64Reg WA = gpr.GetReg();
LDR(IndexType::Unsigned, WA, PPC_REG, PPCSTATE_OFF(Exceptions)); LDR(IndexType::Unsigned, WA, PPC_REG, PPCSTATE_OFF(Exceptions));
ORRI2R(WA, WA, EXCEPTION_SYSCALL); ORR(WA, WA, LogicalImm(EXCEPTION_SYSCALL, 32));
STR(IndexType::Unsigned, WA, PPC_REG, PPCSTATE_OFF(Exceptions)); STR(IndexType::Unsigned, WA, PPC_REG, PPCSTATE_OFF(Exceptions));
gpr.Unlock(WA); gpr.Unlock(WA);

View File

@ -402,7 +402,7 @@ void JitArm64::FloatCompare(UGeckoInstruction inst, bool upper)
{ {
fpscr_reg = gpr.GetReg(); fpscr_reg = gpr.GetReg();
LDR(IndexType::Unsigned, fpscr_reg, PPC_REG, PPCSTATE_OFF(fpscr)); LDR(IndexType::Unsigned, fpscr_reg, PPC_REG, PPCSTATE_OFF(fpscr));
ANDI2R(fpscr_reg, fpscr_reg, ~FPCC_MASK); AND(fpscr_reg, fpscr_reg, LogicalImm(~FPCC_MASK, 32));
} }
ARM64Reg V0Q = ARM64Reg::INVALID_REG; ARM64Reg V0Q = ARM64Reg::INVALID_REG;
@ -451,7 +451,7 @@ void JitArm64::FloatCompare(UGeckoInstruction inst, bool upper)
// A == B // A == B
ORR(XA, XA, 64 - 63, 0, true); ORR(XA, XA, 64 - 63, 0, true);
if (fprf) if (fprf)
ORRI2R(fpscr_reg, fpscr_reg, PowerPC::CR_EQ << FPRF_SHIFT); ORR(fpscr_reg, fpscr_reg, LogicalImm(PowerPC::CR_EQ << FPRF_SHIFT, 32));
continue1 = B(); continue1 = B();
@ -459,7 +459,7 @@ void JitArm64::FloatCompare(UGeckoInstruction inst, bool upper)
MOVI2R(XA, PowerPC::ConditionRegister::PPCToInternal(PowerPC::CR_SO)); MOVI2R(XA, PowerPC::ConditionRegister::PPCToInternal(PowerPC::CR_SO));
if (fprf) if (fprf)
ORRI2R(fpscr_reg, fpscr_reg, PowerPC::CR_SO << FPRF_SHIFT); ORR(fpscr_reg, fpscr_reg, LogicalImm(PowerPC::CR_SO << FPRF_SHIFT, 32));
if (a != b) if (a != b)
{ {
@ -468,7 +468,7 @@ void JitArm64::FloatCompare(UGeckoInstruction inst, bool upper)
SetJumpTarget(pGreater); SetJumpTarget(pGreater);
ORR(XA, XA, 0, 0, true); ORR(XA, XA, 0, 0, true);
if (fprf) if (fprf)
ORRI2R(fpscr_reg, fpscr_reg, PowerPC::CR_GT << FPRF_SHIFT); ORR(fpscr_reg, fpscr_reg, LogicalImm(PowerPC::CR_GT << FPRF_SHIFT, 32));
continue3 = B(); continue3 = B();
@ -476,7 +476,7 @@ void JitArm64::FloatCompare(UGeckoInstruction inst, bool upper)
ORR(XA, XA, 64 - 62, 1, true); ORR(XA, XA, 64 - 62, 1, true);
ORR(XA, XA, 0, 0, true); ORR(XA, XA, 0, 0, true);
if (fprf) if (fprf)
ORRI2R(fpscr_reg, fpscr_reg, PowerPC::CR_LT << FPRF_SHIFT); ORR(fpscr_reg, fpscr_reg, LogicalImm(PowerPC::CR_LT << FPRF_SHIFT, 32));
SetJumpTarget(continue2); SetJumpTarget(continue2);
SetJumpTarget(continue3); SetJumpTarget(continue3);
@ -533,7 +533,7 @@ void JitArm64::fctiwzx(UGeckoInstruction inst)
const ARM64Reg WA = gpr.GetReg(); const ARM64Reg WA = gpr.GetReg();
m_float_emit.FCVTS(WA, EncodeRegToDouble(VB), RoundingMode::Z); m_float_emit.FCVTS(WA, EncodeRegToDouble(VB), RoundingMode::Z);
ORRI2R(EncodeRegTo64(WA), EncodeRegTo64(WA), 0xFFF8'0000'0000'0000ULL); ORR(EncodeRegTo64(WA), EncodeRegTo64(WA), LogicalImm(0xFFF8'0000'0000'0000ULL, 64));
m_float_emit.FMOV(EncodeRegToDouble(VD), EncodeRegTo64(WA)); m_float_emit.FMOV(EncodeRegToDouble(VD), EncodeRegTo64(WA));
gpr.Unlock(WA); gpr.Unlock(WA);

View File

@ -611,7 +611,7 @@ void JitArm64::rlwinmx(UGeckoInstruction inst)
else if (!inst.SH) else if (!inst.SH)
{ {
// Immediate mask // Immediate mask
ANDI2R(gpr.R(a), gpr.R(s), mask); AND(gpr.R(a), gpr.R(s), LogicalImm(mask, 32));
} }
else if (inst.ME == 31 && 31 < inst.SH + inst.MB) else if (inst.ME == 31 && 31 < inst.SH + inst.MB)
{ {

View File

@ -550,7 +550,7 @@ void JitArm64::dcbx(UGeckoInstruction inst)
else else
MOV(addr, gpr.R(b)); MOV(addr, gpr.R(b));
ANDI2R(addr, addr, ~31); // mask sizeof cacheline AND(addr, addr, LogicalImm(~31, 32)); // mask sizeof cacheline
BitSet32 gprs_to_push = gpr.GetCallerSavedUsed(); BitSet32 gprs_to_push = gpr.GetCallerSavedUsed();
BitSet32 fprs_to_push = fpr.GetCallerSavedUsed(); BitSet32 fprs_to_push = fpr.GetCallerSavedUsed();
@ -618,13 +618,13 @@ void JitArm64::dcbz(UGeckoInstruction inst)
ARM64Reg base = is_imm_a ? gpr.R(b) : gpr.R(a); ARM64Reg base = is_imm_a ? gpr.R(b) : gpr.R(a);
u32 imm_offset = is_imm_a ? gpr.GetImm(a) : gpr.GetImm(b); u32 imm_offset = is_imm_a ? gpr.GetImm(a) : gpr.GetImm(b);
ADDI2R(addr_reg, base, imm_offset, addr_reg); ADDI2R(addr_reg, base, imm_offset, addr_reg);
ANDI2R(addr_reg, addr_reg, ~31); AND(addr_reg, addr_reg, LogicalImm(~31, 32));
} }
else else
{ {
// Both are registers // Both are registers
ADD(addr_reg, gpr.R(a), gpr.R(b)); ADD(addr_reg, gpr.R(a), gpr.R(b));
ANDI2R(addr_reg, addr_reg, ~31); AND(addr_reg, addr_reg, LogicalImm(~31, 32));
} }
} }
else else
@ -637,7 +637,7 @@ void JitArm64::dcbz(UGeckoInstruction inst)
} }
else else
{ {
ANDI2R(addr_reg, gpr.R(b), ~31); AND(addr_reg, gpr.R(b), LogicalImm(~31, 32));
} }
} }

View File

@ -217,7 +217,7 @@ void JitArm64::twx(UGeckoInstruction inst)
fpr.Flush(FlushMode::MaintainState); fpr.Flush(FlushMode::MaintainState);
LDR(IndexType::Unsigned, WA, PPC_REG, PPCSTATE_OFF(Exceptions)); LDR(IndexType::Unsigned, WA, PPC_REG, PPCSTATE_OFF(Exceptions));
ORRI2R(WA, WA, EXCEPTION_PROGRAM); ORR(WA, WA, LogicalImm(EXCEPTION_PROGRAM, 32));
STR(IndexType::Unsigned, WA, PPC_REG, PPCSTATE_OFF(Exceptions)); STR(IndexType::Unsigned, WA, PPC_REG, PPCSTATE_OFF(Exceptions));
gpr.Unlock(WA); gpr.Unlock(WA);
@ -290,7 +290,7 @@ void JitArm64::mfspr(UGeckoInstruction inst)
SUB(Xresult, Xresult, XB); SUB(Xresult, Xresult, XB);
// a / 12 = (a * 0xAAAAAAAAAAAAAAAB) >> 67 // a / 12 = (a * 0xAAAAAAAAAAAAAAAB) >> 67
ORRI2R(XB, ARM64Reg::ZR, 0xAAAAAAAAAAAAAAAA); ORR(XB, ARM64Reg::ZR, LogicalImm(0xAAAAAAAAAAAAAAAA, 64));
ADD(XB, XB, 1); ADD(XB, XB, 1);
UMULH(Xresult, Xresult, XB); UMULH(Xresult, Xresult, XB);
@ -440,20 +440,20 @@ void JitArm64::crXXX(UGeckoInstruction inst)
switch (bit) switch (bit)
{ {
case PowerPC::CR_SO_BIT: case PowerPC::CR_SO_BIT:
ANDI2R(XA, XA, ~(u64(1) << PowerPC::CR_EMU_SO_BIT)); AND(XA, XA, LogicalImm(~(u64(1) << PowerPC::CR_EMU_SO_BIT), 64));
break; break;
case PowerPC::CR_EQ_BIT: case PowerPC::CR_EQ_BIT:
FixGTBeforeSettingCRFieldBit(XA); FixGTBeforeSettingCRFieldBit(XA);
ORRI2R(XA, XA, 1); ORR(XA, XA, LogicalImm(1, 64));
break; break;
case PowerPC::CR_GT_BIT: case PowerPC::CR_GT_BIT:
ORRI2R(XA, XA, u64(1) << 63); ORR(XA, XA, LogicalImm(u64(1) << 63, 64));
break; break;
case PowerPC::CR_LT_BIT: case PowerPC::CR_LT_BIT:
ANDI2R(XA, XA, ~(u64(1) << PowerPC::CR_EMU_LT_BIT)); AND(XA, XA, LogicalImm(~(u64(1) << PowerPC::CR_EMU_LT_BIT), 64));
break; break;
} }
return; return;
@ -475,23 +475,23 @@ void JitArm64::crXXX(UGeckoInstruction inst)
switch (bit) switch (bit)
{ {
case PowerPC::CR_SO_BIT: case PowerPC::CR_SO_BIT:
ORRI2R(XA, XA, u64(1) << PowerPC::CR_EMU_SO_BIT); ORR(XA, XA, LogicalImm(u64(1) << PowerPC::CR_EMU_SO_BIT, 64));
break; break;
case PowerPC::CR_EQ_BIT: case PowerPC::CR_EQ_BIT:
ANDI2R(XA, XA, 0xFFFF'FFFF'0000'0000); AND(XA, XA, LogicalImm(0xFFFF'FFFF'0000'0000, 64));
break; break;
case PowerPC::CR_GT_BIT: case PowerPC::CR_GT_BIT:
ANDI2R(XA, XA, ~(u64(1) << 63)); AND(XA, XA, LogicalImm(~(u64(1) << 63), 64));
break; break;
case PowerPC::CR_LT_BIT: case PowerPC::CR_LT_BIT:
ORRI2R(XA, XA, u64(1) << PowerPC::CR_EMU_LT_BIT); ORR(XA, XA, LogicalImm(u64(1) << PowerPC::CR_EMU_LT_BIT, 64));
break; break;
} }
ORRI2R(XA, XA, u64(1) << 32); ORR(XA, XA, LogicalImm(u64(1) << 32, 64));
return; return;
} }
@ -708,13 +708,12 @@ void JitArm64::mcrfs(UGeckoInstruction inst)
ARM64Reg XA = EncodeRegTo64(WA); ARM64Reg XA = EncodeRegTo64(WA);
LDR(IndexType::Unsigned, WA, PPC_REG, PPCSTATE_OFF(fpscr)); LDR(IndexType::Unsigned, WA, PPC_REG, PPCSTATE_OFF(fpscr));
LSR(WCR, WA, shift); UBFX(WCR, WA, shift, 4);
ANDI2R(WCR, WCR, 0xF);
if (mask != 0) if (mask != 0)
{ {
const u32 inverted_mask = ~mask; const u32 inverted_mask = ~mask;
ANDI2R(WA, WA, inverted_mask); AND(WA, WA, LogicalImm(inverted_mask, 32));
STR(IndexType::Unsigned, WA, PPC_REG, PPCSTATE_OFF(fpscr)); STR(IndexType::Unsigned, WA, PPC_REG, PPCSTATE_OFF(fpscr));
} }

View File

@ -102,7 +102,7 @@ void JitArm64::GenerateAsm()
ARM64Reg pc_masked = ARM64Reg::W25; ARM64Reg pc_masked = ARM64Reg::W25;
ARM64Reg cache_base = ARM64Reg::X27; ARM64Reg cache_base = ARM64Reg::X27;
ARM64Reg block = ARM64Reg::X30; ARM64Reg block = ARM64Reg::X30;
ORRI2R(pc_masked, ARM64Reg::WZR, JitBaseBlockCache::FAST_BLOCK_MAP_MASK << 3); ORR(pc_masked, ARM64Reg::WZR, LogicalImm(JitBaseBlockCache::FAST_BLOCK_MAP_MASK << 3, 32));
AND(pc_masked, pc_masked, DISPATCHER_PC, ArithOption(DISPATCHER_PC, ShiftType::LSL, 1)); AND(pc_masked, pc_masked, DISPATCHER_PC, ArithOption(DISPATCHER_PC, ShiftType::LSL, 1));
MOVP2R(cache_base, GetBlockCache()->GetFastBlockMap()); MOVP2R(cache_base, GetBlockCache()->GetFastBlockMap());
LDR(block, cache_base, EncodeRegTo64(pc_masked)); LDR(block, cache_base, EncodeRegTo64(pc_masked));
@ -116,7 +116,7 @@ void JitArm64::GenerateAsm()
FixupBranch pc_missmatch = B(CC_NEQ); FixupBranch pc_missmatch = B(CC_NEQ);
LDR(IndexType::Unsigned, pc_and_msr2, PPC_REG, PPCSTATE_OFF(msr)); LDR(IndexType::Unsigned, pc_and_msr2, PPC_REG, PPCSTATE_OFF(msr));
ANDI2R(pc_and_msr2, pc_and_msr2, JitBaseBlockCache::JIT_CACHE_MSR_MASK); AND(pc_and_msr2, pc_and_msr2, LogicalImm(JitBaseBlockCache::JIT_CACHE_MSR_MASK, 32));
LDR(IndexType::Unsigned, pc_and_msr, block, offsetof(JitBlockData, msrBits)); LDR(IndexType::Unsigned, pc_and_msr, block, offsetof(JitBlockData, msrBits));
CMP(pc_and_msr, pc_and_msr2); CMP(pc_and_msr, pc_and_msr2);
FixupBranch msr_missmatch = B(CC_NEQ); FixupBranch msr_missmatch = B(CC_NEQ);
@ -238,7 +238,7 @@ void JitArm64::GenerateFres()
UBFX(ARM64Reg::X2, ARM64Reg::X1, 52, 11); // Grab the exponent UBFX(ARM64Reg::X2, ARM64Reg::X1, 52, 11); // Grab the exponent
m_float_emit.FMOV(ARM64Reg::X0, ARM64Reg::D0); m_float_emit.FMOV(ARM64Reg::X0, ARM64Reg::D0);
CMP(ARM64Reg::X2, 895); CMP(ARM64Reg::X2, 895);
ANDI2R(ARM64Reg::X3, ARM64Reg::X1, Common::DOUBLE_SIGN); AND(ARM64Reg::X3, ARM64Reg::X1, LogicalImm(Common::DOUBLE_SIGN, 64));
FixupBranch small_exponent = B(CCFlags::CC_LO); FixupBranch small_exponent = B(CCFlags::CC_LO);
MOVI2R(ARM64Reg::X4, 1148LL); MOVI2R(ARM64Reg::X4, 1148LL);
@ -251,14 +251,14 @@ void JitArm64::GenerateFres()
LDP(IndexType::Signed, ARM64Reg::W2, ARM64Reg::W3, ARM64Reg::X2, 0); LDP(IndexType::Signed, ARM64Reg::W2, ARM64Reg::W3, ARM64Reg::X2, 0);
UBFX(ARM64Reg::X1, ARM64Reg::X1, 37, 10); // Grab lower part of mantissa UBFX(ARM64Reg::X1, ARM64Reg::X1, 37, 10); // Grab lower part of mantissa
MOVI2R(ARM64Reg::W4, 1); MOVI2R(ARM64Reg::W4, 1);
ANDI2R(ARM64Reg::X0, ARM64Reg::X0, Common::DOUBLE_SIGN | Common::DOUBLE_EXP); AND(ARM64Reg::X0, ARM64Reg::X0, LogicalImm(Common::DOUBLE_SIGN | Common::DOUBLE_EXP, 64));
MADD(ARM64Reg::W1, ARM64Reg::W3, ARM64Reg::W1, ARM64Reg::W4); MADD(ARM64Reg::W1, ARM64Reg::W3, ARM64Reg::W1, ARM64Reg::W4);
SUB(ARM64Reg::W1, ARM64Reg::W2, ARM64Reg::W1, ArithOption(ARM64Reg::W1, ShiftType::LSR, 1)); SUB(ARM64Reg::W1, ARM64Reg::W2, ARM64Reg::W1, ArithOption(ARM64Reg::W1, ShiftType::LSR, 1));
ORR(ARM64Reg::X0, ARM64Reg::X0, ARM64Reg::X1, ArithOption(ARM64Reg::X1, ShiftType::LSL, 29)); ORR(ARM64Reg::X0, ARM64Reg::X0, ARM64Reg::X1, ArithOption(ARM64Reg::X1, ShiftType::LSL, 29));
RET(); RET();
SetJumpTarget(small_exponent); SetJumpTarget(small_exponent);
TSTI2R(ARM64Reg::X1, Common::DOUBLE_EXP | Common::DOUBLE_FRAC); TST(ARM64Reg::X1, LogicalImm(Common::DOUBLE_EXP | Common::DOUBLE_FRAC, 64));
FixupBranch zero = B(CCFlags::CC_EQ); FixupBranch zero = B(CCFlags::CC_EQ);
MOVI2R(ARM64Reg::X4, MOVI2R(ARM64Reg::X4,
Common::BitCast<u64>(static_cast<double>(std::numeric_limits<float>::max()))); Common::BitCast<u64>(static_cast<double>(std::numeric_limits<float>::max())));
@ -289,15 +289,15 @@ void JitArm64::GenerateFrsqrte()
// inf, even the mantissa matches. But the mantissa does not match for most other inputs, so in // inf, even the mantissa matches. But the mantissa does not match for most other inputs, so in
// the normal case we calculate the mantissa using the table-based algorithm from the interpreter. // the normal case we calculate the mantissa using the table-based algorithm from the interpreter.
TSTI2R(ARM64Reg::X1, Common::DOUBLE_EXP | Common::DOUBLE_FRAC); TST(ARM64Reg::X1, LogicalImm(Common::DOUBLE_EXP | Common::DOUBLE_FRAC, 64));
m_float_emit.FMOV(ARM64Reg::X0, ARM64Reg::D0); m_float_emit.FMOV(ARM64Reg::X0, ARM64Reg::D0);
FixupBranch zero = B(CCFlags::CC_EQ); FixupBranch zero = B(CCFlags::CC_EQ);
ANDI2R(ARM64Reg::X2, ARM64Reg::X1, Common::DOUBLE_EXP); AND(ARM64Reg::X2, ARM64Reg::X1, LogicalImm(Common::DOUBLE_EXP, 64));
MOVI2R(ARM64Reg::X3, Common::DOUBLE_EXP); MOVI2R(ARM64Reg::X3, Common::DOUBLE_EXP);
CMP(ARM64Reg::X2, ARM64Reg::X3); CMP(ARM64Reg::X2, ARM64Reg::X3);
FixupBranch nan_or_inf = B(CCFlags::CC_EQ); FixupBranch nan_or_inf = B(CCFlags::CC_EQ);
FixupBranch negative = TBNZ(ARM64Reg::X1, 63); FixupBranch negative = TBNZ(ARM64Reg::X1, 63);
ANDI2R(ARM64Reg::X3, ARM64Reg::X1, Common::DOUBLE_FRAC); AND(ARM64Reg::X3, ARM64Reg::X1, LogicalImm(Common::DOUBLE_FRAC, 64));
FixupBranch normal = CBNZ(ARM64Reg::X2); FixupBranch normal = CBNZ(ARM64Reg::X2);
// "Normalize" denormal values // "Normalize" denormal values
@ -306,18 +306,18 @@ void JitArm64::GenerateFrsqrte()
MOVI2R(ARM64Reg::X2, 0x00C0'0000'0000'0000); MOVI2R(ARM64Reg::X2, 0x00C0'0000'0000'0000);
LSLV(ARM64Reg::X4, ARM64Reg::X1, ARM64Reg::X4); LSLV(ARM64Reg::X4, ARM64Reg::X1, ARM64Reg::X4);
SUB(ARM64Reg::X2, ARM64Reg::X2, ARM64Reg::X3, ArithOption(ARM64Reg::X3, ShiftType::LSL, 52)); SUB(ARM64Reg::X2, ARM64Reg::X2, ARM64Reg::X3, ArithOption(ARM64Reg::X3, ShiftType::LSL, 52));
ANDI2R(ARM64Reg::X3, ARM64Reg::X4, Common::DOUBLE_FRAC - 1); AND(ARM64Reg::X3, ARM64Reg::X4, LogicalImm(Common::DOUBLE_FRAC - 1, 64));
SetJumpTarget(normal); SetJumpTarget(normal);
LSR(ARM64Reg::X2, ARM64Reg::X2, 48); LSR(ARM64Reg::X2, ARM64Reg::X2, 48);
ANDI2R(ARM64Reg::X2, ARM64Reg::X2, 0x10); AND(ARM64Reg::X2, ARM64Reg::X2, LogicalImm(0x10, 64));
MOVP2R(ARM64Reg::X1, &Common::frsqrte_expected); MOVP2R(ARM64Reg::X1, &Common::frsqrte_expected);
ORR(ARM64Reg::X2, ARM64Reg::X2, ARM64Reg::X3, ArithOption(ARM64Reg::X8, ShiftType::LSR, 48)); ORR(ARM64Reg::X2, ARM64Reg::X2, ARM64Reg::X3, ArithOption(ARM64Reg::X8, ShiftType::LSR, 48));
EORI2R(ARM64Reg::X2, ARM64Reg::X2, 0x10); EOR(ARM64Reg::X2, ARM64Reg::X2, LogicalImm(0x10, 64));
ADD(ARM64Reg::X2, ARM64Reg::X1, ARM64Reg::X2, ArithOption(ARM64Reg::X2, ShiftType::LSL, 3)); ADD(ARM64Reg::X2, ARM64Reg::X1, ARM64Reg::X2, ArithOption(ARM64Reg::X2, ShiftType::LSL, 3));
LDP(IndexType::Signed, ARM64Reg::W1, ARM64Reg::W2, ARM64Reg::X2, 0); LDP(IndexType::Signed, ARM64Reg::W1, ARM64Reg::W2, ARM64Reg::X2, 0);
UBFX(ARM64Reg::X3, ARM64Reg::X3, 37, 11); UBFX(ARM64Reg::X3, ARM64Reg::X3, 37, 11);
ANDI2R(ARM64Reg::X0, ARM64Reg::X0, Common::DOUBLE_SIGN | Common::DOUBLE_EXP); AND(ARM64Reg::X0, ARM64Reg::X0, LogicalImm(Common::DOUBLE_SIGN | Common::DOUBLE_EXP, 64));
MSUB(ARM64Reg::W3, ARM64Reg::W3, ARM64Reg::W2, ARM64Reg::W1); MSUB(ARM64Reg::W3, ARM64Reg::W3, ARM64Reg::W2, ARM64Reg::W1);
ORR(ARM64Reg::X0, ARM64Reg::X0, ARM64Reg::X3, ArithOption(ARM64Reg::X3, ShiftType::LSL, 26)); ORR(ARM64Reg::X0, ARM64Reg::X0, ARM64Reg::X3, ArithOption(ARM64Reg::X3, ShiftType::LSL, 26));
RET(); RET();
@ -354,17 +354,17 @@ void JitArm64::GenerateConvertDoubleToSingle()
LSR(ARM64Reg::X1, ARM64Reg::X0, 32); LSR(ARM64Reg::X1, ARM64Reg::X0, 32);
FixupBranch denormal = B(CCFlags::CC_LS); FixupBranch denormal = B(CCFlags::CC_LS);
ANDI2R(ARM64Reg::X1, ARM64Reg::X1, 0xc0000000); AND(ARM64Reg::X1, ARM64Reg::X1, LogicalImm(0xc0000000, 64));
BFXIL(ARM64Reg::X1, ARM64Reg::X0, 29, 30); BFXIL(ARM64Reg::X1, ARM64Reg::X0, 29, 30);
RET(); RET();
SetJumpTarget(denormal); SetJumpTarget(denormal);
LSR(ARM64Reg::X3, ARM64Reg::X0, 21); LSR(ARM64Reg::X3, ARM64Reg::X0, 21);
MOVZ(ARM64Reg::X0, 905); MOVZ(ARM64Reg::X0, 905);
ORRI2R(ARM64Reg::W3, ARM64Reg::W3, 0x80000000); ORR(ARM64Reg::W3, ARM64Reg::W3, LogicalImm(0x80000000, 32));
SUB(ARM64Reg::W2, ARM64Reg::W0, ARM64Reg::W2); SUB(ARM64Reg::W2, ARM64Reg::W0, ARM64Reg::W2);
LSRV(ARM64Reg::W2, ARM64Reg::W3, ARM64Reg::W2); LSRV(ARM64Reg::W2, ARM64Reg::W3, ARM64Reg::W2);
ANDI2R(ARM64Reg::X3, ARM64Reg::X1, 0x80000000); AND(ARM64Reg::X3, ARM64Reg::X1, LogicalImm(0x80000000, 64));
ORR(ARM64Reg::X1, ARM64Reg::X3, ARM64Reg::X2); ORR(ARM64Reg::X1, ARM64Reg::X3, ARM64Reg::X2);
RET(); RET();
} }
@ -375,7 +375,7 @@ void JitArm64::GenerateConvertSingleToDouble()
UBFX(ARM64Reg::W1, ARM64Reg::W0, 23, 8); UBFX(ARM64Reg::W1, ARM64Reg::W0, 23, 8);
FixupBranch normal_or_nan = CBNZ(ARM64Reg::W1); FixupBranch normal_or_nan = CBNZ(ARM64Reg::W1);
ANDI2R(ARM64Reg::W1, ARM64Reg::W0, 0x007fffff); AND(ARM64Reg::W1, ARM64Reg::W0, LogicalImm(0x007fffff, 32));
FixupBranch denormal = CBNZ(ARM64Reg::W1); FixupBranch denormal = CBNZ(ARM64Reg::W1);
// Zero // Zero
@ -383,10 +383,10 @@ void JitArm64::GenerateConvertSingleToDouble()
RET(); RET();
SetJumpTarget(denormal); SetJumpTarget(denormal);
ANDI2R(ARM64Reg::W2, ARM64Reg::W0, 0x80000000); AND(ARM64Reg::W2, ARM64Reg::W0, LogicalImm(0x80000000, 32));
CLZ(ARM64Reg::X3, ARM64Reg::X1); CLZ(ARM64Reg::X3, ARM64Reg::X1);
LSL(ARM64Reg::X2, ARM64Reg::X2, 32); LSL(ARM64Reg::X2, ARM64Reg::X2, 32);
ORRI2R(ARM64Reg::X4, ARM64Reg::X3, 0xffffffffffffffc0); ORR(ARM64Reg::X4, ARM64Reg::X3, LogicalImm(0xffffffffffffffc0, 64));
SUB(ARM64Reg::X2, ARM64Reg::X2, ARM64Reg::X3, ArithOption(ARM64Reg::X3, ShiftType::LSL, 52)); SUB(ARM64Reg::X2, ARM64Reg::X2, ARM64Reg::X3, ArithOption(ARM64Reg::X3, ShiftType::LSL, 52));
ADD(ARM64Reg::X3, ARM64Reg::X4, 23); ADD(ARM64Reg::X3, ARM64Reg::X4, 23);
LSLV(ARM64Reg::X1, ARM64Reg::X1, ARM64Reg::X3); LSLV(ARM64Reg::X1, ARM64Reg::X1, ARM64Reg::X3);
@ -397,12 +397,12 @@ void JitArm64::GenerateConvertSingleToDouble()
SetJumpTarget(normal_or_nan); SetJumpTarget(normal_or_nan);
CMP(ARM64Reg::W1, 0xff); CMP(ARM64Reg::W1, 0xff);
ANDI2R(ARM64Reg::W2, ARM64Reg::W0, 0x40000000); AND(ARM64Reg::W2, ARM64Reg::W0, LogicalImm(0x40000000, 32));
CSET(ARM64Reg::W4, CCFlags::CC_NEQ); CSET(ARM64Reg::W4, CCFlags::CC_NEQ);
ANDI2R(ARM64Reg::W3, ARM64Reg::W0, 0xc0000000); AND(ARM64Reg::W3, ARM64Reg::W0, LogicalImm(0xc0000000, 32));
EOR(ARM64Reg::W2, ARM64Reg::W4, ARM64Reg::W2, ArithOption(ARM64Reg::W2, ShiftType::LSR, 30)); EOR(ARM64Reg::W2, ARM64Reg::W4, ARM64Reg::W2, ArithOption(ARM64Reg::W2, ShiftType::LSR, 30));
MOVI2R(ARM64Reg::X1, 0x3800000000000000); MOVI2R(ARM64Reg::X1, 0x3800000000000000);
ANDI2R(ARM64Reg::W4, ARM64Reg::W0, 0x3fffffff); AND(ARM64Reg::W4, ARM64Reg::W0, LogicalImm(0x3fffffff, 32));
LSL(ARM64Reg::X3, ARM64Reg::X3, 32); LSL(ARM64Reg::X3, ARM64Reg::X3, 32);
CMP(ARM64Reg::W2, 0); CMP(ARM64Reg::W2, 0);
CSEL(ARM64Reg::X1, ARM64Reg::X1, ARM64Reg::ZR, CCFlags::CC_NEQ); CSEL(ARM64Reg::X1, ARM64Reg::X1, ARM64Reg::ZR, CCFlags::CC_NEQ);
@ -423,9 +423,10 @@ void JitArm64::GenerateFPRF(bool single)
constexpr ARM64Reg fprf_reg = ARM64Reg::W3; constexpr ARM64Reg fprf_reg = ARM64Reg::W3;
constexpr ARM64Reg fpscr_reg = ARM64Reg::W4; constexpr ARM64Reg fpscr_reg = ARM64Reg::W4;
const auto INPUT_EXP_MASK = single ? Common::FLOAT_EXP : Common::DOUBLE_EXP; const int input_size = single ? 32 : 64;
const auto INPUT_FRAC_MASK = single ? Common::FLOAT_FRAC : Common::DOUBLE_FRAC; const u64 input_exp_mask = single ? Common::FLOAT_EXP : Common::DOUBLE_EXP;
constexpr u32 OUTPUT_SIGN_MASK = 0xC; const u64 input_frac_mask = single ? Common::FLOAT_FRAC : Common::DOUBLE_FRAC;
constexpr u32 output_sign_mask = 0xC;
// This code is duplicated for the most common cases for performance. // This code is duplicated for the most common cases for performance.
// For the less common cases, we branch to an existing copy of this code. // For the less common cases, we branch to an existing copy of this code.
@ -439,7 +440,7 @@ void JitArm64::GenerateFPRF(bool single)
LDR(IndexType::Unsigned, fpscr_reg, PPC_REG, PPCSTATE_OFF(fpscr)); LDR(IndexType::Unsigned, fpscr_reg, PPC_REG, PPCSTATE_OFF(fpscr));
CMP(input_reg, 0); // Grab sign bit (conveniently the same bit for floats as for integers) CMP(input_reg, 0); // Grab sign bit (conveniently the same bit for floats as for integers)
ANDI2R(exp_reg, input_reg, INPUT_EXP_MASK); // Grab exponent AND(exp_reg, input_reg, LogicalImm(input_exp_mask, input_size)); // Grab exponent
// Most branches handle the sign in the same way. Perform that handling before branching // Most branches handle the sign in the same way. Perform that handling before branching
MOVI2R(ARM64Reg::W3, Common::PPC_FPCLASS_PN); MOVI2R(ARM64Reg::W3, Common::PPC_FPCLASS_PN);
@ -449,7 +450,7 @@ void JitArm64::GenerateFPRF(bool single)
FixupBranch zero_or_denormal = CBZ(exp_reg); FixupBranch zero_or_denormal = CBZ(exp_reg);
// exp != 0 // exp != 0
MOVI2R(temp_reg, INPUT_EXP_MASK); MOVI2R(temp_reg, input_exp_mask);
CMP(exp_reg, temp_reg); CMP(exp_reg, temp_reg);
FixupBranch nan_or_inf = B(CCFlags::CC_EQ); FixupBranch nan_or_inf = B(CCFlags::CC_EQ);
@ -458,25 +459,25 @@ void JitArm64::GenerateFPRF(bool single)
// exp == 0 // exp == 0
SetJumpTarget(zero_or_denormal); SetJumpTarget(zero_or_denormal);
TSTI2R(input_reg, INPUT_FRAC_MASK); TST(input_reg, LogicalImm(input_frac_mask, input_size));
FixupBranch denormal = B(CCFlags::CC_NEQ); FixupBranch denormal = B(CCFlags::CC_NEQ);
// exp == 0 && frac == 0 // exp == 0 && frac == 0
LSR(ARM64Reg::W1, fprf_reg, 3); LSR(ARM64Reg::W1, fprf_reg, 3);
MOVI2R(fprf_reg, Common::PPC_FPCLASS_PZ & ~OUTPUT_SIGN_MASK); MOVI2R(fprf_reg, Common::PPC_FPCLASS_PZ & ~output_sign_mask);
BFI(fprf_reg, ARM64Reg::W1, 4, 1); BFI(fprf_reg, ARM64Reg::W1, 4, 1);
const u8* write_fprf_and_ret = GetCodePtr(); const u8* write_fprf_and_ret = GetCodePtr();
emit_write_fprf_and_ret(); emit_write_fprf_and_ret();
// exp == 0 && frac != 0 // exp == 0 && frac != 0
SetJumpTarget(denormal); SetJumpTarget(denormal);
ORRI2R(fprf_reg, fprf_reg, Common::PPC_FPCLASS_PD & ~OUTPUT_SIGN_MASK); ORR(fprf_reg, fprf_reg, LogicalImm(Common::PPC_FPCLASS_PD & ~output_sign_mask, 32));
B(write_fprf_and_ret); B(write_fprf_and_ret);
// exp == EXP_MASK // exp == EXP_MASK
SetJumpTarget(nan_or_inf); SetJumpTarget(nan_or_inf);
TSTI2R(input_reg, INPUT_FRAC_MASK); TST(input_reg, LogicalImm(input_frac_mask, input_size));
ORRI2R(ARM64Reg::W1, fprf_reg, Common::PPC_FPCLASS_PINF & ~OUTPUT_SIGN_MASK); ORR(ARM64Reg::W1, fprf_reg, LogicalImm(Common::PPC_FPCLASS_PINF & ~output_sign_mask, 32));
MOVI2R(ARM64Reg::W2, Common::PPC_FPCLASS_QNAN); MOVI2R(ARM64Reg::W2, Common::PPC_FPCLASS_QNAN);
CSEL(fprf_reg, ARM64Reg::W1, ARM64Reg::W2, CCFlags::CC_EQ); CSEL(fprf_reg, ARM64Reg::W1, ARM64Reg::W2, CCFlags::CC_EQ);
B(write_fprf_and_ret); B(write_fprf_and_ret);

View File

@ -244,7 +244,7 @@ void VertexLoaderARM64::ReadColor(VertexComponentFormat attribute, ColorFormat f
LDR(IndexType::Unsigned, scratch2_reg, src_reg, offset); LDR(IndexType::Unsigned, scratch2_reg, src_reg, offset);
if (format != ColorFormat::RGBA8888) if (format != ColorFormat::RGBA8888)
ORRI2R(scratch2_reg, scratch2_reg, 0xFF000000); ORR(scratch2_reg, scratch2_reg, LogicalImm(0xFF000000, 32));
STR(IndexType::Unsigned, scratch2_reg, dst_reg, m_dst_ofs); STR(IndexType::Unsigned, scratch2_reg, dst_reg, m_dst_ofs);
load_bytes = format == ColorFormat::RGB888 ? 3 : 4; load_bytes = format == ColorFormat::RGB888 ? 3 : 4;
break; break;
@ -279,7 +279,7 @@ void VertexLoaderARM64::ReadColor(VertexComponentFormat attribute, ColorFormat f
ORR(scratch1_reg, scratch1_reg, scratch2_reg, ArithOption(scratch2_reg, ShiftType::LSR, 2)); ORR(scratch1_reg, scratch1_reg, scratch2_reg, ArithOption(scratch2_reg, ShiftType::LSR, 2));
// A // A
ORRI2R(scratch1_reg, scratch1_reg, 0xFF000000); ORR(scratch1_reg, scratch1_reg, LogicalImm(0xFF000000, 32));
STR(IndexType::Unsigned, scratch1_reg, dst_reg, m_dst_ofs); STR(IndexType::Unsigned, scratch1_reg, dst_reg, m_dst_ofs);
load_bytes = 2; load_bytes = 2;