|
|
|
@ -22,94 +22,28 @@
|
|
|
|
|
|
|
|
|
|
namespace Common
|
|
|
|
|
{
|
|
|
|
|
static u64 (*ptrHashFunction)(const u8* src, u32 len, u32 samples) = nullptr;
|
|
|
|
|
|
|
|
|
|
// uint32_t
|
|
|
|
|
// WARNING - may read one more byte!
|
|
|
|
|
// Implementation from Wikipedia.
|
|
|
|
|
u32 HashFletcher(const u8* data_u8, size_t length)
|
|
|
|
|
{
|
|
|
|
|
const u16* data = (const u16*)data_u8; /* Pointer to the data to be summed */
|
|
|
|
|
size_t len = (length + 1) / 2; /* Length in 16-bit words */
|
|
|
|
|
u32 sum1 = 0xffff, sum2 = 0xffff;
|
|
|
|
|
|
|
|
|
|
while (len)
|
|
|
|
|
{
|
|
|
|
|
size_t tlen = len > 360 ? 360 : len;
|
|
|
|
|
len -= tlen;
|
|
|
|
|
|
|
|
|
|
do
|
|
|
|
|
{
|
|
|
|
|
sum1 += *data++;
|
|
|
|
|
sum2 += sum1;
|
|
|
|
|
} while (--tlen);
|
|
|
|
|
|
|
|
|
|
sum1 = (sum1 & 0xffff) + (sum1 >> 16);
|
|
|
|
|
sum2 = (sum2 & 0xffff) + (sum2 >> 16);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Second reduction step to reduce sums to 16 bits
|
|
|
|
|
sum1 = (sum1 & 0xffff) + (sum1 >> 16);
|
|
|
|
|
sum2 = (sum2 & 0xffff) + (sum2 >> 16);
|
|
|
|
|
return (sum2 << 16 | sum1);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Implementation from Wikipedia
|
|
|
|
|
// Slightly slower than Fletcher above, but slightly more reliable.
|
|
|
|
|
// data: Pointer to the data to be summed; len is in bytes
|
|
|
|
|
u32 HashAdler32(const u8* data, size_t len)
|
|
|
|
|
{
|
|
|
|
|
static const u32 MOD_ADLER = 65521;
|
|
|
|
|
u32 a = 1, b = 0;
|
|
|
|
|
|
|
|
|
|
while (len)
|
|
|
|
|
{
|
|
|
|
|
size_t tlen = len > 5550 ? 5550 : len;
|
|
|
|
|
len -= tlen;
|
|
|
|
|
|
|
|
|
|
do
|
|
|
|
|
{
|
|
|
|
|
a += *data++;
|
|
|
|
|
b += a;
|
|
|
|
|
} while (--tlen);
|
|
|
|
|
|
|
|
|
|
a = (a & 0xffff) + (a >> 16) * (65536 - MOD_ADLER);
|
|
|
|
|
b = (b & 0xffff) + (b >> 16) * (65536 - MOD_ADLER);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// It can be shown that a <= 0x1013a here, so a single subtract will do.
|
|
|
|
|
if (a >= MOD_ADLER)
|
|
|
|
|
{
|
|
|
|
|
a -= MOD_ADLER;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// It can be shown that b can reach 0xfff87 here.
|
|
|
|
|
b = (b & 0xffff) + (b >> 16) * (65536 - MOD_ADLER);
|
|
|
|
|
|
|
|
|
|
if (b >= MOD_ADLER)
|
|
|
|
|
{
|
|
|
|
|
b -= MOD_ADLER;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return ((b << 16) | a);
|
|
|
|
|
// Use fast implementation from zlib-ng
|
|
|
|
|
return adler32_z(1, data, len);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Stupid hash - but can't go back now :)
|
|
|
|
|
// Don't use for new things. At least it's reasonably fast.
|
|
|
|
|
u32 HashEctor(const u8* ptr, size_t length)
|
|
|
|
|
u32 HashEctor(const u8* data, size_t len)
|
|
|
|
|
{
|
|
|
|
|
u32 crc = 0;
|
|
|
|
|
|
|
|
|
|
for (size_t i = 0; i < length; i++)
|
|
|
|
|
for (size_t i = 0; i < len; i++)
|
|
|
|
|
{
|
|
|
|
|
crc ^= ptr[i];
|
|
|
|
|
crc ^= data[i];
|
|
|
|
|
crc = (crc << 3) | (crc >> 29);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return (crc);
|
|
|
|
|
return crc;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#if _ARCH_64
|
|
|
|
|
#ifdef _ARCH_64
|
|
|
|
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
|
// Block read - if your platform needs to do endian-swapping or can only
|
|
|
|
@ -250,133 +184,8 @@ static u64 GetMurmurHash3(const u8* src, u32 len, u32 samples)
|
|
|
|
|
return h1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// CRC32 hash using the SSE4.2 instruction
|
|
|
|
|
#if defined(_M_X86_64)
|
|
|
|
|
|
|
|
|
|
FUNCTION_TARGET_SSE42
|
|
|
|
|
static u64 GetCRC32(const u8* src, u32 len, u32 samples)
|
|
|
|
|
{
|
|
|
|
|
u64 h[4] = {len, 0, 0, 0};
|
|
|
|
|
u32 Step = (len / 8);
|
|
|
|
|
const u64* data = (const u64*)src;
|
|
|
|
|
const u64* end = data + Step;
|
|
|
|
|
if (samples == 0)
|
|
|
|
|
samples = std::max(Step, 1u);
|
|
|
|
|
Step = Step / samples;
|
|
|
|
|
if (Step < 1)
|
|
|
|
|
Step = 1;
|
|
|
|
|
|
|
|
|
|
while (data < end - Step * 3)
|
|
|
|
|
{
|
|
|
|
|
h[0] = _mm_crc32_u64(h[0], data[Step * 0]);
|
|
|
|
|
h[1] = _mm_crc32_u64(h[1], data[Step * 1]);
|
|
|
|
|
h[2] = _mm_crc32_u64(h[2], data[Step * 2]);
|
|
|
|
|
h[3] = _mm_crc32_u64(h[3], data[Step * 3]);
|
|
|
|
|
data += Step * 4;
|
|
|
|
|
}
|
|
|
|
|
if (data < end - Step * 0)
|
|
|
|
|
h[0] = _mm_crc32_u64(h[0], data[Step * 0]);
|
|
|
|
|
if (data < end - Step * 1)
|
|
|
|
|
h[1] = _mm_crc32_u64(h[1], data[Step * 1]);
|
|
|
|
|
if (data < end - Step * 2)
|
|
|
|
|
h[2] = _mm_crc32_u64(h[2], data[Step * 2]);
|
|
|
|
|
|
|
|
|
|
if (len & 7)
|
|
|
|
|
{
|
|
|
|
|
u64 temp = 0;
|
|
|
|
|
memcpy(&temp, end, len & 7);
|
|
|
|
|
h[0] = _mm_crc32_u64(h[0], temp);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// FIXME: is there a better way to combine these partial hashes?
|
|
|
|
|
return h[0] + (h[1] << 10) + (h[2] << 21) + (h[3] << 32);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#elif defined(_M_ARM_64)
|
|
|
|
|
|
|
|
|
|
static u64 GetCRC32(const u8* src, u32 len, u32 samples)
|
|
|
|
|
{
|
|
|
|
|
u64 h[4] = {len, 0, 0, 0};
|
|
|
|
|
u32 Step = (len / 8);
|
|
|
|
|
const u64* data = (const u64*)src;
|
|
|
|
|
const u64* end = data + Step;
|
|
|
|
|
if (samples == 0)
|
|
|
|
|
samples = std::max(Step, 1u);
|
|
|
|
|
Step = Step / samples;
|
|
|
|
|
if (Step < 1)
|
|
|
|
|
Step = 1;
|
|
|
|
|
|
|
|
|
|
while (data < end - Step * 3)
|
|
|
|
|
{
|
|
|
|
|
h[0] = __crc32d(h[0], data[Step * 0]);
|
|
|
|
|
h[1] = __crc32d(h[1], data[Step * 1]);
|
|
|
|
|
h[2] = __crc32d(h[2], data[Step * 2]);
|
|
|
|
|
h[3] = __crc32d(h[3], data[Step * 3]);
|
|
|
|
|
data += Step * 4;
|
|
|
|
|
}
|
|
|
|
|
if (data < end - Step * 0)
|
|
|
|
|
h[0] = __crc32d(h[0], data[Step * 0]);
|
|
|
|
|
if (data < end - Step * 1)
|
|
|
|
|
h[1] = __crc32d(h[1], data[Step * 1]);
|
|
|
|
|
if (data < end - Step * 2)
|
|
|
|
|
h[2] = __crc32d(h[2], data[Step * 2]);
|
|
|
|
|
|
|
|
|
|
if (len & 7)
|
|
|
|
|
{
|
|
|
|
|
u64 temp = 0;
|
|
|
|
|
memcpy(&temp, end, len & 7);
|
|
|
|
|
h[0] = __crc32d(h[0], temp);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// FIXME: is there a better way to combine these partial hashes?
|
|
|
|
|
return h[0] + (h[1] << 10) + (h[2] << 21) + (h[3] << 32);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
|
|
static u64 GetCRC32(const u8* src, u32 len, u32 samples)
|
|
|
|
|
{
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
|
|
// CRC32 hash using the SSE4.2 instruction
|
|
|
|
|
#if defined(_M_X86)
|
|
|
|
|
|
|
|
|
|
FUNCTION_TARGET_SSE42
|
|
|
|
|
static u64 GetCRC32(const u8* src, u32 len, u32 samples)
|
|
|
|
|
{
|
|
|
|
|
u32 h = len;
|
|
|
|
|
u32 Step = (len / 4);
|
|
|
|
|
const u32* data = (const u32*)src;
|
|
|
|
|
const u32* end = data + Step;
|
|
|
|
|
if (samples == 0)
|
|
|
|
|
samples = std::max(Step, 1u);
|
|
|
|
|
Step = Step / samples;
|
|
|
|
|
if (Step < 1)
|
|
|
|
|
Step = 1;
|
|
|
|
|
while (data < end)
|
|
|
|
|
{
|
|
|
|
|
h = _mm_crc32_u32(h, data[0]);
|
|
|
|
|
data += Step;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
const u8* data2 = (const u8*)end;
|
|
|
|
|
return (u64)_mm_crc32_u32(h, u32(data2[0]));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
|
|
static u64 GetCRC32(const u8* src, u32 len, u32 samples)
|
|
|
|
|
{
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
|
|
|
// Block read - if your platform needs to do endian-swapping or can only
|
|
|
|
|
// handle aligned reads, do the conversion here
|
|
|
|
@ -504,55 +313,159 @@ static u64 GetMurmurHash3(const u8* src, u32 len, u32 samples)
|
|
|
|
|
|
|
|
|
|
return *((u64*)&out);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if defined(_M_X86_64)
|
|
|
|
|
|
|
|
|
|
FUNCTION_TARGET_SSE42
|
|
|
|
|
static u64 GetHash64_SSE42_CRC32(const u8* src, u32 len, u32 samples)
|
|
|
|
|
{
|
|
|
|
|
u64 h[4] = {len, 0, 0, 0};
|
|
|
|
|
u32 Step = (len / 8);
|
|
|
|
|
const u64* data = (const u64*)src;
|
|
|
|
|
const u64* end = data + Step;
|
|
|
|
|
if (samples == 0)
|
|
|
|
|
samples = std::max(Step, 1u);
|
|
|
|
|
Step = Step / samples;
|
|
|
|
|
if (Step < 1)
|
|
|
|
|
Step = 1;
|
|
|
|
|
|
|
|
|
|
while (data < end - Step * 3)
|
|
|
|
|
{
|
|
|
|
|
h[0] = _mm_crc32_u64(h[0], data[Step * 0]);
|
|
|
|
|
h[1] = _mm_crc32_u64(h[1], data[Step * 1]);
|
|
|
|
|
h[2] = _mm_crc32_u64(h[2], data[Step * 2]);
|
|
|
|
|
h[3] = _mm_crc32_u64(h[3], data[Step * 3]);
|
|
|
|
|
data += Step * 4;
|
|
|
|
|
}
|
|
|
|
|
if (data < end - Step * 0)
|
|
|
|
|
h[0] = _mm_crc32_u64(h[0], data[Step * 0]);
|
|
|
|
|
if (data < end - Step * 1)
|
|
|
|
|
h[1] = _mm_crc32_u64(h[1], data[Step * 1]);
|
|
|
|
|
if (data < end - Step * 2)
|
|
|
|
|
h[2] = _mm_crc32_u64(h[2], data[Step * 2]);
|
|
|
|
|
|
|
|
|
|
if (len & 7)
|
|
|
|
|
{
|
|
|
|
|
u64 temp = 0;
|
|
|
|
|
memcpy(&temp, end, len & 7);
|
|
|
|
|
h[0] = _mm_crc32_u64(h[0], temp);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// FIXME: is there a better way to combine these partial hashes?
|
|
|
|
|
return h[0] + (h[1] << 10) + (h[2] << 21) + (h[3] << 32);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#elif defined(_M_X86)
|
|
|
|
|
|
|
|
|
|
FUNCTION_TARGET_SSE42
|
|
|
|
|
static u64 GetHash64_SSE42_CRC32(const u8* src, u32 len, u32 samples)
|
|
|
|
|
{
|
|
|
|
|
u32 h = len;
|
|
|
|
|
u32 Step = (len / 4);
|
|
|
|
|
const u32* data = (const u32*)src;
|
|
|
|
|
const u32* end = data + Step;
|
|
|
|
|
if (samples == 0)
|
|
|
|
|
samples = std::max(Step, 1u);
|
|
|
|
|
Step = Step / samples;
|
|
|
|
|
if (Step < 1)
|
|
|
|
|
Step = 1;
|
|
|
|
|
while (data < end)
|
|
|
|
|
{
|
|
|
|
|
h = _mm_crc32_u32(h, data[0]);
|
|
|
|
|
data += Step;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
const u8* data2 = (const u8*)end;
|
|
|
|
|
return (u64)_mm_crc32_u32(h, u32(data2[0]));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#elif defined(_M_ARM_64)
|
|
|
|
|
|
|
|
|
|
static u64 GetHash64_ARMv8_CRC32(const u8* src, u32 len, u32 samples)
|
|
|
|
|
{
|
|
|
|
|
u64 h[4] = {len, 0, 0, 0};
|
|
|
|
|
u32 Step = (len / 8);
|
|
|
|
|
const u64* data = (const u64*)src;
|
|
|
|
|
const u64* end = data + Step;
|
|
|
|
|
if (samples == 0)
|
|
|
|
|
samples = std::max(Step, 1u);
|
|
|
|
|
Step = Step / samples;
|
|
|
|
|
if (Step < 1)
|
|
|
|
|
Step = 1;
|
|
|
|
|
|
|
|
|
|
while (data < end - Step * 3)
|
|
|
|
|
{
|
|
|
|
|
h[0] = __crc32d(h[0], data[Step * 0]);
|
|
|
|
|
h[1] = __crc32d(h[1], data[Step * 1]);
|
|
|
|
|
h[2] = __crc32d(h[2], data[Step * 2]);
|
|
|
|
|
h[3] = __crc32d(h[3], data[Step * 3]);
|
|
|
|
|
data += Step * 4;
|
|
|
|
|
}
|
|
|
|
|
if (data < end - Step * 0)
|
|
|
|
|
h[0] = __crc32d(h[0], data[Step * 0]);
|
|
|
|
|
if (data < end - Step * 1)
|
|
|
|
|
h[1] = __crc32d(h[1], data[Step * 1]);
|
|
|
|
|
if (data < end - Step * 2)
|
|
|
|
|
h[2] = __crc32d(h[2], data[Step * 2]);
|
|
|
|
|
|
|
|
|
|
if (len & 7)
|
|
|
|
|
{
|
|
|
|
|
u64 temp = 0;
|
|
|
|
|
memcpy(&temp, end, len & 7);
|
|
|
|
|
h[0] = __crc32d(h[0], temp);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// FIXME: is there a better way to combine these partial hashes?
|
|
|
|
|
return h[0] + (h[1] << 10) + (h[2] << 21) + (h[3] << 32);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
using TextureHashFunction = u64 (*)(const u8* src, u32 len, u32 samples);
|
|
|
|
|
static u64 SetHash64Function(const u8* src, u32 len, u32 samples);
|
|
|
|
|
static TextureHashFunction s_texture_hash_func = SetHash64Function;
|
|
|
|
|
|
|
|
|
|
static u64 SetHash64Function(const u8* src, u32 len, u32 samples)
|
|
|
|
|
{
|
|
|
|
|
if (cpu_info.bCRC32)
|
|
|
|
|
{
|
|
|
|
|
#if defined(_M_X86_64) || defined(_M_X86)
|
|
|
|
|
s_texture_hash_func = &GetHash64_SSE42_CRC32;
|
|
|
|
|
#elif defined(_M_ARM_64)
|
|
|
|
|
s_texture_hash_func = &GetHash64_ARMv8_CRC32;
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
s_texture_hash_func = &GetMurmurHash3;
|
|
|
|
|
}
|
|
|
|
|
return s_texture_hash_func(src, len, samples);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
u64 GetHash64(const u8* src, u32 len, u32 samples)
|
|
|
|
|
{
|
|
|
|
|
return ptrHashFunction(src, len, samples);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// sets the hash function used for the texture cache
|
|
|
|
|
void SetHash64Function()
|
|
|
|
|
{
|
|
|
|
|
#if defined(_M_X86_64) || defined(_M_X86)
|
|
|
|
|
if (cpu_info.bSSE4_2) // sse crc32 version
|
|
|
|
|
{
|
|
|
|
|
ptrHashFunction = &GetCRC32;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
#elif defined(_M_ARM_64)
|
|
|
|
|
if (cpu_info.bCRC32)
|
|
|
|
|
{
|
|
|
|
|
ptrHashFunction = &GetCRC32;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
#endif
|
|
|
|
|
{
|
|
|
|
|
ptrHashFunction = &GetMurmurHash3;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
u32 ComputeCRC32(std::string_view data)
|
|
|
|
|
{
|
|
|
|
|
return ComputeCRC32(reinterpret_cast<const u8*>(data.data()), static_cast<u32>(data.size()));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
u32 ComputeCRC32(const u8* ptr, u32 length)
|
|
|
|
|
{
|
|
|
|
|
return UpdateCRC32(StartCRC32(), ptr, length);
|
|
|
|
|
return s_texture_hash_func(src, len, samples);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
u32 StartCRC32()
|
|
|
|
|
{
|
|
|
|
|
return crc32(0L, Z_NULL, 0);
|
|
|
|
|
return crc32_z(0L, Z_NULL, 0);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
u32 UpdateCRC32(u32 crc, const u8* ptr, u32 length)
|
|
|
|
|
u32 UpdateCRC32(u32 crc, const u8* data, size_t len)
|
|
|
|
|
{
|
|
|
|
|
static_assert(std::is_same_v<const u8*, const Bytef*>);
|
|
|
|
|
static_assert(std::is_same_v<u32, uInt>);
|
|
|
|
|
// Use zlib's crc32 implementation to compute the hash
|
|
|
|
|
// crc32_z (which takes a size_t) would be better, but it isn't available on Android
|
|
|
|
|
return crc32(crc, ptr, length);
|
|
|
|
|
return crc32_z(crc, data, len);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
u32 ComputeCRC32(const u8* data, size_t len)
|
|
|
|
|
{
|
|
|
|
|
return UpdateCRC32(StartCRC32(), data, len);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
u32 ComputeCRC32(std::string_view data)
|
|
|
|
|
{
|
|
|
|
|
return ComputeCRC32(reinterpret_cast<const u8*>(data.data()), data.size());
|
|
|
|
|
}
|
|
|
|
|
} // namespace Common
|
|
|
|
|