ARAM: rework DMA

Changes include:
  * Take into account how different size settings interact
  * Do ARAM DMA transfers in chunks rather than all-at-once
This commit is contained in:
booto 2019-01-29 02:48:31 -05:00
parent 73c0a4ee81
commit 70299f2505
1 changed files with 138 additions and 111 deletions

View File

@ -24,6 +24,7 @@
#include "Core/HW/DSP.h"
#include <algorithm>
#include <memory>
#include "AudioCommon/AudioCommon.h"
@ -119,12 +120,22 @@ union ARAM_Info
u16 Hex = 0;
struct
{
u16 size : 6;
u16 base_size : 3;
u16 expansion_size : 3;
u16 unk : 1;
u16 : 9;
};
};
enum
{
ARAM_SIZE_02MB = 0b000,
ARAM_SIZE_04MB = 0b001,
ARAM_SIZE_08MB = 0b010,
ARAM_SIZE_16MB = 0b011,
ARAM_SIZE_32MB = 0b100,
};
// STATE_TO_SAVE
static ARAMInfo s_ARAM;
static AudioDMA s_audioDMA;
@ -165,12 +176,19 @@ static void Do_ARAM_DMA();
static void GenerateDSPInterrupt(u64 DSPIntType, s64 cyclesLate = 0);
static CoreTiming::EventType* s_et_GenerateDSPInterrupt;
static CoreTiming::EventType* s_et_CompleteARAM;
static CoreTiming::EventType* s_et_ContinueARAM;
static void CompleteARAM(u64 userdata, s64 cyclesLate)
static void ContinueARAM(u64 userdata, s64 cyclesLate)
{
if (s_arDMA.Cnt.count == 0)
{
s_dspState.DMAState = 0;
GenerateDSPInterrupt(INT_ARAM);
}
else
{
Do_ARAM_DMA();
}
}
DSPEmulator* GetDSPEmulator()
@ -182,7 +200,7 @@ void Init(bool hle)
{
Reinit(hle);
s_et_GenerateDSPInterrupt = CoreTiming::RegisterEvent("DSPint", GenerateDSPInterrupt);
s_et_CompleteARAM = CoreTiming::RegisterEvent("ARAMint", CompleteARAM);
s_et_ContinueARAM = CoreTiming::RegisterEvent("ARAMint", ContinueARAM);
}
void Reinit(bool hle)
@ -472,116 +490,125 @@ void UpdateAudioDMA()
}
}
static void Do_ARAM_DMA()
/* Depending on the size ARAM is configured as, the mapping to the underlying physical ARAM can
* change. These mappings have been confirmed on hardware.*/
static std::optional<u32> ARAM_02MB_to_16MB(u32 address)
{
s_dspState.DMAState = 1;
// ARAM DMA transfer rate has been measured on real hw
int ticksToTransfer = (s_arDMA.Cnt.count / 32) * 246;
CoreTiming::ScheduleEvent(ticksToTransfer, s_et_CompleteARAM);
// Real hardware DMAs in 32byte chunks, but we can get by with 8byte chunks
if (s_arDMA.Cnt.dir)
address &= 0x3ffffe0;
if (address >= 2 * 1024 * 1024)
{
// ARAM -> MRAM
DEBUG_LOG(DSPINTERFACE, "DMA %08x bytes from ARAM %08x to MRAM %08x PC: %08x",
s_arDMA.Cnt.count, s_arDMA.ARAddr, s_arDMA.MMAddr, PC);
// Outgoing data from ARAM is mirrored every 64MB (verified on real HW)
s_arDMA.ARAddr &= 0x3ffffff;
s_arDMA.MMAddr &= 0x3ffffff;
if (s_arDMA.ARAddr < s_ARAM.size)
{
while (s_arDMA.Cnt.count)
{
// These are logically separated in code to show that a memory map has been set up
// See below in the write section for more information
if ((s_ARAM_Info.Hex & 0xf) == 3)
{
Memory::Write_U64_Swap(*(u64*)&s_ARAM.ptr[s_arDMA.ARAddr & s_ARAM.mask], s_arDMA.MMAddr);
}
else if ((s_ARAM_Info.Hex & 0xf) == 4)
{
Memory::Write_U64_Swap(*(u64*)&s_ARAM.ptr[s_arDMA.ARAddr & s_ARAM.mask], s_arDMA.MMAddr);
}
else
{
Memory::Write_U64_Swap(*(u64*)&s_ARAM.ptr[s_arDMA.ARAddr & s_ARAM.mask], s_arDMA.MMAddr);
}
s_arDMA.MMAddr += 8;
s_arDMA.ARAddr += 8;
s_arDMA.Cnt.count -= 8;
}
}
else
{
// Assuming no external ARAM installed; returns zeros on out of bounds reads (verified on real
// HW)
while (s_arDMA.Cnt.count)
{
Memory::Write_U64(0, s_arDMA.MMAddr);
s_arDMA.MMAddr += 8;
s_arDMA.ARAddr += 8;
s_arDMA.Cnt.count -= 8;
}
}
}
else
{
// MRAM -> ARAM
DEBUG_LOG(DSPINTERFACE, "DMA %08x bytes from MRAM %08x to ARAM %08x PC: %08x",
s_arDMA.Cnt.count, s_arDMA.MMAddr, s_arDMA.ARAddr, PC);
// Incoming data into ARAM is mirrored every 64MB (verified on real HW)
s_arDMA.ARAddr &= 0x3ffffff;
s_arDMA.MMAddr &= 0x3ffffff;
if (s_arDMA.ARAddr < s_ARAM.size)
{
while (s_arDMA.Cnt.count)
{
if ((s_ARAM_Info.Hex & 0xf) == 3)
{
*(u64*)&s_ARAM.ptr[s_arDMA.ARAddr & s_ARAM.mask] =
Common::swap64(Memory::Read_U64(s_arDMA.MMAddr));
}
else if ((s_ARAM_Info.Hex & 0xf) == 4)
{
if (s_arDMA.ARAddr < 0x400000)
{
*(u64*)&s_ARAM.ptr[(s_arDMA.ARAddr + 0x400000) & s_ARAM.mask] =
Common::swap64(Memory::Read_U64(s_arDMA.MMAddr));
}
*(u64*)&s_ARAM.ptr[s_arDMA.ARAddr & s_ARAM.mask] =
Common::swap64(Memory::Read_U64(s_arDMA.MMAddr));
}
else
{
*(u64*)&s_ARAM.ptr[s_arDMA.ARAddr & s_ARAM.mask] =
Common::swap64(Memory::Read_U64(s_arDMA.MMAddr));
}
s_arDMA.MMAddr += 8;
s_arDMA.ARAddr += 8;
s_arDMA.Cnt.count -= 8;
}
}
else
{
// Assuming no external ARAM installed; writes nothing to ARAM when out of bounds (verified on
// real HW)
s_arDMA.MMAddr += s_arDMA.Cnt.count;
s_arDMA.ARAddr += s_arDMA.Cnt.count;
s_arDMA.Cnt.count = 0;
}
return std::nullopt;
}
return ((address & 0xfffffe00) << 1) | (address & 0x1ff);
}
static std::optional<u32> ARAM_04MB_to_16MB(u32 address)
{
address &= 0x3ffffe0;
if (address >= 4 * 1024 * 1024)
{
return std::nullopt;
}
return ((address & 0xfffffe00) << 1) | (address & 0x1ff);
}
static std::optional<u32> ARAM_08MB_to_16MB(u32 address)
{
address &= 0x3ffffe0;
if (address >= 8 * 1024 * 1024)
{
return std::nullopt;
}
return ((address & 0xfffffe00) << 1) | (address & 0x1ff);
}
static std::optional<u32> ARAM_16MB_to_16MB(u32 address)
{
address &= 0x3ffffe0;
if (address >= 16 * 1024 * 1024)
{
return std::nullopt;
}
return address;
}
static std::optional<u32> ARAM_32MB_to_16MB(u32 address)
{
address &= 0x3ffffe0;
if (address >= 32 * 1024 * 1024)
{
return std::nullopt;
}
return (address & 0xff800000) >> 1 | (address & 0x003fffff);
}
using ARAM_ADDRESS_CONVERSION_F = std::optional<u32> (*)(u32 address);
constexpr ARAM_ADDRESS_CONVERSION_F conversion_functions[8] = {
ARAM_02MB_to_16MB, ARAM_04MB_to_16MB, ARAM_08MB_to_16MB, ARAM_16MB_to_16MB,
ARAM_32MB_to_16MB, ARAM_32MB_to_16MB, ARAM_32MB_to_16MB, ARAM_32MB_to_16MB,
};
enum
{
ARAM_DMA_DIR_TO_ARAM = 0,
ARAM_DMA_DIR_FROM_ARAM = 1,
};
/* Size of the smallest unit of transfer to/from ARAM via DMA. */
constexpr u32 ARAM_LINE_SIZE = 0x20;
/* Maximum number of lines to transfer at a time via DMA. */
constexpr u32 ARAM_MAX_TRANSFER_CHUNKING = 0x10;
/* The number of clock ticks for each line to be transferred. */
constexpr u32 TICKS_TO_TRANSFER_LINE = 246;
static void Do_ARAM_DMA()
{
constexpr std::array<const char*, 2> aram_transfer_direction = {"to", "from"};
s_dspState.DMAState = 1;
// ARAM is mirrored every 64MB (verified on real HW) - done in address conversion func
// Source/destination/count aligned to 32 bytes - done in MMIO handler
u32 lines_to_transfer = std::min(s_arDMA.Cnt.count / ARAM_LINE_SIZE, ARAM_MAX_TRANSFER_CHUNKING);
u32 ticksToTransfer = lines_to_transfer * TICKS_TO_TRANSFER_LINE;
CoreTiming::ScheduleEvent(ticksToTransfer, s_et_ContinueARAM);
DEBUG_LOG(DSPINTERFACE, "DMA %08x bytes %s ARAM %08x %s MRAM %08x PC: %08x", s_arDMA.Cnt.count,
aram_transfer_direction[s_arDMA.Cnt.dir], s_arDMA.ARAddr,
aram_transfer_direction[1 - s_arDMA.Cnt.dir], s_arDMA.MMAddr, PC);
const ARAM_ADDRESS_CONVERSION_F convert_address = conversion_functions[s_ARAM_Info.base_size];
for (u32 n = 0; n < lines_to_transfer; ++n)
{
std::optional<u32> physical_aram_addr = convert_address(s_arDMA.ARAddr);
if (physical_aram_addr)
{
const u8* source = &s_ARAM.ptr[*physical_aram_addr];
u8* dest = Memory::GetPointer(s_arDMA.MMAddr);
if (s_arDMA.Cnt.dir == ARAM_DMA_DIR_TO_ARAM)
{
source = dest;
dest = &s_ARAM.ptr[*physical_aram_addr];
}
std::copy_n(source, ARAM_LINE_SIZE, dest);
}
else
{
// ARAM returns zeros on out of bounds reads (verified on real HW)
// ARAM writes nothing on out of bounds writes (verified on real HW)
if (s_arDMA.Cnt.dir == ARAM_DMA_DIR_FROM_ARAM)
{
std::fill_n(Memory::GetPointer(s_arDMA.MMAddr), ARAM_LINE_SIZE, 0);
}
}
s_arDMA.MMAddr += ARAM_LINE_SIZE;
s_arDMA.ARAddr += ARAM_LINE_SIZE;
}
s_arDMA.Cnt.count -= ARAM_LINE_SIZE * lines_to_transfer;
}
// (shuffle2) I still don't believe that this hack is actually needed... :(
// Maybe the Wii Sports ucode is processed incorrectly?
// (LM) It just means that DSP reads via '0xffdd' on Wii can end up in EXRAM or main RAM
u8 ReadARAM(u32 address)
{
if (s_ARAM.wii_mode)