Merge pull request #10876 from shuffle2/cpudetect

CPUDetect: improve win/arm64 support
This commit is contained in:
Admiral H. Curtiss 2022-07-26 12:52:50 +02:00 committed by GitHub
commit 6b419c7ca3
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
9 changed files with 422 additions and 229 deletions

View File

@ -9,45 +9,209 @@
#include <string> #include <string>
#include <thread> #include <thread>
#if !defined(_WIN32) && !defined(__APPLE__) #ifdef __APPLE__
#include <sys/sysctl.h>
#elif defined(_WIN32)
#include <Windows.h>
#include <arm64intr.h>
#else
#ifndef __FreeBSD__ #ifndef __FreeBSD__
#include <asm/hwcap.h> #include <asm/hwcap.h>
#endif #endif
#include <sys/auxv.h> #include <sys/auxv.h>
#include <unistd.h>
#endif #endif
#include <fmt/format.h> #include <fmt/format.h>
#include "Common/CommonTypes.h" #include "Common/CommonTypes.h"
#include "Common/FileUtil.h" #include "Common/FileUtil.h"
#include "Common/StringUtil.h"
#ifndef WIN32 #if defined(__APPLE__) || defined(__FreeBSD__)
const char procfile[] = "/proc/cpuinfo"; static bool SysctlByName(std::string* value, const std::string& name)
static std::string GetCPUString()
{ {
const std::string marker = "Hardware\t: "; size_t value_len = 0;
std::string cpu_string = "Unknown"; if (sysctlbyname(name.c_str(), nullptr, &value_len, nullptr, 0))
return false;
value->resize(value_len);
if (sysctlbyname(name.c_str(), value->data(), &value_len, nullptr, 0))
return false;
TruncateToCString(value);
return true;
}
#endif
#if defined(_WIN32)
static constexpr char SUBKEY_CORE0[] = R"(HARDWARE\DESCRIPTION\System\CentralProcessor\0)";
// Identifier: human-readable version of CPUID
// ProcessorNameString: marketing name of the processor
// VendorIdentifier: vendor company name
// There are some other maybe-interesting values nearby, BIOS info etc.
static bool ReadProcessorString(std::string* value, const std::string& name)
{
const DWORD flags = RRF_RT_REG_SZ | RRF_NOEXPAND;
DWORD value_len = 0;
auto status = RegGetValueA(HKEY_LOCAL_MACHINE, SUBKEY_CORE0, name.c_str(), flags, nullptr,
nullptr, &value_len);
if (status != ERROR_SUCCESS && status != ERROR_MORE_DATA)
return false;
value->resize(value_len);
status = RegGetValueA(HKEY_LOCAL_MACHINE, SUBKEY_CORE0, name.c_str(), flags, nullptr,
value->data(), &value_len);
if (status != ERROR_SUCCESS)
{
value->clear();
return false;
}
TruncateToCString(value);
return true;
}
// Read cached register values from the registry
static bool ReadPrivilegedCPReg(u64* value, u32 reg)
{
DWORD value_len = sizeof(*value);
// Not sure if the value name is padded or not
return RegGetValueA(HKEY_LOCAL_MACHINE, SUBKEY_CORE0, fmt::format("CP {:x}", reg).c_str(),
RRF_RT_REG_QWORD, nullptr, value, &value_len) == ERROR_SUCCESS;
}
static bool Read_MIDR_EL1(u64* value)
{
return ReadPrivilegedCPReg(value, ARM64_SYSREG(0b11, 0, 0, 0b0000, 0));
}
static bool Read_ID_AA64ISAR0_EL1(u64* value)
{
return ReadPrivilegedCPReg(value, ARM64_SYSREG(0b11, 0, 0, 0b0110, 0));
}
static bool Read_ID_AA64MMFR1_EL1(u64* value)
{
return ReadPrivilegedCPReg(value, ARM64_SYSREG(0b11, 0, 0, 0b0111, 1));
}
#endif
#if defined(__linux__)
static bool ReadDeviceTree(std::string* value, const std::string& name)
{
const std::string path = std::string("/proc/device-tree/") + name;
std::ifstream file;
File::OpenFStream(file, path.c_str(), std::ios_base::in);
if (!file)
return false;
file >> *value;
return true;
}
static std::string ReadCpuinfoField(const std::string& field)
{
std::string line; std::string line;
std::ifstream file; std::ifstream file;
File::OpenFStream(file, procfile, std::ios_base::in); File::OpenFStream(file, "/proc/cpuinfo", std::ios_base::in);
if (!file) if (!file)
return cpu_string; return {};
while (std::getline(file, line)) while (std::getline(file, line))
{ {
if (line.find(marker) != std::string::npos) if (!StringBeginsWith(line, field))
{ continue;
cpu_string = line.substr(marker.length()); auto non_tab = line.find_first_not_of("\t", field.length());
break; if (non_tab == line.npos)
} continue;
if (line[non_tab] != ':')
continue;
auto value_start = line.find_first_not_of(" ", non_tab + 1);
if (value_start == line.npos)
continue;
return line.substr(value_start);
} }
return {};
}
return cpu_string; static bool Read_MIDR_EL1_Sysfs(u64* value)
{
std::ifstream file;
File::OpenFStream(file, "/sys/devices/system/cpu/cpu0/regs/identification/midr_el1",
std::ios_base::in);
if (!file)
return false;
file >> std::hex >> *value;
return true;
}
#endif
#if defined(__linux__) || defined(__FreeBSD__)
static u32 ReadHwCap(u32 type)
{
#if defined(__linux__)
return getauxval(type);
#elif defined(__FreeBSD__)
u_long hwcap = 0;
elf_aux_info(type, &hwcap, sizeof(hwcap));
return hwcap;
#endif
}
// For "Direct" reads, value gets filled via emulation, hence:
// "there is no guarantee that the value reflects the processor that it is currently executing on"
// On big.LITTLE systems, the value may be unrelated to the core this is invoked on, and unless
// other measures are taken, executing the instruction may cause the caller to be switched onto a
// different core when it resumes (and of course, caller could be preempted at any other time as
// well).
static inline u64 Read_MIDR_EL1_Direct()
{
u64 value;
__asm__ __volatile__("mrs %0, MIDR_EL1" : "=r"(value));
return value;
}
static bool Read_MIDR_EL1(u64* value)
{
#ifdef __linux__
if (Read_MIDR_EL1_Sysfs(value))
return true;
#endif
bool id_reg_user_access = ReadHwCap(AT_HWCAP) & HWCAP_CPUID;
#ifdef __FreeBSD__
// FreeBSD kernel has support but doesn't seem to indicate it?
// see user_mrs_handler
id_reg_user_access = true;
#endif
if (!id_reg_user_access)
return false;
*value = Read_MIDR_EL1_Direct();
return true;
}
#endif
#ifndef __APPLE__
static std::string MIDRToString(u64 midr)
{
u8 implementer = (midr >> 24) & 0xff;
u8 variant = (midr >> 20) & 0xf;
u8 arch = (midr >> 16) & 0xf;
u16 part_num = (midr >> 4) & 0xfff;
u8 revision = midr & 0xf;
return fmt::format("{:02X}:{:X}:{:04b}:{:03X}:{:X}", implementer, variant, arch, part_num,
revision);
} }
#endif #endif
@ -59,82 +223,100 @@ CPUInfo::CPUInfo()
Detect(); Detect();
} }
// Detects the various CPU features
void CPUInfo::Detect() void CPUInfo::Detect()
{ {
// Set some defaults here
HTT = false;
OS64bit = true;
CPU64bit = true;
Mode64bit = true;
vendor = CPUVendor::ARM; vendor = CPUVendor::ARM;
bFMA = true; bFMA = true;
bFlushToZero = true; bFlushToZero = true;
bAFP = false;
num_cores = std::max(static_cast<int>(std::thread::hardware_concurrency()), 1);
#ifdef __APPLE__ #ifdef __APPLE__
num_cores = std::thread::hardware_concurrency(); SysctlByName(&model_name, "machdep.cpu.brand_string");
// M-series CPUs have all of these // M-series CPUs have all of these
bFP = true; // Apparently the world has accepted that these can be assumed supported "for all time".
bASIMD = true; // see https://github.com/golang/go/issues/42747
bAES = true; bAES = true;
bSHA1 = true; bSHA1 = true;
bSHA2 = true; bSHA2 = true;
bCRC32 = true; bCRC32 = true;
#elif defined(_WIN32) #elif defined(_WIN32)
num_cores = std::thread::hardware_concurrency(); // NOTE All this info is from cpu core 0 only.
// Windows does not provide any mechanism for querying the system registers on ARMv8, unlike Linux ReadProcessorString(&model_name, "ProcessorNameString");
// which traps the register reads and emulates them in the kernel. There are environment variables
// containing some of the CPU-specific values, which we could use for a lookup table in the
// future. For now, assume all features are present as all known devices which are Windows-on-ARM
// compatible also support these extensions.
bFP = true;
bASIMD = true;
bAES = true;
bCRC32 = true;
bSHA1 = true;
bSHA2 = true;
#else
// Get the information about the CPU
num_cores = sysconf(_SC_NPROCESSORS_CONF);
strncpy(cpu_string, GetCPUString().c_str(), sizeof(cpu_string));
#ifdef __FreeBSD__ u64 reg = 0;
u_long hwcaps = 0; // Attempt to be forward-compatible: perform inverted check against disabled feature states.
elf_aux_info(AT_HWCAP, &hwcaps, sizeof(u_long)); if (Read_ID_AA64ISAR0_EL1(&reg))
{
bAES = ((reg >> 4) & 0xf) != 0;
bSHA1 = ((reg >> 8) & 0xf) != 0;
bSHA2 = ((reg >> 12) & 0xf) != 0;
bCRC32 = ((reg >> 16) & 0xf) != 0;
}
if (Read_ID_AA64MMFR1_EL1(&reg))
{
// Introduced in Armv8.7, where AFP must be supported if AdvSIMD and FP both are.
bAFP = ((reg >> 44) & 0xf) != 0;
}
// Pre-decoded MIDR_EL1 could be read with ReadProcessorString(.., "Identifier"),
// but we want format to match across all platforms where possible.
if (Read_MIDR_EL1(&reg))
{
cpu_id = MIDRToString(reg);
}
#else #else
unsigned long hwcaps = getauxval(AT_HWCAP); // Linux, Android, and FreeBSD
#if defined(__FreeBSD__)
SysctlByName(&model_name, "hw.model");
#elif defined(__linux__)
if (!ReadDeviceTree(&model_name, "model"))
{
// This doesn't seem to work on modern arm64 kernels
model_name = ReadCpuinfoField("Hardware");
}
#endif #endif
bFP = hwcaps & HWCAP_FP;
bASIMD = hwcaps & HWCAP_ASIMD; const u32 hwcap = ReadHwCap(AT_HWCAP);
bAES = hwcaps & HWCAP_AES; bAES = hwcap & HWCAP_AES;
bCRC32 = hwcaps & HWCAP_CRC32; bCRC32 = hwcap & HWCAP_CRC32;
bSHA1 = hwcaps & HWCAP_SHA1; bSHA1 = hwcap & HWCAP_SHA1;
bSHA2 = hwcaps & HWCAP_SHA2; bSHA2 = hwcap & HWCAP_SHA2;
#if defined(AT_HWCAP2) && defined(HWCAP2_AFP)
const u32 hwcap2 = ReadHwCap(AT_HWCAP2);
bAFP = hwcap2 & HWCAP2_AFP;
#endif #endif
u64 midr = 0;
if (Read_MIDR_EL1(&midr))
{
cpu_id = MIDRToString(midr);
}
#endif
model_name = ReplaceAll(model_name, ",", "_");
cpu_id = ReplaceAll(cpu_id, ",", "_");
} }
// Turn the CPU info into a string we can show
std::string CPUInfo::Summarize() std::string CPUInfo::Summarize()
{ {
std::string sum; std::vector<std::string> sum;
if (num_cores == 1) sum.push_back(model_name);
sum = fmt::format("{}, 1 core", cpu_string); sum.push_back(cpu_id);
else
sum = fmt::format("{}, {} cores", cpu_string, num_cores);
if (bAFP)
sum.push_back("AFP");
if (bAES) if (bAES)
sum += ", AES"; sum.push_back("AES");
if (bCRC32) if (bCRC32)
sum += ", CRC32"; sum.push_back("CRC32");
if (bSHA1) if (bSHA1)
sum += ", SHA1"; sum.push_back("SHA1");
if (bSHA2) if (bSHA2)
sum += ", SHA2"; sum.push_back("SHA2");
if (CPU64bit)
sum += ", 64-bit";
return sum; return JoinStrings(sum, ",");
} }

View File

@ -16,62 +16,52 @@ enum class CPUVendor
struct CPUInfo struct CPUInfo
{ {
CPUVendor vendor = CPUVendor::Intel; CPUVendor vendor = CPUVendor::Other;
char cpu_string[0x41] = {}; std::string cpu_id;
char brand_string[0x21] = {}; std::string model_name;
bool OS64bit = false;
bool CPU64bit = false;
bool Mode64bit = false;
bool HTT = false; bool HTT = false;
int num_cores = 0; int num_cores = 0;
bool bSSE = false;
bool bSSE2 = false;
bool bSSE3 = false; bool bSSE3 = false;
bool bSSSE3 = false; bool bSSSE3 = false;
bool bPOPCNT = false;
bool bSSE4_1 = false; bool bSSE4_1 = false;
bool bSSE4_2 = false; bool bSSE4_2 = false;
bool bLZCNT = false; bool bLZCNT = false;
bool bSSE4A = false;
bool bAVX = false; bool bAVX = false;
bool bAVX2 = false;
bool bBMI1 = false; bool bBMI1 = false;
bool bBMI2 = false; bool bBMI2 = false;
// PDEP and PEXT are ridiculously slow on AMD Zen1, Zen1+ and Zen2 (Family 23) // PDEP and PEXT are ridiculously slow on AMD Zen1, Zen1+ and Zen2 (Family 17h)
bool bFastBMI2 = false; bool bBMI2FastParallelBitOps = false;
bool bFMA = false; bool bFMA = false;
bool bFMA4 = false; bool bFMA4 = false;
bool bAES = false; bool bAES = false;
// FXSAVE/FXRSTOR
bool bFXSR = false;
bool bMOVBE = false; bool bMOVBE = false;
// This flag indicates that the hardware supports some mode // This flag indicates that the hardware supports some mode
// in which denormal inputs _and_ outputs are automatically set to (signed) zero. // in which denormal inputs _and_ outputs are automatically set to (signed) zero.
bool bFlushToZero = false; bool bFlushToZero = false;
bool bLAHFSAHF64 = false;
bool bLongMode = false;
bool bAtom = false; bool bAtom = false;
bool bZen1p2 = false;
// ARMv8 specific
bool bFP = false;
bool bASIMD = false;
bool bCRC32 = false; bool bCRC32 = false;
bool bSHA1 = false; bool bSHA1 = false;
bool bSHA2 = false; bool bSHA2 = false;
// ARMv8 specific
bool bAFP = false; // Alternate floating-point behavior bool bAFP = false; // Alternate floating-point behavior
// Call Detect() // Call Detect()
explicit CPUInfo(); explicit CPUInfo();
// Turn the CPU info into a string we can show // The returned string consists of "<model_name>,<cpu_id>,<flag...>"
// Where:
// model_name and cpud_id may be zero-length
// model_name is human-readable marketing name
// cpu_id is ':'-delimited string of id info
// flags are optionally included if the related feature is supported and reporting its enablement
// seems useful to report
std::string Summarize(); std::string Summarize();
private: private:
// Detects the various CPU features
void Detect(); void Detect();
}; };

View File

@ -259,6 +259,13 @@ void ReplaceBreaksWithSpaces(std::string& str)
std::replace(str.begin(), str.end(), '\n', ' '); std::replace(str.begin(), str.end(), '\n', ' ');
} }
void TruncateToCString(std::string* s)
{
const size_t terminator = s->find_first_of('\0');
if (terminator != s->npos)
s->resize(terminator);
}
bool TryParse(const std::string& str, bool* const output) bool TryParse(const std::string& str, bool* const output)
{ {
float value; float value;

View File

@ -54,6 +54,8 @@ std::string ReplaceAll(std::string result, std::string_view src, std::string_vie
void ReplaceBreaksWithSpaces(std::string& str); void ReplaceBreaksWithSpaces(std::string& str);
void TruncateToCString(std::string* s);
bool TryParse(const std::string& str, bool* output); bool TryParse(const std::string& str, bool* output);
template <typename T, std::enable_if_t<std::is_integral_v<T> || std::is_enum_v<T>>* = nullptr> template <typename T, std::enable_if_t<std::is_integral_v<T> || std::is_enum_v<T>>* = nullptr>

View File

@ -11,9 +11,12 @@
#include <string> #include <string>
#include <thread> #include <thread>
#include <fmt/format.h>
#include "Common/CommonTypes.h" #include "Common/CommonTypes.h"
#include "Common/Intrinsics.h" #include "Common/Intrinsics.h"
#include "Common/MsgHandler.h" #include "Common/MsgHandler.h"
#include "Common/StringUtil.h"
#ifndef _WIN32 #ifndef _WIN32
@ -38,20 +41,23 @@ static inline void __cpuidex(int info[4], int function_id, int subfunction_id)
#endif #endif
} }
static inline void __cpuid(int info[4], int function_id) constexpr u32 XCR_XFEATURE_ENABLED_MASK = 0;
static u64 xgetbv(u32 index)
{ {
return __cpuidex(info, function_id, 0); u32 eax, edx;
__asm__ __volatile__("xgetbv" : "=a"(eax), "=d"(edx) : "c"(index));
return ((u64)edx << 32) | eax;
} }
#endif // ifndef _WIN32 #else
#ifdef _WIN32 constexpr u32 XCR_XFEATURE_ENABLED_MASK = _XCR_XFEATURE_ENABLED_MASK;
static u64 xgetbv(u32 index) static u64 xgetbv(u32 index)
{ {
return _xgetbv(index); return _xgetbv(index);
} }
constexpr u32 XCR_XFEATURE_ENABLED_MASK = _XCR_XFEATURE_ENABLED_MASK;
static void WarnIfRunningUnderEmulation() static void WarnIfRunningUnderEmulation()
{ {
@ -76,17 +82,21 @@ static void WarnIfRunningUnderEmulation()
"Please run the ARM64 build of Dolphin for a better experience."); "Please run the ARM64 build of Dolphin for a better experience.");
} }
#else
static u64 xgetbv(u32 index)
{
u32 eax, edx;
__asm__ __volatile__("xgetbv" : "=a"(eax), "=d"(edx) : "c"(index));
return ((u64)edx << 32) | eax;
}
constexpr u32 XCR_XFEATURE_ENABLED_MASK = 0;
#endif // ifdef _WIN32 #endif // ifdef _WIN32
struct CPUIDResult
{
u32 eax{}, ebx{}, ecx{}, edx{};
};
static_assert(sizeof(CPUIDResult) == sizeof(u32) * 4);
static inline CPUIDResult cpuid(int function_id, int subfunction_id = 0)
{
CPUIDResult info;
__cpuidex((int*)&info, function_id, subfunction_id);
return info;
}
CPUInfo cpu_info; CPUInfo cpu_info;
CPUInfo::CPUInfo() CPUInfo::CPUInfo()
@ -94,196 +104,174 @@ CPUInfo::CPUInfo()
Detect(); Detect();
} }
// Detects the various CPU features
void CPUInfo::Detect() void CPUInfo::Detect()
{ {
#ifdef _WIN32 #ifdef _WIN32
WarnIfRunningUnderEmulation(); WarnIfRunningUnderEmulation();
#endif #endif
#ifdef _M_X86_64 // This should be much more reliable and easier than trying to get the number of cores out of the
Mode64bit = true; // CPUID data ourselves.
OS64bit = true; num_cores = std::max(static_cast<int>(std::thread::hardware_concurrency()), 1);
#endif
num_cores = 1;
// Set obvious defaults, for extra safety
if (Mode64bit)
{
bSSE = true;
bSSE2 = true;
bLongMode = true;
}
// Assume CPU supports the CPUID instruction. Those that don't can barely // Assume CPU supports the CPUID instruction. Those that don't can barely
// boot modern OS:es anyway. // boot modern OS anyway.
int cpu_id[4];
// Detect CPU's CPUID capabilities, and grab CPU string // Detect CPU's CPUID capabilities and grab vendor string.
__cpuid(cpu_id, 0x00000000); auto info = cpuid(0);
u32 max_std_fn = cpu_id[0]; // EAX const u32 func_id_max = info.eax;
std::memcpy(&brand_string[0], &cpu_id[1], sizeof(int));
std::memcpy(&brand_string[4], &cpu_id[3], sizeof(int)); std::string vendor_id;
std::memcpy(&brand_string[8], &cpu_id[2], sizeof(int)); vendor_id.resize(sizeof(u32) * 3);
__cpuid(cpu_id, 0x80000000); std::memcpy(&vendor_id[0], &info.ebx, sizeof(u32));
u32 max_ex_fn = cpu_id[0]; std::memcpy(&vendor_id[4], &info.edx, sizeof(u32));
if (!strcmp(brand_string, "GenuineIntel")) std::memcpy(&vendor_id[8], &info.ecx, sizeof(u32));
TruncateToCString(&vendor_id);
if (vendor_id == "GenuineIntel")
vendor = CPUVendor::Intel; vendor = CPUVendor::Intel;
else if (!strcmp(brand_string, "AuthenticAMD")) else if (vendor_id == "AuthenticAMD")
vendor = CPUVendor::AMD; vendor = CPUVendor::AMD;
else else
vendor = CPUVendor::Other; vendor = CPUVendor::Other;
// Set reasonable default brand string even if brand string not available.
strcpy(cpu_string, brand_string);
// Detect family and other misc stuff. // Detect family and other misc stuff.
bool ht = false; bool is_amd_family_17 = false;
HTT = ht; bool has_sse = false;
if (max_std_fn >= 1) if (func_id_max >= 1)
{ {
__cpuid(cpu_id, 0x00000001); info = cpuid(1);
int family = ((cpu_id[0] >> 8) & 0xf) + ((cpu_id[0] >> 20) & 0xff); const u32 version = info.eax;
int model = ((cpu_id[0] >> 4) & 0xf) + ((cpu_id[0] >> 12) & 0xf0); const u32 family = ((version >> 8) & 0xf) + ((version >> 20) & 0xff);
const u32 model = ((version >> 4) & 0xf) + ((version >> 12) & 0xf0);
const u32 stepping = version & 0xf;
cpu_id = fmt::format("{:02X}:{:02X}:{:X}", family, model, stepping);
// Detect people unfortunate enough to be running Dolphin on an Atom // Detect people unfortunate enough to be running Dolphin on an Atom
if (family == 6 && if (vendor == CPUVendor::Intel && family == 6 &&
(model == 0x1C || model == 0x26 || model == 0x27 || model == 0x35 || model == 0x36 || (model == 0x1C || model == 0x26 || model == 0x27 || model == 0x35 || model == 0x36 ||
model == 0x37 || model == 0x4A || model == 0x4D || model == 0x5A || model == 0x5D)) model == 0x37 || model == 0x4A || model == 0x4D || model == 0x5A || model == 0x5D))
bAtom = true; bAtom = true;
// Detect AMD Zen1, Zen1+ and Zen2 // Detect AMD Zen1, Zen1+ and Zen2
if (family == 23) if (vendor == CPUVendor::AMD && family == 0x17)
bZen1p2 = true; is_amd_family_17 = true;
ht = (cpu_id[3] >> 28) & 1;
// AMD CPUs before Zen faked this flag and didn't actually // AMD CPUs before Zen faked this flag and didn't actually
// implement simultaneous multithreading (SMT; Intel calls it HTT) // implement simultaneous multithreading (SMT; Intel calls it HTT)
// but rather some weird middle-ground between 1-2 cores // but rather some weird middle-ground between 1-2 cores
HTT = ht && (vendor == CPUVendor::Intel || family >= 23); const bool ht = (info.edx >> 28) & 1;
HTT = ht && (vendor == CPUVendor::Intel || (vendor == CPUVendor::AMD && family >= 0x17));
if ((cpu_id[3] >> 25) & 1) if ((info.edx >> 25) & 1)
bSSE = true; has_sse = true;
if ((cpu_id[3] >> 26) & 1) if (info.ecx & 1)
bSSE2 = true;
if ((cpu_id[2]) & 1)
bSSE3 = true; bSSE3 = true;
if ((cpu_id[2] >> 9) & 1) if ((info.ecx >> 9) & 1)
bSSSE3 = true; bSSSE3 = true;
if ((cpu_id[2] >> 19) & 1) if ((info.ecx >> 19) & 1)
bSSE4_1 = true; bSSE4_1 = true;
if ((cpu_id[2] >> 20) & 1) if ((info.ecx >> 20) & 1)
bSSE4_2 = true; bSSE4_2 = true;
if ((cpu_id[2] >> 22) & 1) if ((info.ecx >> 22) & 1)
bMOVBE = true; bMOVBE = true;
if ((cpu_id[2] >> 25) & 1) if ((info.ecx >> 25) & 1)
bAES = true; bAES = true;
if ((cpu_id[3] >> 24) & 1)
{
// We can use FXSAVE.
bFXSR = true;
}
// AVX support requires 3 separate checks: // AVX support requires 3 separate checks:
// - Is the AVX bit set in CPUID? // - Is the AVX bit set in CPUID?
// - Is the XSAVE bit set in CPUID? // - Is the XSAVE bit set in CPUID?
// - XGETBV result has the XCR bit set. // - XGETBV result has the XCR bit set.
if (((cpu_id[2] >> 28) & 1) && ((cpu_id[2] >> 27) & 1)) if (((info.ecx >> 28) & 1) && ((info.ecx >> 27) & 1))
{ {
if ((xgetbv(XCR_XFEATURE_ENABLED_MASK) & 0x6) == 0x6) // Check that XSAVE can be used for SSE and AVX
if ((xgetbv(XCR_XFEATURE_ENABLED_MASK) & 0b110) == 0b110)
{ {
bAVX = true; bAVX = true;
if ((cpu_id[2] >> 12) & 1) if ((info.ecx >> 12) & 1)
bFMA = true; bFMA = true;
} }
} }
if (max_std_fn >= 7) if (func_id_max >= 7)
{ {
__cpuidex(cpu_id, 0x00000007, 0x00000000); info = cpuid(7);
// careful; we can't enable AVX2 unless the XSAVE/XGETBV checks above passed if ((info.ebx >> 3) & 1)
if ((cpu_id[1] >> 5) & 1)
bAVX2 = bAVX;
if ((cpu_id[1] >> 3) & 1)
bBMI1 = true; bBMI1 = true;
if ((cpu_id[1] >> 8) & 1) if ((info.ebx >> 8) & 1)
bBMI2 = true; bBMI2 = true;
if ((info.ebx >> 29) & 1)
bSHA1 = bSHA2 = true;
} }
} }
bFlushToZero = bSSE; info = cpuid(0x80000000);
bFastBMI2 = bBMI2 && !bZen1p2; const u32 ext_func_id_max = info.eax;
if (ext_func_id_max >= 0x80000004)
if (max_ex_fn >= 0x80000004)
{ {
// Extract CPU model string // Extract CPU model string
__cpuid(cpu_id, 0x80000002); model_name.resize(sizeof(info) * 3);
memcpy(cpu_string, cpu_id, sizeof(cpu_id)); for (u32 i = 0; i < 3; i++)
__cpuid(cpu_id, 0x80000003); {
memcpy(cpu_string + 16, cpu_id, sizeof(cpu_id)); info = cpuid(0x80000002 + i);
__cpuid(cpu_id, 0x80000004); memcpy(&model_name[sizeof(info) * i], &info, sizeof(info));
memcpy(cpu_string + 32, cpu_id, sizeof(cpu_id));
} }
if (max_ex_fn >= 0x80000001) TruncateToCString(&model_name);
model_name = StripSpaces(model_name);
}
if (ext_func_id_max >= 0x80000001)
{ {
// Check for more features. // Check for more features.
__cpuid(cpu_id, 0x80000001); info = cpuid(0x80000001);
if (cpu_id[2] & 1) if ((info.ecx >> 5) & 1)
bLAHFSAHF64 = true;
if ((cpu_id[2] >> 5) & 1)
bLZCNT = true; bLZCNT = true;
if ((cpu_id[2] >> 16) & 1) if ((info.ecx >> 16) & 1)
bFMA4 = true; bFMA4 = true;
if ((cpu_id[3] >> 29) & 1)
bLongMode = true;
} }
// this should be much more reliable and easier // Computed flags
// than trying to get the number of cores out of the CPUID data bFlushToZero = has_sse;
// ourselves bBMI2FastParallelBitOps = bBMI2 && !is_amd_family_17;
num_cores = std::max(std::thread::hardware_concurrency(), 1u); bCRC32 = bSSE4_2;
model_name = ReplaceAll(model_name, ",", "_");
cpu_id = ReplaceAll(cpu_id, ",", "_");
} }
// Turn the CPU info into a string we can show
std::string CPUInfo::Summarize() std::string CPUInfo::Summarize()
{ {
std::string sum(cpu_string); std::vector<std::string> sum;
sum += " ("; sum.push_back(model_name);
sum += brand_string; sum.push_back(cpu_id);
sum += ")";
if (bSSE)
sum += ", SSE";
if (bSSE2)
{
sum += ", SSE2";
if (!bFlushToZero)
sum += " (but not DAZ!)";
}
if (bSSE3) if (bSSE3)
sum += ", SSE3"; sum.push_back("SSE3");
if (bSSSE3) if (bSSSE3)
sum += ", SSSE3"; sum.push_back("SSSE3");
if (bSSE4_1) if (bSSE4_1)
sum += ", SSE4.1"; sum.push_back("SSE4.1");
if (bSSE4_2) if (bSSE4_2)
sum += ", SSE4.2"; sum.push_back("SSE4.2");
if (HTT) if (HTT)
sum += ", HTT"; sum.push_back("HTT");
if (bAVX) if (bAVX)
sum += ", AVX"; sum.push_back("AVX");
if (bAVX2)
sum += ", AVX2";
if (bBMI1) if (bBMI1)
sum += ", BMI1"; sum.push_back("BMI1");
if (bBMI2) if (bBMI2)
sum += ", BMI2"; sum.push_back("BMI2");
if (bFMA) if (bFMA)
sum += ", FMA"; sum.push_back("FMA");
if (bAES)
sum += ", AES";
if (bMOVBE) if (bMOVBE)
sum += ", MOVBE"; sum.push_back("MOVBE");
if (bLongMode) if (bAES)
sum += ", 64-bit support"; sum.push_back("AES");
return sum; if (bCRC32)
sum.push_back("CRC32");
if (bSHA1)
sum.push_back("SHA1");
if (bSHA2)
sum.push_back("SHA2");
return JoinStrings(sum, ",");
} }

View File

@ -65,7 +65,7 @@ void CommonAsmRoutines::GenConvertDoubleToSingle()
// Don't Denormalize // Don't Denormalize
if (cpu_info.bFastBMI2) if (cpu_info.bBMI2FastParallelBitOps)
{ {
// Extract bits 0-1 and 5-34 // Extract bits 0-1 and 5-34
MOV(64, R(RSCRATCH), Imm64(0xc7ffffffe0000000)); MOV(64, R(RSCRATCH), Imm64(0xc7ffffffe0000000));

View File

@ -299,7 +299,7 @@ void VertexLoaderX64::ReadColor(OpArg data, VertexComponentFormat attribute, Col
// RRRRRGGG GGGBBBBB // RRRRRGGG GGGBBBBB
// AAAAAAAA BBBBBBBB GGGGGGGG RRRRRRRR // AAAAAAAA BBBBBBBB GGGGGGGG RRRRRRRR
LoadAndSwap(16, scratch1, data); LoadAndSwap(16, scratch1, data);
if (cpu_info.bBMI1 && cpu_info.bFastBMI2) if (cpu_info.bBMI1 && cpu_info.bBMI2FastParallelBitOps)
{ {
MOV(32, R(scratch2), Imm32(0x07C3F7C0)); MOV(32, R(scratch2), Imm32(0x07C3F7C0));
PDEP(32, scratch3, scratch1, R(scratch2)); PDEP(32, scratch3, scratch1, R(scratch2));
@ -339,7 +339,7 @@ void VertexLoaderX64::ReadColor(OpArg data, VertexComponentFormat attribute, Col
// RRRRGGGG BBBBAAAA // RRRRGGGG BBBBAAAA
// AAAAAAAA BBBBBBBB GGGGGGGG RRRRRRRR // AAAAAAAA BBBBBBBB GGGGGGGG RRRRRRRR
LoadAndSwap(16, scratch1, data); LoadAndSwap(16, scratch1, data);
if (cpu_info.bFastBMI2) if (cpu_info.bBMI2FastParallelBitOps)
{ {
MOV(32, R(scratch2), Imm32(0x0F0F0F0F)); MOV(32, R(scratch2), Imm32(0x0F0F0F0F));
PDEP(32, scratch1, scratch1, R(scratch2)); PDEP(32, scratch1, scratch1, R(scratch2));
@ -368,7 +368,7 @@ void VertexLoaderX64::ReadColor(OpArg data, VertexComponentFormat attribute, Col
// AAAAAAAA BBBBBBBB GGGGGGGG RRRRRRRR // AAAAAAAA BBBBBBBB GGGGGGGG RRRRRRRR
data.AddMemOffset(-1); // subtract one from address so we can use a 32bit load and bswap data.AddMemOffset(-1); // subtract one from address so we can use a 32bit load and bswap
LoadAndSwap(32, scratch1, data); LoadAndSwap(32, scratch1, data);
if (cpu_info.bFastBMI2) if (cpu_info.bBMI2FastParallelBitOps)
{ {
MOV(32, R(scratch2), Imm32(0xFCFCFCFC)); MOV(32, R(scratch2), Imm32(0xFCFCFCFC));
PDEP(32, scratch1, scratch1, R(scratch2)); PDEP(32, scratch1, scratch1, R(scratch2));

View File

@ -179,8 +179,8 @@ bool VideoConfig::UsingUberShaders() const
static u32 GetNumAutoShaderCompilerThreads() static u32 GetNumAutoShaderCompilerThreads()
{ {
// Automatic number. We use clamp(cpus - 3, 1, 4). // Automatic number.
return static_cast<u32>(std::min(std::max(cpu_info.num_cores - 3, 1), 4)); return static_cast<u32>(std::clamp(cpu_info.num_cores - 3, 1, 4));
} }
static u32 GetNumAutoShaderPreCompilerThreads() static u32 GetNumAutoShaderPreCompilerThreads()

View File

@ -92,7 +92,31 @@ class x64EmitterTest : public testing::Test
protected: protected:
void SetUp() override void SetUp() override
{ {
memset(&cpu_info, 0x01, sizeof(cpu_info)); // Ensure settings are constant no matter on which actual hardware the test runs.
// Attempt to maximize complex code coverage. Note that this will miss some paths.
cpu_info.vendor = CPUVendor::Intel;
cpu_info.cpu_id = "GenuineIntel";
cpu_info.model_name = "Unknown";
cpu_info.HTT = true;
cpu_info.num_cores = 8;
cpu_info.bSSE3 = true;
cpu_info.bSSSE3 = true;
cpu_info.bSSE4_1 = true;
cpu_info.bSSE4_2 = true;
cpu_info.bLZCNT = true;
cpu_info.bAVX = true;
cpu_info.bBMI1 = true;
cpu_info.bBMI2 = true;
cpu_info.bBMI2FastParallelBitOps = true;
cpu_info.bFMA = true;
cpu_info.bFMA4 = true;
cpu_info.bAES = true;
cpu_info.bMOVBE = true;
cpu_info.bFlushToZero = true;
cpu_info.bAtom = false;
cpu_info.bCRC32 = true;
cpu_info.bSHA1 = true;
cpu_info.bSHA2 = true;
emitter.reset(new X64CodeBlock()); emitter.reset(new X64CodeBlock());
emitter->AllocCodeSpace(4096); emitter->AllocCodeSpace(4096);