Merge pull request #6505 from lioncash/arm

Arm64Emitter: Minor cleanup
This commit is contained in:
Mat M 2018-03-23 19:25:50 -04:00 committed by GitHub
commit 5669841e83
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 48 additions and 59 deletions

View File

@ -12,14 +12,17 @@
#include "Common/Arm64Emitter.h" #include "Common/Arm64Emitter.h"
#include "Common/Assert.h" #include "Common/Assert.h"
#include "Common/CommonTypes.h" #include "Common/CommonTypes.h"
#include "Common/MathUtil.h"
namespace Arm64Gen namespace Arm64Gen
{ {
namespace
{
const int kWRegSizeInBits = 32; const int kWRegSizeInBits = 32;
const int kXRegSizeInBits = 64; const int kXRegSizeInBits = 64;
// The below few functions are taken from V8. // The below few functions are taken from V8.
static int CountLeadingZeros(uint64_t value, int width) int CountLeadingZeros(uint64_t value, int width)
{ {
// TODO(jbramley): Optimize this for ARM64 hosts. // TODO(jbramley): Optimize this for ARM64 hosts.
int count = 0; int count = 0;
@ -32,18 +35,12 @@ static int CountLeadingZeros(uint64_t value, int width)
return count; return count;
} }
static uint64_t LargestPowerOf2Divisor(uint64_t value) uint64_t LargestPowerOf2Divisor(uint64_t value)
{ {
return value & -(int64_t)value; return value & -(int64_t)value;
} }
static bool IsPowerOfTwo(uint64_t x) // For ADD/SUB
{
return (x != 0) && ((x & (x - 1)) == 0);
}
#define V8_UINT64_C(x) ((uint64_t)(x))
bool IsImmArithmetic(uint64_t input, u32* val, bool* shift) bool IsImmArithmetic(uint64_t input, u32* val, bool* shift)
{ {
if (input < 4096) if (input < 4096)
@ -61,6 +58,7 @@ bool IsImmArithmetic(uint64_t input, u32* val, bool* shift)
return false; return false;
} }
// For AND/TST/ORR/EOR etc
bool IsImmLogical(uint64_t value, unsigned int width, unsigned int* n, unsigned int* imm_s, bool IsImmLogical(uint64_t value, unsigned int width, unsigned int* n, unsigned int* imm_s,
unsigned int* imm_r) unsigned int* imm_r)
{ {
@ -155,7 +153,7 @@ bool IsImmLogical(uint64_t value, unsigned int width, unsigned int* n, unsigned
clz_a = CountLeadingZeros(a, kXRegSizeInBits); clz_a = CountLeadingZeros(a, kXRegSizeInBits);
int clz_c = CountLeadingZeros(c, kXRegSizeInBits); int clz_c = CountLeadingZeros(c, kXRegSizeInBits);
d = clz_a - clz_c; d = clz_a - clz_c;
mask = ((V8_UINT64_C(1) << d) - 1); mask = ((UINT64_C(1) << d) - 1);
out_n = 0; out_n = 0;
} }
else else
@ -181,13 +179,13 @@ bool IsImmLogical(uint64_t value, unsigned int width, unsigned int* n, unsigned
// the general case above, and set the N bit in the output. // the general case above, and set the N bit in the output.
clz_a = CountLeadingZeros(a, kXRegSizeInBits); clz_a = CountLeadingZeros(a, kXRegSizeInBits);
d = 64; d = 64;
mask = ~V8_UINT64_C(0); mask = ~UINT64_C(0);
out_n = 1; out_n = 1;
} }
} }
// If the repeat period d is not a power of two, it can't be encoded. // If the repeat period d is not a power of two, it can't be encoded.
if (!IsPowerOfTwo(d)) if (!MathUtil::IsPow2<u64>(d))
return false; return false;
// If the bit stretch (b - a) does not fit within the mask derived from the // If the bit stretch (b - a) does not fit within the mask derived from the
@ -266,6 +264,39 @@ bool IsImmLogical(uint64_t value, unsigned int width, unsigned int* n, unsigned
return true; return true;
} }
float FPImm8ToFloat(uint8_t bits)
{
int sign = bits >> 7;
uint32_t f = (sign << 31);
int bit6 = (bits >> 6) & 1;
uint32_t exp = ((!bit6) << 7) | (0x7C * bit6) | ((bits >> 4) & 3);
uint32_t mantissa = (bits & 0xF) << 19;
f |= exp << 23;
f |= mantissa;
float fl;
memcpy(&fl, &f, sizeof(float));
return fl;
}
bool FPImm8FromFloat(float value, uint8_t* immOut)
{
uint32_t f;
memcpy(&f, &value, sizeof(float));
uint32_t mantissa4 = (f & 0x7FFFFF) >> 19;
uint32_t exponent = (f >> 23) & 0xFF;
uint32_t sign = f >> 31;
if ((exponent >> 7) == ((exponent >> 6) & 1))
return false;
uint8_t imm8 = (sign << 7) | ((!(exponent >> 7)) << 6) | ((exponent & 3) << 4) | mantissa4;
float newFloat = FPImm8ToFloat(imm8);
if (newFloat == value)
*immOut = imm8;
else
return false;
return true;
}
} // Anonymous namespace
void ARM64XEmitter::SetCodePtrUnsafe(u8* ptr) void ARM64XEmitter::SetCodePtrUnsafe(u8* ptr)
{ {
m_code = ptr; m_code = ptr;
@ -3740,8 +3771,7 @@ void ARM64FloatEmitter::UXTL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, bool upper)
// vector x indexed element // vector x indexed element
void ARM64FloatEmitter::FMUL(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, u8 index) void ARM64FloatEmitter::FMUL(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, u8 index)
{ {
ASSERT_MSG(DYNA_REC, size == 32 || size == 64, "%s only supports 32bit or 64bit size!", ASSERT_MSG(DYNA_REC, size == 32 || size == 64, "%s only supports 32bit or 64bit size!", __func__);
__func__);
bool L = false; bool L = false;
bool H = false; bool H = false;
@ -3760,8 +3790,7 @@ void ARM64FloatEmitter::FMUL(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, u8
void ARM64FloatEmitter::FMLA(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, u8 index) void ARM64FloatEmitter::FMLA(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, u8 index)
{ {
ASSERT_MSG(DYNA_REC, size == 32 || size == 64, "%s only supports 32bit or 64bit size!", ASSERT_MSG(DYNA_REC, size == 32 || size == 64, "%s only supports 32bit or 64bit size!", __func__);
__func__);
bool L = false; bool L = false;
bool H = false; bool H = false;
@ -4293,38 +4322,6 @@ bool ARM64XEmitter::TryEORI2R(ARM64Reg Rd, ARM64Reg Rn, u32 imm)
return true; return true;
} }
float FPImm8ToFloat(uint8_t bits)
{
int sign = bits >> 7;
uint32_t f = (sign << 31);
int bit6 = (bits >> 6) & 1;
uint32_t exp = ((!bit6) << 7) | (0x7C * bit6) | ((bits >> 4) & 3);
uint32_t mantissa = (bits & 0xF) << 19;
f |= exp << 23;
f |= mantissa;
float fl;
memcpy(&fl, &f, sizeof(float));
return fl;
}
bool FPImm8FromFloat(float value, uint8_t* immOut)
{
uint32_t f;
memcpy(&f, &value, sizeof(float));
uint32_t mantissa4 = (f & 0x7FFFFF) >> 19;
uint32_t exponent = (f >> 23) & 0xFF;
uint32_t sign = f >> 31;
if ((exponent >> 7) == ((exponent >> 6) & 1))
return false;
uint8_t imm8 = (sign << 7) | ((!(exponent >> 7)) << 6) | ((exponent & 3) << 4) | mantissa4;
float newFloat = FPImm8ToFloat(imm8);
if (newFloat == value)
*immOut = imm8;
else
return false;
return true;
}
void ARM64FloatEmitter::MOVI2F(ARM64Reg Rd, float value, ARM64Reg scratch, bool negate) void ARM64FloatEmitter::MOVI2F(ARM64Reg Rd, float value, ARM64Reg scratch, bool negate)
{ {
ASSERT_MSG(DYNA_REC, !IsDouble(Rd), "MOVI2F does not yet support double precision"); ASSERT_MSG(DYNA_REC, !IsDouble(Rd), "MOVI2F does not yet support double precision");

View File

@ -277,15 +277,6 @@ constexpr ARM64Reg EncodeRegToQuad(ARM64Reg reg)
return static_cast<ARM64Reg>(reg | 0xC0); return static_cast<ARM64Reg>(reg | 0xC0);
} }
// For AND/TST/ORR/EOR etc
bool IsImmLogical(uint64_t value, unsigned int width, unsigned int* n, unsigned int* imm_s,
unsigned int* imm_r);
// For ADD/SUB
bool IsImmArithmetic(uint64_t input, u32* val, bool* shift);
float FPImm8ToFloat(uint8_t bits);
bool FPImm8FromFloat(float value, uint8_t* immOut);
enum OpType enum OpType
{ {
TYPE_IMM = 0, TYPE_IMM = 0,

View File

@ -49,9 +49,10 @@ constexpr T Clamp(const T val, const T& min, const T& max)
return std::max(min, std::min(max, val)); return std::max(min, std::min(max, val));
} }
constexpr bool IsPow2(u32 imm) template <typename T>
constexpr bool IsPow2(T imm)
{ {
return (imm & (imm - 1)) == 0; return imm > 0 && (imm & (imm - 1)) == 0;
} }
// The most significant bit of the fraction is an is-quiet bit on all architectures we care about. // The most significant bit of the fraction is an is-quiet bit on all architectures we care about.