From 2f223e24dc0acfba65013f314b2d72dee8d594c7 Mon Sep 17 00:00:00 2001 From: Stenzek Date: Fri, 23 Dec 2016 23:26:53 +1000 Subject: [PATCH] TextureDecoder: Seperate each format into its own function --- .../Core/VideoCommon/TextureDecoder_x64.cpp | 2282 +++++++++-------- 1 file changed, 1213 insertions(+), 1069 deletions(-) diff --git a/Source/Core/VideoCommon/TextureDecoder_x64.cpp b/Source/Core/VideoCommon/TextureDecoder_x64.cpp index 4a1d2b8f32..6bfbe6ab11 100644 --- a/Source/Core/VideoCommon/TextureDecoder_x64.cpp +++ b/Source/Core/VideoCommon/TextureDecoder_x64.cpp @@ -10,6 +10,7 @@ #include "Common/CommonFuncs.h" #include "Common/CommonTypes.h" #include "Common/Intrinsics.h" +#include "Common/MsgHandler.h" #include "VideoCommon/LookUpTables.h" #include "VideoCommon/TextureDecoder.h" @@ -221,1143 +222,1286 @@ static void DecodeDXTBlock(u32* dst, const DXTBlock* src, int pitch) // JSD 01/06/11: // TODO: we really should ensure BOTH the source and destination addresses are aligned to 16-byte -// boundaries to -// squeeze out a little more performance. _mm_loadu_si128/_mm_storeu_si128 is slower than -// _mm_load_si128/_mm_store_si128 -// because they work on unaligned addresses. The processor is free to make the assumption that -// addresses are multiples -// of 16 in the aligned case. +// boundaries to squeeze out a little more performance. _mm_loadu_si128/_mm_storeu_si128 is slower +// than _mm_load_si128/_mm_store_si128 because they work on unaligned addresses. The processor is +// free to make the assumption that addresses are multiples of 16 in the aligned case. // TODO: complete SSE2 optimization of less often used texture formats. // TODO: refactor algorithms using _mm_loadl_epi64 unaligned loads to prefer 128-bit aligned loads. - -void _TexDecoder_DecodeImpl(u32* dst, const u8* src, int width, int height, int texformat, - const u8* tlut, TlutFormat tlutfmt) +static void TexDecoder_DecodeImpl_C4(u32* dst, const u8* src, int width, int height, int texformat, + const u8* tlut, TlutFormat tlutfmt, int Wsteps4, int Wsteps8) { - const int Wsteps4 = (width + 3) / 4; - const int Wsteps8 = (width + 7) / 8; - - switch (texformat) + switch (tlutfmt) { - case GX_TF_C4: - if (tlutfmt == GX_TL_RGB5A3) - { - for (int y = 0; y < height; y += 8) - for (int x = 0, yStep = (y / 8) * Wsteps8; x < width; x += 8, yStep++) - for (int iy = 0, xStep = 8 * yStep; iy < 8; iy++, xStep++) - DecodeBytes_C4_RGB5A3(dst + (y + iy) * width + x, src + 4 * xStep, tlut); - } - else if (tlutfmt == GX_TL_IA8) - { - for (int y = 0; y < height; y += 8) - for (int x = 0, yStep = (y / 8) * Wsteps8; x < width; x += 8, yStep++) - for (int iy = 0, xStep = 8 * yStep; iy < 8; iy++, xStep++) - DecodeBytes_C4_IA8(dst + (y + iy) * width + x, src + 4 * xStep, tlut); - } - else if (tlutfmt == GX_TL_RGB565) - { - for (int y = 0; y < height; y += 8) - for (int x = 0, yStep = (y / 8) * Wsteps8; x < width; x += 8, yStep++) - for (int iy = 0, xStep = 8 * yStep; iy < 8; iy++, xStep++) - DecodeBytes_C4_RGB565(dst + (y + iy) * width + x, src + 4 * xStep, tlut); - } - break; - case GX_TF_I4: + case GX_TL_RGB5A3: { - const __m128i kMask_x0f = _mm_set1_epi32(0x0f0f0f0fL); - const __m128i kMask_xf0 = _mm_set1_epi32(0xf0f0f0f0L); -#if _M_SSE >= 0x301 - // xsacha optimized with SSSE3 intrinsics - // Produces a ~40% speed improvement over SSE2 implementation - if (cpu_info.bSSSE3) - { - const __m128i mask9180 = _mm_set_epi8(9, 9, 9, 9, 1, 1, 1, 1, 8, 8, 8, 8, 0, 0, 0, 0); - const __m128i maskB3A2 = _mm_set_epi8(11, 11, 11, 11, 3, 3, 3, 3, 10, 10, 10, 10, 2, 2, 2, 2); - const __m128i maskD5C4 = _mm_set_epi8(13, 13, 13, 13, 5, 5, 5, 5, 12, 12, 12, 12, 4, 4, 4, 4); - const __m128i maskF7E6 = _mm_set_epi8(15, 15, 15, 15, 7, 7, 7, 7, 14, 14, 14, 14, 6, 6, 6, 6); - for (int y = 0; y < height; y += 8) - for (int x = 0, yStep = (y / 8) * Wsteps8; x < width; x += 8, yStep++) - for (int iy = 0, xStep = 4 * yStep; iy < 8; iy += 2, xStep++) - { - const __m128i r0 = _mm_loadl_epi64((const __m128i*)(src + 8 * xStep)); - // We want the hi 4 bits of each 8-bit word replicated to 32-bit words: - // (00000000 00000000 HhGgFfEe DdCcBbAa) -> (00000000 00000000 HHGGFFEE DDCCBBAA) - const __m128i i1 = _mm_and_si128(r0, kMask_xf0); - const __m128i i11 = _mm_or_si128(i1, _mm_srli_epi16(i1, 4)); - - // Now we do same as above for the second half of the byte - const __m128i i2 = _mm_and_si128(r0, kMask_x0f); - const __m128i i22 = _mm_or_si128(i2, _mm_slli_epi16(i2, 4)); - - // Combine both sides - const __m128i base = _mm_unpacklo_epi64(i11, i22); - // Achieve the pattern visible in the masks. - const __m128i o1 = _mm_shuffle_epi8(base, mask9180); - const __m128i o2 = _mm_shuffle_epi8(base, maskB3A2); - const __m128i o3 = _mm_shuffle_epi8(base, maskD5C4); - const __m128i o4 = _mm_shuffle_epi8(base, maskF7E6); - - // Write row 0: - _mm_storeu_si128((__m128i*)(dst + (y + iy) * width + x), o1); - _mm_storeu_si128((__m128i*)(dst + (y + iy) * width + x + 4), o2); - // Write row 1: - _mm_storeu_si128((__m128i*)(dst + (y + iy + 1) * width + x), o3); - _mm_storeu_si128((__m128i*)(dst + (y + iy + 1) * width + x + 4), o4); - } - } - else -#endif - // JSD optimized with SSE2 intrinsics. - // Produces a ~76% speed improvement over reference C implementation. - { - for (int y = 0; y < height; y += 8) - for (int x = 0, yStep = (y / 8) * Wsteps8; x < width; x += 8, yStep++) - for (int iy = 0, xStep = 4 * yStep; iy < 8; iy += 2, xStep++) - { - const __m128i r0 = _mm_loadl_epi64((const __m128i*)(src + 8 * xStep)); - // Shuffle low 64-bits with itself to expand from (0000 0000 hgfe dcba) to (hhgg ffee - // ddcc bbaa) - const __m128i r1 = _mm_unpacklo_epi8(r0, r0); - - // We want the hi 4 bits of each 8-bit word replicated to 32-bit words: - // (HhHhGgGg FfFfEeEe DdDdCcCc BbBbAaAa) & kMask_xf0 -> (H0H0G0G0 F0F0E0E0 D0D0C0C0 - // B0B0A0A0) - const __m128i i1 = _mm_and_si128(r1, kMask_xf0); - // -> (HHHHGGGG FFFFEEEE DDDDCCCC BBBBAAAA) - const __m128i i11 = _mm_or_si128(i1, _mm_srli_epi16(i1, 4)); - - // Shuffle low 64-bits with itself to expand from (HHHHGGGG FFFFEEEE DDDDCCCC BBBBAAAA) - // to (DDDDDDDD CCCCCCCC BBBBBBBB AAAAAAAA) - const __m128i i15 = _mm_unpacklo_epi8(i11, i11); - // (DDDDDDDD CCCCCCCC BBBBBBBB AAAAAAAA) -> (BBBBBBBB BBBBBBBB AAAAAAAA AAAAAAAA) - const __m128i i151 = _mm_unpacklo_epi8(i15, i15); - // (DDDDDDDD CCCCCCCC BBBBBBBB AAAAAAAA) -> (DDDDDDDD DDDDDDDD CCCCCCCC CCCCCCCC) - const __m128i i152 = _mm_unpackhi_epi8(i15, i15); - - // Shuffle hi 64-bits with itself to expand from (HHHHGGGG FFFFEEEE DDDDCCCC BBBBAAAA) - // to (HHHHHHHH GGGGGGGG FFFFFFFF EEEEEEEE) - const __m128i i16 = _mm_unpackhi_epi8(i11, i11); - // (HHHHHHHH GGGGGGGG FFFFFFFF EEEEEEEE) -> (FFFFFFFF FFFFFFFF EEEEEEEE EEEEEEEE) - const __m128i i161 = _mm_unpacklo_epi8(i16, i16); - // (HHHHHHHH GGGGGGGG FFFFFFFF EEEEEEEE) -> (HHHHHHHH HHHHHHHH GGGGGGGG GGGGGGGG) - const __m128i i162 = _mm_unpackhi_epi8(i16, i16); - - // Now find the lo 4 bits of each input 8-bit word: - const __m128i i2 = _mm_and_si128(r1, kMask_x0f); - const __m128i i22 = _mm_or_si128(i2, _mm_slli_epi16(i2, 4)); - - const __m128i i25 = _mm_unpacklo_epi8(i22, i22); - const __m128i i251 = _mm_unpacklo_epi8(i25, i25); - const __m128i i252 = _mm_unpackhi_epi8(i25, i25); - - const __m128i i26 = _mm_unpackhi_epi8(i22, i22); - const __m128i i261 = _mm_unpacklo_epi8(i26, i26); - const __m128i i262 = _mm_unpackhi_epi8(i26, i26); - - // _mm_and_si128(i151, kMask_x00000000ffffffff) takes i151 and masks off 1st and 3rd - // 32-bit words - // (BBBBBBBB BBBBBBBB AAAAAAAA AAAAAAAA) -> (00000000 BBBBBBBB 00000000 AAAAAAAA) - // _mm_and_si128(i251, kMask_xffffffff00000000) takes i251 and masks off 2nd and 4th - // 32-bit words - // (bbbbbbbb bbbbbbbb aaaaaaaa aaaaaaaa) -> (bbbbbbbb 00000000 aaaaaaaa 00000000) - // And last but not least, _mm_or_si128 ORs those two together, giving us the - // interleaving we desire: - // (00000000 BBBBBBBB 00000000 AAAAAAAA) | (bbbbbbbb 00000000 aaaaaaaa 00000000) -> - // (bbbbbbbb BBBBBBBB aaaaaaaa AAAAAAAA) - const __m128i kMask_x00000000ffffffff = - _mm_set_epi32(0x00000000L, 0xffffffffL, 0x00000000L, 0xffffffffL); - const __m128i kMask_xffffffff00000000 = - _mm_set_epi32(0xffffffffL, 0x00000000L, 0xffffffffL, 0x00000000L); - const __m128i o1 = _mm_or_si128(_mm_and_si128(i151, kMask_x00000000ffffffff), - _mm_and_si128(i251, kMask_xffffffff00000000)); - const __m128i o2 = _mm_or_si128(_mm_and_si128(i152, kMask_x00000000ffffffff), - _mm_and_si128(i252, kMask_xffffffff00000000)); - - // These two are for the next row; same pattern as above. We batched up two rows because - // our input was 64 bits. - const __m128i o3 = _mm_or_si128(_mm_and_si128(i161, kMask_x00000000ffffffff), - _mm_and_si128(i261, kMask_xffffffff00000000)); - const __m128i o4 = _mm_or_si128(_mm_and_si128(i162, kMask_x00000000ffffffff), - _mm_and_si128(i262, kMask_xffffffff00000000)); - // Write row 0: - _mm_storeu_si128((__m128i*)(dst + (y + iy) * width + x), o1); - _mm_storeu_si128((__m128i*)(dst + (y + iy) * width + x + 4), o2); - // Write row 1: - _mm_storeu_si128((__m128i*)(dst + (y + iy + 1) * width + x), o3); - _mm_storeu_si128((__m128i*)(dst + (y + iy + 1) * width + x + 4), o4); - } - } + for (int y = 0; y < height; y += 8) + for (int x = 0, yStep = (y / 8) * Wsteps8; x < width; x += 8, yStep++) + for (int iy = 0, xStep = 8 * yStep; iy < 8; iy++, xStep++) + DecodeBytes_C4_RGB5A3(dst + (y + iy) * width + x, src + 4 * xStep, tlut); } break; - case GX_TF_I8: // speed critical + + case GX_TL_IA8: { -#if _M_SSE >= 0x301 - // xsacha optimized with SSSE3 intrinsics - // Produces a ~10% speed improvement over SSE2 implementation - if (cpu_info.bSSSE3) - { - for (int y = 0; y < height; y += 4) - for (int x = 0, yStep = (y / 4) * Wsteps8; x < width; x += 8, yStep++) - for (int iy = 0, xStep = 4 * yStep; iy < 4; ++iy, xStep++) - { - const __m128i mask3210 = _mm_set_epi8(3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0); - - const __m128i mask7654 = _mm_set_epi8(7, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4); - __m128i *quaddst, r, rgba0, rgba1; - // Load 64 bits from `src` into an __m128i with upper 64 bits zeroed: (0000 0000 hgfe - // dcba) - r = _mm_loadl_epi64((const __m128i*)(src + 8 * xStep)); - // Shuffle select bytes to expand from (0000 0000 hgfe dcba) to: - rgba0 = _mm_shuffle_epi8(r, mask3210); // (dddd cccc bbbb aaaa) - rgba1 = _mm_shuffle_epi8(r, mask7654); // (hhhh gggg ffff eeee) - - quaddst = (__m128i*)(dst + (y + iy) * width + x); - _mm_storeu_si128(quaddst, rgba0); - _mm_storeu_si128(quaddst + 1, rgba1); - } - } - else -#endif - // JSD optimized with SSE2 intrinsics. - // Produces an ~86% speed improvement over reference C implementation. - { - for (int y = 0; y < height; y += 4) - for (int x = 0, yStep = (y / 4) * Wsteps8; x < width; x += 8, yStep++) - { - // Each loop iteration processes 4 rows from 4 64-bit reads. - const u8* src2 = src + 32 * yStep; - // TODO: is it more efficient to group the loads together sequentially and also the stores - // at the end? - // _mm_stream instead of _mm_store on my AMD Phenom II x410 made performance significantly - // WORSE, so I - // went with _mm_stores. Perhaps there is some edge case here creating the terrible - // performance or we're - // not aligned to 16-byte boundaries. I don't know. - __m128i* quaddst; - - // Load 64 bits from `src` into an __m128i with upper 64 bits zeroed: (0000 0000 hgfe - // dcba) - const __m128i r0 = _mm_loadl_epi64((const __m128i*)src2); - // Shuffle low 64-bits with itself to expand from (0000 0000 hgfe dcba) to (hhgg ffee ddcc - // bbaa) - const __m128i r1 = _mm_unpacklo_epi8(r0, r0); - - // Shuffle low 64-bits with itself to expand from (hhgg ffee ddcc bbaa) to (dddd cccc bbbb - // aaaa) - const __m128i rgba0 = _mm_unpacklo_epi8(r1, r1); - // Shuffle hi 64-bits with itself to expand from (hhgg ffee ddcc bbaa) to (hhhh gggg ffff - // eeee) - const __m128i rgba1 = _mm_unpackhi_epi8(r1, r1); - - // Store (dddd cccc bbbb aaaa) out: - quaddst = (__m128i*)(dst + (y + 0) * width + x); - _mm_storeu_si128(quaddst, rgba0); - // Store (hhhh gggg ffff eeee) out: - _mm_storeu_si128(quaddst + 1, rgba1); - - // Load 64 bits from `src` into an __m128i with upper 64 bits zeroed: (0000 0000 hgfe - // dcba) - src2 += 8; - const __m128i r2 = _mm_loadl_epi64((const __m128i*)src2); - // Shuffle low 64-bits with itself to expand from (0000 0000 hgfe dcba) to (hhgg ffee ddcc - // bbaa) - const __m128i r3 = _mm_unpacklo_epi8(r2, r2); - - // Shuffle low 64-bits with itself to expand from (hhgg ffee ddcc bbaa) to (dddd cccc bbbb - // aaaa) - const __m128i rgba2 = _mm_unpacklo_epi8(r3, r3); - // Shuffle hi 64-bits with itself to expand from (hhgg ffee ddcc bbaa) to (hhhh gggg ffff - // eeee) - const __m128i rgba3 = _mm_unpackhi_epi8(r3, r3); - - // Store (dddd cccc bbbb aaaa) out: - quaddst = (__m128i*)(dst + (y + 1) * width + x); - _mm_storeu_si128(quaddst, rgba2); - // Store (hhhh gggg ffff eeee) out: - _mm_storeu_si128(quaddst + 1, rgba3); - - // Load 64 bits from `src` into an __m128i with upper 64 bits zeroed: (0000 0000 hgfe - // dcba) - src2 += 8; - const __m128i r4 = _mm_loadl_epi64((const __m128i*)src2); - // Shuffle low 64-bits with itself to expand from (0000 0000 hgfe dcba) to (hhgg ffee ddcc - // bbaa) - const __m128i r5 = _mm_unpacklo_epi8(r4, r4); - - // Shuffle low 64-bits with itself to expand from (hhgg ffee ddcc bbaa) to (dddd cccc bbbb - // aaaa) - const __m128i rgba4 = _mm_unpacklo_epi8(r5, r5); - // Shuffle hi 64-bits with itself to expand from (hhgg ffee ddcc bbaa) to (hhhh gggg ffff - // eeee) - const __m128i rgba5 = _mm_unpackhi_epi8(r5, r5); - - // Store (dddd cccc bbbb aaaa) out: - quaddst = (__m128i*)(dst + (y + 2) * width + x); - _mm_storeu_si128(quaddst, rgba4); - // Store (hhhh gggg ffff eeee) out: - _mm_storeu_si128(quaddst + 1, rgba5); - - // Load 64 bits from `src` into an __m128i with upper 64 bits zeroed: (0000 0000 hgfe - // dcba) - src2 += 8; - const __m128i r6 = _mm_loadl_epi64((const __m128i*)src2); - // Shuffle low 64-bits with itself to expand from (0000 0000 hgfe dcba) to (hhgg ffee ddcc - // bbaa) - const __m128i r7 = _mm_unpacklo_epi8(r6, r6); - - // Shuffle low 64-bits with itself to expand from (hhgg ffee ddcc bbaa) to (dddd cccc bbbb - // aaaa) - const __m128i rgba6 = _mm_unpacklo_epi8(r7, r7); - // Shuffle hi 64-bits with itself to expand from (hhgg ffee ddcc bbaa) to (hhhh gggg ffff - // eeee) - const __m128i rgba7 = _mm_unpackhi_epi8(r7, r7); - - // Store (dddd cccc bbbb aaaa) out: - quaddst = (__m128i*)(dst + (y + 3) * width + x); - _mm_storeu_si128(quaddst, rgba6); - // Store (hhhh gggg ffff eeee) out: - _mm_storeu_si128(quaddst + 1, rgba7); - } - } + for (int y = 0; y < height; y += 8) + for (int x = 0, yStep = (y / 8) * Wsteps8; x < width; x += 8, yStep++) + for (int iy = 0, xStep = 8 * yStep; iy < 8; iy++, xStep++) + DecodeBytes_C4_IA8(dst + (y + iy) * width + x, src + 4 * xStep, tlut); } break; - case GX_TF_C8: - if (tlutfmt == GX_TL_RGB5A3) - { - for (int y = 0; y < height; y += 4) - for (int x = 0, yStep = (y / 4) * Wsteps8; x < width; x += 8, yStep++) - for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++) - DecodeBytes_C8_RGB5A3((u32*)dst + (y + iy) * width + x, src + 8 * xStep, tlut); - } - else if (tlutfmt == GX_TL_IA8) - { - for (int y = 0; y < height; y += 4) - for (int x = 0, yStep = (y / 4) * Wsteps8; x < width; x += 8, yStep++) - for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++) - DecodeBytes_C8_IA8(dst + (y + iy) * width + x, src + 8 * xStep, tlut); - } - else if (tlutfmt == GX_TL_RGB565) - { - for (int y = 0; y < height; y += 4) - for (int x = 0, yStep = (y / 4) * Wsteps8; x < width; x += 8, yStep++) - for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++) - DecodeBytes_C8_RGB565(dst + (y + iy) * width + x, src + 8 * xStep, tlut); - } + + case GX_TL_RGB565: + { + for (int y = 0; y < height; y += 8) + for (int x = 0, yStep = (y / 8) * Wsteps8; x < width; x += 8, yStep++) + for (int iy = 0, xStep = 8 * yStep; iy < 8; iy++, xStep++) + DecodeBytes_C4_RGB565(dst + (y + iy) * width + x, src + 4 * xStep, tlut); + } + break; + + default: break; - case GX_TF_IA4: + } +} + +static void TexDecoder_DecodeImpl_I4_SSSE3(u32* dst, const u8* src, int width, int height, + int texformat, const u8* tlut, TlutFormat tlutfmt, + int Wsteps4, int Wsteps8) +{ +#if _M_SSE >= 0x301 + const __m128i kMask_x0f = _mm_set1_epi32(0x0f0f0f0fL); + const __m128i kMask_xf0 = _mm_set1_epi32(0xf0f0f0f0L); + + // xsacha optimized with SSSE3 intrinsics + // Produces a ~40% speed improvement over SSE2 implementation + const __m128i mask9180 = _mm_set_epi8(9, 9, 9, 9, 1, 1, 1, 1, 8, 8, 8, 8, 0, 0, 0, 0); + const __m128i maskB3A2 = _mm_set_epi8(11, 11, 11, 11, 3, 3, 3, 3, 10, 10, 10, 10, 2, 2, 2, 2); + const __m128i maskD5C4 = _mm_set_epi8(13, 13, 13, 13, 5, 5, 5, 5, 12, 12, 12, 12, 4, 4, 4, 4); + const __m128i maskF7E6 = _mm_set_epi8(15, 15, 15, 15, 7, 7, 7, 7, 14, 14, 14, 14, 6, 6, 6, 6); + for (int y = 0; y < height; y += 8) + { + for (int x = 0, yStep = (y / 8) * Wsteps8; x < width; x += 8, yStep++) + { + for (int iy = 0, xStep = 4 * yStep; iy < 8; iy += 2, xStep++) + { + const __m128i r0 = _mm_loadl_epi64((const __m128i*)(src + 8 * xStep)); + // We want the hi 4 bits of each 8-bit word replicated to 32-bit words: + // (00000000 00000000 HhGgFfEe DdCcBbAa) -> (00000000 00000000 HHGGFFEE DDCCBBAA) + const __m128i i1 = _mm_and_si128(r0, kMask_xf0); + const __m128i i11 = _mm_or_si128(i1, _mm_srli_epi16(i1, 4)); + + // Now we do same as above for the second half of the byte + const __m128i i2 = _mm_and_si128(r0, kMask_x0f); + const __m128i i22 = _mm_or_si128(i2, _mm_slli_epi16(i2, 4)); + + // Combine both sides + const __m128i base = _mm_unpacklo_epi64(i11, i22); + // Achieve the pattern visible in the masks. + const __m128i o1 = _mm_shuffle_epi8(base, mask9180); + const __m128i o2 = _mm_shuffle_epi8(base, maskB3A2); + const __m128i o3 = _mm_shuffle_epi8(base, maskD5C4); + const __m128i o4 = _mm_shuffle_epi8(base, maskF7E6); + + // Write row 0: + _mm_storeu_si128((__m128i*)(dst + (y + iy) * width + x), o1); + _mm_storeu_si128((__m128i*)(dst + (y + iy) * width + x + 4), o2); + // Write row 1: + _mm_storeu_si128((__m128i*)(dst + (y + iy + 1) * width + x), o3); + _mm_storeu_si128((__m128i*)(dst + (y + iy + 1) * width + x + 4), o4); + } + } + } +#endif +} + +static void TexDecoder_DecodeImpl_I4(u32* dst, const u8* src, int width, int height, int texformat, + const u8* tlut, TlutFormat tlutfmt, int Wsteps4, int Wsteps8) +{ + const __m128i kMask_x0f = _mm_set1_epi32(0x0f0f0f0fL); + const __m128i kMask_xf0 = _mm_set1_epi32(0xf0f0f0f0L); + + // JSD optimized with SSE2 intrinsics. + // Produces a ~76% speed improvement over reference C implementation. + for (int y = 0; y < height; y += 8) + { + for (int x = 0, yStep = (y / 8) * Wsteps8; x < width; x += 8, yStep++) + { + for (int iy = 0, xStep = 4 * yStep; iy < 8; iy += 2, xStep++) + { + const __m128i r0 = _mm_loadl_epi64((const __m128i*)(src + 8 * xStep)); + // Shuffle low 64-bits with itself to expand from (0000 0000 hgfe dcba) to (hhgg ffee + // ddcc bbaa) + const __m128i r1 = _mm_unpacklo_epi8(r0, r0); + + // We want the hi 4 bits of each 8-bit word replicated to 32-bit words: + // (HhHhGgGg FfFfEeEe DdDdCcCc BbBbAaAa) & kMask_xf0 -> (H0H0G0G0 F0F0E0E0 D0D0C0C0 + // B0B0A0A0) + const __m128i i1 = _mm_and_si128(r1, kMask_xf0); + // -> (HHHHGGGG FFFFEEEE DDDDCCCC BBBBAAAA) + const __m128i i11 = _mm_or_si128(i1, _mm_srli_epi16(i1, 4)); + + // Shuffle low 64-bits with itself to expand from (HHHHGGGG FFFFEEEE DDDDCCCC BBBBAAAA) + // to (DDDDDDDD CCCCCCCC BBBBBBBB AAAAAAAA) + const __m128i i15 = _mm_unpacklo_epi8(i11, i11); + // (DDDDDDDD CCCCCCCC BBBBBBBB AAAAAAAA) -> (BBBBBBBB BBBBBBBB AAAAAAAA AAAAAAAA) + const __m128i i151 = _mm_unpacklo_epi8(i15, i15); + // (DDDDDDDD CCCCCCCC BBBBBBBB AAAAAAAA) -> (DDDDDDDD DDDDDDDD CCCCCCCC CCCCCCCC) + const __m128i i152 = _mm_unpackhi_epi8(i15, i15); + + // Shuffle hi 64-bits with itself to expand from (HHHHGGGG FFFFEEEE DDDDCCCC BBBBAAAA) + // to (HHHHHHHH GGGGGGGG FFFFFFFF EEEEEEEE) + const __m128i i16 = _mm_unpackhi_epi8(i11, i11); + // (HHHHHHHH GGGGGGGG FFFFFFFF EEEEEEEE) -> (FFFFFFFF FFFFFFFF EEEEEEEE EEEEEEEE) + const __m128i i161 = _mm_unpacklo_epi8(i16, i16); + // (HHHHHHHH GGGGGGGG FFFFFFFF EEEEEEEE) -> (HHHHHHHH HHHHHHHH GGGGGGGG GGGGGGGG) + const __m128i i162 = _mm_unpackhi_epi8(i16, i16); + + // Now find the lo 4 bits of each input 8-bit word: + const __m128i i2 = _mm_and_si128(r1, kMask_x0f); + const __m128i i22 = _mm_or_si128(i2, _mm_slli_epi16(i2, 4)); + + const __m128i i25 = _mm_unpacklo_epi8(i22, i22); + const __m128i i251 = _mm_unpacklo_epi8(i25, i25); + const __m128i i252 = _mm_unpackhi_epi8(i25, i25); + + const __m128i i26 = _mm_unpackhi_epi8(i22, i22); + const __m128i i261 = _mm_unpacklo_epi8(i26, i26); + const __m128i i262 = _mm_unpackhi_epi8(i26, i26); + + // _mm_and_si128(i151, kMask_x00000000ffffffff) takes i151 and masks off 1st and 3rd + // 32-bit words + // (BBBBBBBB BBBBBBBB AAAAAAAA AAAAAAAA) -> (00000000 BBBBBBBB 00000000 AAAAAAAA) + // _mm_and_si128(i251, kMask_xffffffff00000000) takes i251 and masks off 2nd and 4th + // 32-bit words + // (bbbbbbbb bbbbbbbb aaaaaaaa aaaaaaaa) -> (bbbbbbbb 00000000 aaaaaaaa 00000000) + // And last but not least, _mm_or_si128 ORs those two together, giving us the + // interleaving we desire: + // (00000000 BBBBBBBB 00000000 AAAAAAAA) | (bbbbbbbb 00000000 aaaaaaaa 00000000) -> + // (bbbbbbbb BBBBBBBB aaaaaaaa AAAAAAAA) + const __m128i kMask_x00000000ffffffff = + _mm_set_epi32(0x00000000L, 0xffffffffL, 0x00000000L, 0xffffffffL); + const __m128i kMask_xffffffff00000000 = + _mm_set_epi32(0xffffffffL, 0x00000000L, 0xffffffffL, 0x00000000L); + const __m128i o1 = _mm_or_si128(_mm_and_si128(i151, kMask_x00000000ffffffff), + _mm_and_si128(i251, kMask_xffffffff00000000)); + const __m128i o2 = _mm_or_si128(_mm_and_si128(i152, kMask_x00000000ffffffff), + _mm_and_si128(i252, kMask_xffffffff00000000)); + + // These two are for the next row; same pattern as above. We batched up two rows because + // our input was 64 bits. + const __m128i o3 = _mm_or_si128(_mm_and_si128(i161, kMask_x00000000ffffffff), + _mm_and_si128(i261, kMask_xffffffff00000000)); + const __m128i o4 = _mm_or_si128(_mm_and_si128(i162, kMask_x00000000ffffffff), + _mm_and_si128(i262, kMask_xffffffff00000000)); + // Write row 0: + _mm_storeu_si128((__m128i*)(dst + (y + iy) * width + x), o1); + _mm_storeu_si128((__m128i*)(dst + (y + iy) * width + x + 4), o2); + // Write row 1: + _mm_storeu_si128((__m128i*)(dst + (y + iy + 1) * width + x), o3); + _mm_storeu_si128((__m128i*)(dst + (y + iy + 1) * width + x + 4), o4); + } + } + } +} + +static void TexDecoder_DecodeImpl_I8_SSSE3(u32* dst, const u8* src, int width, int height, + int texformat, const u8* tlut, TlutFormat tlutfmt, + int Wsteps4, int Wsteps8) +{ +#if _M_SSE >= 0x301 + // xsacha optimized with SSSE3 intrinsics + // Produces a ~10% speed improvement over SSE2 implementation + for (int y = 0; y < height; y += 4) + { + for (int x = 0, yStep = (y / 4) * Wsteps8; x < width; x += 8, yStep++) + { + for (int iy = 0, xStep = 4 * yStep; iy < 4; ++iy, xStep++) + { + const __m128i mask3210 = _mm_set_epi8(3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0); + + const __m128i mask7654 = _mm_set_epi8(7, 7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4); + __m128i *quaddst, r, rgba0, rgba1; + // Load 64 bits from `src` into an __m128i with upper 64 bits zeroed: (0000 0000 hgfe dcba) + r = _mm_loadl_epi64((const __m128i*)(src + 8 * xStep)); + // Shuffle select bytes to expand from (0000 0000 hgfe dcba) to: + rgba0 = _mm_shuffle_epi8(r, mask3210); // (dddd cccc bbbb aaaa) + rgba1 = _mm_shuffle_epi8(r, mask7654); // (hhhh gggg ffff eeee) + + quaddst = (__m128i*)(dst + (y + iy) * width + x); + _mm_storeu_si128(quaddst, rgba0); + _mm_storeu_si128(quaddst + 1, rgba1); + } + } + } +#endif +} + +static void TexDecoder_DecodeImpl_I8(u32* dst, const u8* src, int width, int height, int texformat, + const u8* tlut, TlutFormat tlutfmt, int Wsteps4, int Wsteps8) +{ + // JSD optimized with SSE2 intrinsics. + // Produces an ~86% speed improvement over reference C implementation. + for (int y = 0; y < height; y += 4) + { + for (int x = 0, yStep = (y / 4) * Wsteps8; x < width; x += 8, yStep++) + { + // Each loop iteration processes 4 rows from 4 64-bit reads. + const u8* src2 = src + 32 * yStep; + // TODO: is it more efficient to group the loads together sequentially and also the stores + // at the end? _mm_stream instead of _mm_store on my AMD Phenom II x410 made performance + // significantly WORSE, so I went with _mm_stores. Perhaps there is some edge case here + // creating the terrible performance or we're not aligned to 16-byte boundaries. I don't know. + __m128i* quaddst; + + // Load 64 bits from `src` into an __m128i with upper 64 bits zeroed: (0000 0000 hgfe dcba) + const __m128i r0 = _mm_loadl_epi64((const __m128i*)src2); + // Shuffle low 64-bits with itself to expand from (0000 0000 hgfe dcba) to (hhgg ffee ddcc + // bbaa) + const __m128i r1 = _mm_unpacklo_epi8(r0, r0); + + // Shuffle low 64-bits with itself to expand from (hhgg ffee ddcc bbaa) to (dddd cccc bbbb + // aaaa) + const __m128i rgba0 = _mm_unpacklo_epi8(r1, r1); + // Shuffle hi 64-bits with itself to expand from (hhgg ffee ddcc bbaa) to (hhhh gggg ffff + // eeee) + const __m128i rgba1 = _mm_unpackhi_epi8(r1, r1); + + // Store (dddd cccc bbbb aaaa) out: + quaddst = (__m128i*)(dst + (y + 0) * width + x); + _mm_storeu_si128(quaddst, rgba0); + // Store (hhhh gggg ffff eeee) out: + _mm_storeu_si128(quaddst + 1, rgba1); + + // Load 64 bits from `src` into an __m128i with upper 64 bits zeroed: (0000 0000 hgfe dcba) + src2 += 8; + const __m128i r2 = _mm_loadl_epi64((const __m128i*)src2); + // Shuffle low 64-bits with itself to expand from (0000 0000 hgfe dcba) to (hhgg ffee ddcc + // bbaa) + const __m128i r3 = _mm_unpacklo_epi8(r2, r2); + + // Shuffle low 64-bits with itself to expand from (hhgg ffee ddcc bbaa) to (dddd cccc bbbb + // aaaa) + const __m128i rgba2 = _mm_unpacklo_epi8(r3, r3); + // Shuffle hi 64-bits with itself to expand from (hhgg ffee ddcc bbaa) to (hhhh gggg ffff + // eeee) + const __m128i rgba3 = _mm_unpackhi_epi8(r3, r3); + + // Store (dddd cccc bbbb aaaa) out: + quaddst = (__m128i*)(dst + (y + 1) * width + x); + _mm_storeu_si128(quaddst, rgba2); + // Store (hhhh gggg ffff eeee) out: + _mm_storeu_si128(quaddst + 1, rgba3); + + // Load 64 bits from `src` into an __m128i with upper 64 bits zeroed: (0000 0000 hgfe dcba) + src2 += 8; + const __m128i r4 = _mm_loadl_epi64((const __m128i*)src2); + // Shuffle low 64-bits with itself to expand from (0000 0000 hgfe dcba) to (hhgg ffee ddcc + // bbaa) + const __m128i r5 = _mm_unpacklo_epi8(r4, r4); + + // Shuffle low 64-bits with itself to expand from (hhgg ffee ddcc bbaa) to (dddd cccc bbbb + // aaaa) + const __m128i rgba4 = _mm_unpacklo_epi8(r5, r5); + // Shuffle hi 64-bits with itself to expand from (hhgg ffee ddcc bbaa) to (hhhh gggg ffff + // eeee) + const __m128i rgba5 = _mm_unpackhi_epi8(r5, r5); + + // Store (dddd cccc bbbb aaaa) out: + quaddst = (__m128i*)(dst + (y + 2) * width + x); + _mm_storeu_si128(quaddst, rgba4); + // Store (hhhh gggg ffff eeee) out: + _mm_storeu_si128(quaddst + 1, rgba5); + + // Load 64 bits from `src` into an __m128i with upper 64 bits zeroed: (0000 0000 hgfe dcba) + src2 += 8; + const __m128i r6 = _mm_loadl_epi64((const __m128i*)src2); + // Shuffle low 64-bits with itself to expand from (0000 0000 hgfe dcba) to (hhgg ffee ddcc + // bbaa) + const __m128i r7 = _mm_unpacklo_epi8(r6, r6); + + // Shuffle low 64-bits with itself to expand from (hhgg ffee ddcc bbaa) to (dddd cccc bbbb + // aaaa) + const __m128i rgba6 = _mm_unpacklo_epi8(r7, r7); + // Shuffle hi 64-bits with itself to expand from (hhgg ffee ddcc bbaa) to (hhhh gggg ffff + // eeee) + const __m128i rgba7 = _mm_unpackhi_epi8(r7, r7); + + // Store (dddd cccc bbbb aaaa) out: + quaddst = (__m128i*)(dst + (y + 3) * width + x); + _mm_storeu_si128(quaddst, rgba6); + // Store (hhhh gggg ffff eeee) out: + _mm_storeu_si128(quaddst + 1, rgba7); + } + } +} + +static void TexDecoder_DecodeImpl_C8(u32* dst, const u8* src, int width, int height, int texformat, + const u8* tlut, TlutFormat tlutfmt, int Wsteps4, int Wsteps8) +{ + switch (tlutfmt) + { + case GX_TL_RGB5A3: { for (int y = 0; y < height; y += 4) for (int x = 0, yStep = (y / 4) * Wsteps8; x < width; x += 8, yStep++) for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++) - DecodeBytes_IA4(dst + (y + iy) * width + x, src + 8 * xStep); + DecodeBytes_C8_RGB5A3((u32*)dst + (y + iy) * width + x, src + 8 * xStep, tlut); } break; - case GX_TF_IA8: + + case GX_TL_IA8: { -#if _M_SSE >= 0x301 - // xsacha optimized with SSSE3 intrinsics. - // Produces an ~50% speed improvement over SSE2 implementation. - if (cpu_info.bSSSE3) - { - for (int y = 0; y < height; y += 4) - for (int x = 0, yStep = (y / 4) * Wsteps4; x < width; x += 4, yStep++) - for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++) - { - const __m128i mask = _mm_set_epi8(6, 7, 7, 7, 4, 5, 5, 5, 2, 3, 3, 3, 0, 1, 1, 1); - // Load 4x 16-bit IA8 samples from `src` into an __m128i with upper 64 bits zeroed: - // (0000 0000 hgfe dcba) - const __m128i r0 = _mm_loadl_epi64((const __m128i*)(src + 8 * xStep)); - // Shuffle to (ghhh efff cddd abbb) - const __m128i r1 = _mm_shuffle_epi8(r0, mask); - _mm_storeu_si128((__m128i*)(dst + (y + iy) * width + x), r1); - } - } - else -#endif - // JSD optimized with SSE2 intrinsics. - // Produces an ~80% speed improvement over reference C implementation. - { - const __m128i kMask_xf0 = _mm_set_epi32(0x00000000L, 0x00000000L, 0xff00ff00L, 0xff00ff00L); - const __m128i kMask_x0f = _mm_set_epi32(0x00000000L, 0x00000000L, 0x00ff00ffL, 0x00ff00ffL); - const __m128i kMask_xf000 = _mm_set_epi32(0xff000000L, 0xff000000L, 0xff000000L, 0xff000000L); - const __m128i kMask_x0fff = _mm_set_epi32(0x00ffffffL, 0x00ffffffL, 0x00ffffffL, 0x00ffffffL); - for (int y = 0; y < height; y += 4) - for (int x = 0, yStep = (y / 4) * Wsteps4; x < width; x += 4, yStep++) - for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++) - { - // Expands a 16-bit "IA" to a 32-bit "AIII". Each char is an 8-bit value. - - // Load 4x 16-bit IA8 samples from `src` into an __m128i with upper 64 bits zeroed: - // (0000 0000 hgfe dcba) - const __m128i r0 = _mm_loadl_epi64((const __m128i*)(src + 8 * xStep)); - - // Logical shift all 16-bit words right by 8 bits (0000 0000 hgfe dcba) to (0000 0000 - // 0h0f 0d0b) - // This gets us only the I components. - const __m128i i0 = _mm_srli_epi16(r0, 8); - - // Now join up the I components from their original positions but mask out the A - // components. - // (0000 0000 hgfe dcba) & kMask_xFF00 -> (0000 0000 h0f0 d0b0) - // (0000 0000 h0f0 d0b0) | (0000 0000 0h0f 0d0b) -> (0000 0000 hhff ddbb) - const __m128i i1 = _mm_or_si128(_mm_and_si128(r0, kMask_xf0), i0); - - // Shuffle low 64-bits with itself to expand from (0000 0000 hhff ddbb) to (hhhh ffff - // dddd bbbb) - const __m128i i2 = _mm_unpacklo_epi8(i1, i1); - // (hhhh ffff dddd bbbb) & kMask_x0fff -> (0hhh 0fff 0ddd 0bbb) - const __m128i i3 = _mm_and_si128(i2, kMask_x0fff); - - // Now that we have the I components in 32-bit word form, time work out the A components - // into - // their final positions. - - // (0000 0000 hgfe dcba) & kMask_x00FF -> (0000 0000 0g0e 0c0a) - const __m128i a0 = _mm_and_si128(r0, kMask_x0f); - // (0000 0000 0g0e 0c0a) -> (00gg 00ee 00cc 00aa) - const __m128i a1 = _mm_unpacklo_epi8(a0, a0); - // (00gg 00ee 00cc 00aa) << 16 -> (gg00 ee00 cc00 aa00) - const __m128i a2 = _mm_slli_epi32(a1, 16); - // (gg00 ee00 cc00 aa00) & kMask_xf000 -> (g000 e000 c000 a000) - const __m128i a3 = _mm_and_si128(a2, kMask_xf000); - - // Simply OR up i3 and a3 now and that's our result: - // (0hhh 0fff 0ddd 0bbb) | (g000 e000 c000 a000) -> (ghhh efff cddd abbb) - const __m128i r1 = _mm_or_si128(i3, a3); - - // write out the 128-bit result: - _mm_storeu_si128((__m128i*)(dst + (y + iy) * width + x), r1); - } - } + for (int y = 0; y < height; y += 4) + for (int x = 0, yStep = (y / 4) * Wsteps8; x < width; x += 8, yStep++) + for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++) + DecodeBytes_C8_IA8(dst + (y + iy) * width + x, src + 8 * xStep, tlut); } break; - case GX_TF_C14X2: - if (tlutfmt == GX_TL_RGB5A3) - { - for (int y = 0; y < height; y += 4) - for (int x = 0, yStep = (y / 4) * Wsteps4; x < width; x += 4, yStep++) - for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++) - DecodeBytes_C14X2_RGB5A3(dst + (y + iy) * width + x, (u16*)(src + 8 * xStep), tlut); - } - else if (tlutfmt == GX_TL_IA8) - { - for (int y = 0; y < height; y += 4) - for (int x = 0, yStep = (y / 4) * Wsteps4; x < width; x += 4, yStep++) - for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++) - DecodeBytes_C14X2_IA8(dst + (y + iy) * width + x, (u16*)(src + 8 * xStep), tlut); - } - else if (tlutfmt == GX_TL_RGB565) - { - for (int y = 0; y < height; y += 4) - for (int x = 0, yStep = (y / 4) * Wsteps4; x < width; x += 4, yStep++) - for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++) - DecodeBytes_C14X2_RGB565(dst + (y + iy) * width + x, (u16*)(src + 8 * xStep), tlut); - } + + case GX_TL_RGB565: + { + for (int y = 0; y < height; y += 4) + for (int x = 0, yStep = (y / 4) * Wsteps8; x < width; x += 8, yStep++) + for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++) + DecodeBytes_C8_RGB565(dst + (y + iy) * width + x, src + 8 * xStep, tlut); + } + break; + + default: break; - case GX_TF_RGB565: + } +} + +static void TexDecoder_DecodeImpl_IA4(u32* dst, const u8* src, int width, int height, int texformat, + const u8* tlut, TlutFormat tlutfmt, int Wsteps4, int Wsteps8) +{ + for (int y = 0; y < height; y += 4) + { + for (int x = 0, yStep = (y / 4) * Wsteps8; x < width; x += 8, yStep++) + { + for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++) + { + DecodeBytes_IA4(dst + (y + iy) * width + x, src + 8 * xStep); + } + } + } +} + +static void TexDecoder_DecodeImpl_IA8_SSSE3(u32* dst, const u8* src, int width, int height, + int texformat, const u8* tlut, TlutFormat tlutfmt, + int Wsteps4, int Wsteps8) +{ +#if _M_SSE >= 0x301 + // xsacha optimized with SSSE3 intrinsics. + // Produces an ~50% speed improvement over SSE2 implementation. + for (int y = 0; y < height; y += 4) + { + for (int x = 0, yStep = (y / 4) * Wsteps4; x < width; x += 4, yStep++) + { + for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++) + { + const __m128i mask = _mm_set_epi8(6, 7, 7, 7, 4, 5, 5, 5, 2, 3, 3, 3, 0, 1, 1, 1); + // Load 4x 16-bit IA8 samples from `src` into an __m128i with upper 64 bits zeroed: + // (0000 0000 hgfe dcba) + const __m128i r0 = _mm_loadl_epi64((const __m128i*)(src + 8 * xStep)); + // Shuffle to (ghhh efff cddd abbb) + const __m128i r1 = _mm_shuffle_epi8(r0, mask); + _mm_storeu_si128((__m128i*)(dst + (y + iy) * width + x), r1); + } + } + } +#endif +} + +static void TexDecoder_DecodeImpl_IA8(u32* dst, const u8* src, int width, int height, int texformat, + const u8* tlut, TlutFormat tlutfmt, int Wsteps4, int Wsteps8) +{ + // JSD optimized with SSE2 intrinsics. + // Produces an ~80% speed improvement over reference C implementation. + const __m128i kMask_xf0 = _mm_set_epi32(0x00000000L, 0x00000000L, 0xff00ff00L, 0xff00ff00L); + const __m128i kMask_x0f = _mm_set_epi32(0x00000000L, 0x00000000L, 0x00ff00ffL, 0x00ff00ffL); + const __m128i kMask_xf000 = _mm_set_epi32(0xff000000L, 0xff000000L, 0xff000000L, 0xff000000L); + const __m128i kMask_x0fff = _mm_set_epi32(0x00ffffffL, 0x00ffffffL, 0x00ffffffL, 0x00ffffffL); + for (int y = 0; y < height; y += 4) + { + for (int x = 0, yStep = (y / 4) * Wsteps4; x < width; x += 4, yStep++) + { + for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++) + { + // Expands a 16-bit "IA" to a 32-bit "AIII". Each char is an 8-bit value. + + // Load 4x 16-bit IA8 samples from `src` into an __m128i with upper 64 bits zeroed: + // (0000 0000 hgfe dcba) + const __m128i r0 = _mm_loadl_epi64((const __m128i*)(src + 8 * xStep)); + + // Logical shift all 16-bit words right by 8 bits (0000 0000 hgfe dcba) to (0000 0000 + // 0h0f 0d0b). This gets us only the I components. + const __m128i i0 = _mm_srli_epi16(r0, 8); + + // Now join up the I components from their original positions but mask out the A + // components. + // (0000 0000 hgfe dcba) & kMask_xFF00 -> (0000 0000 h0f0 d0b0) + // (0000 0000 h0f0 d0b0) | (0000 0000 0h0f 0d0b) -> (0000 0000 hhff ddbb) + const __m128i i1 = _mm_or_si128(_mm_and_si128(r0, kMask_xf0), i0); + + // Shuffle low 64-bits with itself to expand from (0000 0000 hhff ddbb) to (hhhh ffff + // dddd bbbb) + const __m128i i2 = _mm_unpacklo_epi8(i1, i1); + // (hhhh ffff dddd bbbb) & kMask_x0fff -> (0hhh 0fff 0ddd 0bbb) + const __m128i i3 = _mm_and_si128(i2, kMask_x0fff); + + // Now that we have the I components in 32-bit word form, time work out the A components + // into their final positions. + + // (0000 0000 hgfe dcba) & kMask_x00FF -> (0000 0000 0g0e 0c0a) + const __m128i a0 = _mm_and_si128(r0, kMask_x0f); + // (0000 0000 0g0e 0c0a) -> (00gg 00ee 00cc 00aa) + const __m128i a1 = _mm_unpacklo_epi8(a0, a0); + // (00gg 00ee 00cc 00aa) << 16 -> (gg00 ee00 cc00 aa00) + const __m128i a2 = _mm_slli_epi32(a1, 16); + // (gg00 ee00 cc00 aa00) & kMask_xf000 -> (g000 e000 c000 a000) + const __m128i a3 = _mm_and_si128(a2, kMask_xf000); + + // Simply OR up i3 and a3 now and that's our result: + // (0hhh 0fff 0ddd 0bbb) | (g000 e000 c000 a000) -> (ghhh efff cddd abbb) + const __m128i r1 = _mm_or_si128(i3, a3); + + // write out the 128-bit result: + _mm_storeu_si128((__m128i*)(dst + (y + iy) * width + x), r1); + } + } + } +} + +static void TexDecoder_DecodeImpl_C14X2(u32* dst, const u8* src, int width, int height, + int texformat, const u8* tlut, TlutFormat tlutfmt, + int Wsteps4, int Wsteps8) +{ + switch (tlutfmt) + { + case GX_TL_RGB5A3: { - // JSD optimized with SSE2 intrinsics. - // Produces an ~78% speed improvement over reference C implementation. - const __m128i kMaskR0 = _mm_set1_epi32(0x000000F8); - const __m128i kMaskG0 = _mm_set1_epi32(0x0000FC00); - const __m128i kMaskG1 = _mm_set1_epi32(0x00000300); - const __m128i kMaskB0 = _mm_set1_epi32(0x00F80000); - const __m128i kAlpha = _mm_set1_epi32(0xFF000000); for (int y = 0; y < height; y += 4) for (int x = 0, yStep = (y / 4) * Wsteps4; x < width; x += 4, yStep++) for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++) - { - __m128i* dxtsrc = (__m128i*)(src + 8 * xStep); - // Load 4x 16-bit colors: (0000 0000 hgfe dcba) - // where hg, fe, ba, and dc are 16-bit colors in big-endian order - const __m128i rgb565x4 = _mm_loadl_epi64(dxtsrc); - - // The big-endian 16-bit colors `ba` and `dc` look like 0b_gggBBBbb_RRRrrGGg in a little - // endian xmm register - // Unpack `hgfe dcba` to `hhgg ffee ddcc bbaa`, where each 32-bit word is now - // 0b_gggBBBbb_RRRrrGGg_gggBBBbb_RRRrrGGg - const __m128i c0 = _mm_unpacklo_epi16(rgb565x4, rgb565x4); - - // swizzle 0b_gggBBBbb_RRRrrGGg_gggBBBbb_RRRrrGGg - // to 0b_11111111_BBBbbBBB_GGggggGG_RRRrrRRR - - // 0b_gggBBBbb_RRRrrGGg_gggBBBbb_RRRrrGGg & - // 0b_00000000_00000000_00000000_11111000 = - // 0b_00000000_00000000_00000000_RRRrr000 - const __m128i r0 = _mm_and_si128(c0, kMaskR0); - // 0b_00000000_00000000_00000000_RRRrr000 >> 5 [32] = - // 0b_00000000_00000000_00000000_00000RRR - const __m128i r1 = _mm_srli_epi32(r0, 5); - - // 0b_gggBBBbb_RRRrrGGg_gggBBBbb_RRRrrGGg >> 3 [32] = - // 0b_000gggBB_BbbRRRrr_GGggggBB_BbbRRRrr & - // 0b_00000000_00000000_11111100_00000000 = - // 0b_00000000_00000000_GGgggg00_00000000 - const __m128i gtmp = _mm_srli_epi32(c0, 3); - const __m128i g0 = _mm_and_si128(gtmp, kMaskG0); - // 0b_GGggggBB_BbbRRRrr_GGggggBB_Bbb00000 >> 6 [32] = - // 0b_000000GG_ggggBBBb_bRRRrrGG_ggggBBBb & - // 0b_00000000_00000000_00000011_00000000 = - // 0b_00000000_00000000_000000GG_00000000 = - const __m128i g1 = _mm_and_si128(_mm_srli_epi32(gtmp, 6), kMaskG1); - - // 0b_gggBBBbb_RRRrrGGg_gggBBBbb_RRRrrGGg >> 5 [32] = - // 0b_00000ggg_BBBbbRRR_rrGGgggg_BBBbbRRR & - // 0b_00000000_11111000_00000000_00000000 = - // 0b_00000000_BBBbb000_00000000_00000000 - const __m128i b0 = _mm_and_si128(_mm_srli_epi32(c0, 5), kMaskB0); - // 0b_00000000_BBBbb000_00000000_00000000 >> 5 [16] = - // 0b_00000000_00000BBB_00000000_00000000 - const __m128i b1 = _mm_srli_epi16(b0, 5); - - // OR together the final RGB bits and the alpha component: - const __m128i abgr888x4 = - _mm_or_si128(_mm_or_si128(_mm_or_si128(r0, r1), _mm_or_si128(g0, g1)), - _mm_or_si128(_mm_or_si128(b0, b1), kAlpha)); - - __m128i* ptr = (__m128i*)(dst + (y + iy) * width + x); - _mm_storeu_si128(ptr, abgr888x4); - } + DecodeBytes_C14X2_RGB5A3(dst + (y + iy) * width + x, (u16*)(src + 8 * xStep), tlut); } break; - case GX_TF_RGB5A3: + + case GX_TL_IA8: { - const __m128i kMask_x1f = _mm_set1_epi32(0x0000001fL); - const __m128i kMask_x0f = _mm_set1_epi32(0x0000000fL); - const __m128i kMask_x07 = _mm_set1_epi32(0x00000007L); - // This is the hard-coded 0xFF alpha constant that is ORed in place after the RGB are calculated - // for the RGB555 case when (s[x] & 0x8000) is true for all pixels. - const __m128i aVxff00 = _mm_set1_epi32(0xFF000000L); - -#if _M_SSE >= 0x301 - // xsacha optimized with SSSE3 intrinsics (2 in 4 cases) - // Produces a ~10% speed improvement over SSE2 implementation - if (cpu_info.bSSSE3) - { - for (int y = 0; y < height; y += 4) - for (int x = 0, yStep = (y / 4) * Wsteps4; x < width; x += 4, yStep++) - for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++) - { - u32* newdst = dst + (y + iy) * width + x; - const __m128i mask = _mm_set_epi8(-128, -128, 6, 7, -128, -128, 4, 5, -128, -128, 2, 3, - -128, -128, 0, 1); - const __m128i valV = - _mm_shuffle_epi8(_mm_loadl_epi64((const __m128i*)(src + 8 * xStep)), mask); - int cmp = - _mm_movemask_epi8(valV); // MSB: 0x2 = val0; 0x20=val1; 0x200 = val2; 0x2000=val3 - if ((cmp & 0x2222) == - 0x2222) // SSSE3 case #1: all 4 pixels are in RGB555 and alpha = 0xFF. - { - // Swizzle bits: 00012345 -> 12345123 - - // r0 = (((val0>>10) & 0x1f) << 3) | (((val0>>10) & 0x1f) >> 2); - const __m128i tmprV = _mm_and_si128(_mm_srli_epi16(valV, 10), kMask_x1f); - const __m128i rV = _mm_or_si128(_mm_slli_epi16(tmprV, 3), _mm_srli_epi16(tmprV, 2)); - - // g0 = (((val0>>5 ) & 0x1f) << 3) | (((val0>>5 ) & 0x1f) >> 2); - const __m128i tmpgV = _mm_and_si128(_mm_srli_epi16(valV, 5), kMask_x1f); - const __m128i gV = _mm_or_si128(_mm_slli_epi16(tmpgV, 3), _mm_srli_epi16(tmpgV, 2)); - - // b0 = (((val0 ) & 0x1f) << 3) | (((val0 ) & 0x1f) >> 2); - const __m128i tmpbV = _mm_and_si128(valV, kMask_x1f); - const __m128i bV = _mm_or_si128(_mm_slli_epi16(tmpbV, 3), _mm_srli_epi16(tmpbV, 2)); - - // newdst[0] = r0 | (g0 << 8) | (b0 << 16) | (a0 << 24); - const __m128i final = _mm_or_si128(_mm_or_si128(rV, _mm_slli_epi32(gV, 8)), - _mm_or_si128(_mm_slli_epi32(bV, 16), aVxff00)); - _mm_storeu_si128((__m128i*)newdst, final); - } - else if (!(cmp & 0x2222)) // SSSE3 case #2: all 4 pixels are in RGBA4443. - { - // Swizzle bits: 00001234 -> 12341234 - - // r0 = (((val0>>8 ) & 0xf) << 4) | ((val0>>8 ) & 0xf); - const __m128i tmprV = _mm_and_si128(_mm_srli_epi16(valV, 8), kMask_x0f); - const __m128i rV = _mm_or_si128(_mm_slli_epi16(tmprV, 4), tmprV); - - // g0 = (((val0>>4 ) & 0xf) << 4) | ((val0>>4 ) & 0xf); - const __m128i tmpgV = _mm_and_si128(_mm_srli_epi16(valV, 4), kMask_x0f); - const __m128i gV = _mm_or_si128(_mm_slli_epi16(tmpgV, 4), tmpgV); - - // b0 = (((val0 ) & 0xf) << 4) | ((val0 ) & 0xf); - const __m128i tmpbV = _mm_and_si128(valV, kMask_x0f); - const __m128i bV = _mm_or_si128(_mm_slli_epi16(tmpbV, 4), tmpbV); - // a0 = (((val0>>12) & 0x7) << 5) | (((val0>>12) & 0x7) << 2) | (((val0>>12) & 0x7) >> - // 1); - const __m128i tmpaV = _mm_and_si128(_mm_srli_epi16(valV, 12), kMask_x07); - const __m128i aV = - _mm_or_si128(_mm_slli_epi16(tmpaV, 5), - _mm_or_si128(_mm_slli_epi16(tmpaV, 2), _mm_srli_epi16(tmpaV, 1))); - - // newdst[0] = r0 | (g0 << 8) | (b0 << 16) | (a0 << 24); - const __m128i final = - _mm_or_si128(_mm_or_si128(rV, _mm_slli_epi32(gV, 8)), - _mm_or_si128(_mm_slli_epi32(bV, 16), _mm_slli_epi32(aV, 24))); - _mm_storeu_si128((__m128i*)newdst, final); - } - else - { - // TODO: Vectorise (Either 4-way branch or do both and select is better than this) - u32* vals = (u32*)&valV; - int r, g, b, a; - for (int i = 0; i < 4; ++i) - { - if (vals[i] & 0x8000) - { - // Swizzle bits: 00012345 -> 12345123 - r = (((vals[i] >> 10) & 0x1f) << 3) | (((vals[i] >> 10) & 0x1f) >> 2); - g = (((vals[i] >> 5) & 0x1f) << 3) | (((vals[i] >> 5) & 0x1f) >> 2); - b = (((vals[i]) & 0x1f) << 3) | (((vals[i]) & 0x1f) >> 2); - a = 0xFF; - } - else - { - a = (((vals[i] >> 12) & 0x7) << 5) | (((vals[i] >> 12) & 0x7) << 2) | - (((vals[i] >> 12) & 0x7) >> 1); - // Swizzle bits: 00001234 -> 12341234 - r = (((vals[i] >> 8) & 0xf) << 4) | ((vals[i] >> 8) & 0xf); - g = (((vals[i] >> 4) & 0xf) << 4) | ((vals[i] >> 4) & 0xf); - b = (((vals[i]) & 0xf) << 4) | ((vals[i]) & 0xf); - } - newdst[i] = r | (g << 8) | (b << 16) | (a << 24); - } - } - } - } - else -#endif - // JSD optimized with SSE2 intrinsics (2 in 4 cases) - // Produces a ~25% speed improvement over reference C implementation. - { - for (int y = 0; y < height; y += 4) - for (int x = 0, yStep = (y / 4) * Wsteps4; x < width; x += 4, yStep++) - for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++) - { - u32* newdst = dst + (y + iy) * width + x; - const u16* newsrc = (const u16*)(src + 8 * xStep); - - // TODO: weak point - const u16 val0 = Common::swap16(newsrc[0]); - const u16 val1 = Common::swap16(newsrc[1]); - const u16 val2 = Common::swap16(newsrc[2]); - const u16 val3 = Common::swap16(newsrc[3]); - - const __m128i valV = _mm_set_epi16(0, val3, 0, val2, 0, val1, 0, val0); - - // Need to check all 4 pixels' MSBs to ensure we can do data-parallelism: - if (((val0 & 0x8000) & (val1 & 0x8000) & (val2 & 0x8000) & (val3 & 0x8000)) == 0x8000) - { - // SSE2 case #1: all 4 pixels are in RGB555 and alpha = 0xFF. - - // Swizzle bits: 00012345 -> 12345123 - - // r0 = (((val0>>10) & 0x1f) << 3) | (((val0>>10) & 0x1f) >> 2); - const __m128i tmprV = _mm_and_si128(_mm_srli_epi16(valV, 10), kMask_x1f); - const __m128i rV = _mm_or_si128(_mm_slli_epi16(tmprV, 3), _mm_srli_epi16(tmprV, 2)); - - // g0 = (((val0>>5 ) & 0x1f) << 3) | (((val0>>5 ) & 0x1f) >> 2); - const __m128i tmpgV = _mm_and_si128(_mm_srli_epi16(valV, 5), kMask_x1f); - const __m128i gV = _mm_or_si128(_mm_slli_epi16(tmpgV, 3), _mm_srli_epi16(tmpgV, 2)); - - // b0 = (((val0 ) & 0x1f) << 3) | (((val0 ) & 0x1f) >> 2); - const __m128i tmpbV = _mm_and_si128(valV, kMask_x1f); - const __m128i bV = _mm_or_si128(_mm_slli_epi16(tmpbV, 3), _mm_srli_epi16(tmpbV, 2)); - - // newdst[0] = r0 | (g0 << 8) | (b0 << 16) | (a0 << 24); - const __m128i final = _mm_or_si128(_mm_or_si128(rV, _mm_slli_epi32(gV, 8)), - _mm_or_si128(_mm_slli_epi32(bV, 16), aVxff00)); - - // write the final result: - _mm_storeu_si128((__m128i*)newdst, final); - } - else if (((val0 & 0x8000) | (val1 & 0x8000) | (val2 & 0x8000) | (val3 & 0x8000)) == - 0x0000) - { - // SSE2 case #2: all 4 pixels are in RGBA4443. - - // Swizzle bits: 00001234 -> 12341234 - - // r0 = (((val0>>8 ) & 0xf) << 4) | ((val0>>8 ) & 0xf); - const __m128i tmprV = _mm_and_si128(_mm_srli_epi16(valV, 8), kMask_x0f); - const __m128i rV = _mm_or_si128(_mm_slli_epi16(tmprV, 4), tmprV); - - // g0 = (((val0>>4 ) & 0xf) << 4) | ((val0>>4 ) & 0xf); - const __m128i tmpgV = _mm_and_si128(_mm_srli_epi16(valV, 4), kMask_x0f); - const __m128i gV = _mm_or_si128(_mm_slli_epi16(tmpgV, 4), tmpgV); - - // b0 = (((val0 ) & 0xf) << 4) | ((val0 ) & 0xf); - const __m128i tmpbV = _mm_and_si128(valV, kMask_x0f); - const __m128i bV = _mm_or_si128(_mm_slli_epi16(tmpbV, 4), tmpbV); - - // a0 = (((val0>>12) & 0x7) << 5) | (((val0>>12) & 0x7) << 2) | (((val0>>12) & 0x7) >> - // 1); - const __m128i tmpaV = _mm_and_si128(_mm_srli_epi16(valV, 12), kMask_x07); - const __m128i aV = - _mm_or_si128(_mm_slli_epi16(tmpaV, 5), - _mm_or_si128(_mm_slli_epi16(tmpaV, 2), _mm_srli_epi16(tmpaV, 1))); - - // newdst[0] = r0 | (g0 << 8) | (b0 << 16) | (a0 << 24); - const __m128i final = - _mm_or_si128(_mm_or_si128(rV, _mm_slli_epi32(gV, 8)), - _mm_or_si128(_mm_slli_epi32(bV, 16), _mm_slli_epi32(aV, 24))); - - // write the final result: - _mm_storeu_si128((__m128i*)newdst, final); - } - else - { - // TODO: Vectorise (Either 4-way branch or do both and select is better than this) - u32* vals = (u32*)&valV; - int r, g, b, a; - for (int i = 0; i < 4; ++i) - { - if (vals[i] & 0x8000) - { - // Swizzle bits: 00012345 -> 12345123 - r = (((vals[i] >> 10) & 0x1f) << 3) | (((vals[i] >> 10) & 0x1f) >> 2); - g = (((vals[i] >> 5) & 0x1f) << 3) | (((vals[i] >> 5) & 0x1f) >> 2); - b = (((vals[i]) & 0x1f) << 3) | (((vals[i]) & 0x1f) >> 2); - a = 0xFF; - } - else - { - a = (((vals[i] >> 12) & 0x7) << 5) | (((vals[i] >> 12) & 0x7) << 2) | - (((vals[i] >> 12) & 0x7) >> 1); - // Swizzle bits: 00001234 -> 12341234 - r = (((vals[i] >> 8) & 0xf) << 4) | ((vals[i] >> 8) & 0xf); - g = (((vals[i] >> 4) & 0xf) << 4) | ((vals[i] >> 4) & 0xf); - b = (((vals[i]) & 0xf) << 4) | ((vals[i]) & 0xf); - } - newdst[i] = r | (g << 8) | (b << 16) | (a << 24); - } - } - } - } + for (int y = 0; y < height; y += 4) + for (int x = 0, yStep = (y / 4) * Wsteps4; x < width; x += 4, yStep++) + for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++) + DecodeBytes_C14X2_IA8(dst + (y + iy) * width + x, (u16*)(src + 8 * xStep), tlut); } break; - case GX_TF_RGBA8: // speed critical + + case GX_TL_RGB565: { -#if _M_SSE >= 0x301 - // xsacha optimized with SSSE3 instrinsics - // Produces a ~30% speed improvement over SSE2 implementation - if (cpu_info.bSSSE3) - { - for (int y = 0; y < height; y += 4) - for (int x = 0, yStep = (y / 4) * Wsteps4; x < width; x += 4, yStep++) - { - const u8* src2 = src + 64 * yStep; - const __m128i mask0312 = - _mm_set_epi8(12, 15, 13, 14, 8, 11, 9, 10, 4, 7, 5, 6, 0, 3, 1, 2); - const __m128i ar0 = _mm_loadu_si128((__m128i*)src2); - const __m128i ar1 = _mm_loadu_si128((__m128i*)src2 + 1); - const __m128i gb0 = _mm_loadu_si128((__m128i*)src2 + 2); - const __m128i gb1 = _mm_loadu_si128((__m128i*)src2 + 3); - - const __m128i rgba00 = _mm_shuffle_epi8(_mm_unpacklo_epi8(ar0, gb0), mask0312); - const __m128i rgba01 = _mm_shuffle_epi8(_mm_unpackhi_epi8(ar0, gb0), mask0312); - const __m128i rgba10 = _mm_shuffle_epi8(_mm_unpacklo_epi8(ar1, gb1), mask0312); - const __m128i rgba11 = _mm_shuffle_epi8(_mm_unpackhi_epi8(ar1, gb1), mask0312); - - __m128i* dst128 = (__m128i*)(dst + (y + 0) * width + x); - _mm_storeu_si128(dst128, rgba00); - dst128 = (__m128i*)(dst + (y + 1) * width + x); - _mm_storeu_si128(dst128, rgba01); - dst128 = (__m128i*)(dst + (y + 2) * width + x); - _mm_storeu_si128(dst128, rgba10); - dst128 = (__m128i*)(dst + (y + 3) * width + x); - _mm_storeu_si128(dst128, rgba11); - } - } - else -#endif - // JSD optimized with SSE2 intrinsics - // Produces a ~68% speed improvement over reference C implementation. - { - for (int y = 0; y < height; y += 4) - for (int x = 0, yStep = (y / 4) * Wsteps4; x < width; x += 4, yStep++) - { - // Input is divided up into 16-bit words. The texels are split up into AR and GB - // components where all - // AR components come grouped up first in 32 bytes followed by the GB components in 32 - // bytes. We are - // processing 16 texels per each loop iteration, numbered from 0-f. - // - // Convention is: - // one byte is [component-name texel-number] - // __m128i is (4-bytes 4-bytes 4-bytes 4-bytes) - // - // Input is ([A 7][R 7][A 6][R 6] [A 5][R 5][A 4][R 4] [A 3][R 3][A 2][R 2] [A 1][R 1][A - // 0][R 0]) - // ([A f][R f][A e][R e] [A d][R d][A c][R c] [A b][R b][A a][R a] [A 9][R 9][A - // 8][R 8]) - // ([G 7][B 7][G 6][B 6] [G 5][B 5][G 4][B 4] [G 3][B 3][G 2][B 2] [G 1][B 1][G - // 0][B 0]) - // ([G f][B f][G e][B e] [G d][B d][G c][B c] [G b][B b][G a][B a] [G 9][B 9][G - // 8][B 8]) - // - // Output is (RGBA3 RGBA2 RGBA1 RGBA0) - // (RGBA7 RGBA6 RGBA5 RGBA4) - // (RGBAb RGBAa RGBA9 RGBA8) - // (RGBAf RGBAe RGBAd RGBAc) - const u8* src2 = src + 64 * yStep; - // Loads the 1st half of AR components ([A 7][R 7][A 6][R 6] [A 5][R 5][A 4][R 4] [A 3][R - // 3][A 2][R 2] [A 1][R 1][A 0][R 0]) - const __m128i ar0 = _mm_loadu_si128((__m128i*)src2); - // Loads the 2nd half of AR components ([A f][R f][A e][R e] [A d][R d][A c][R c] [A b][R - // b][A a][R a] [A 9][R 9][A 8][R 8]) - const __m128i ar1 = _mm_loadu_si128((__m128i*)src2 + 1); - // Loads the 1st half of GB components ([G 7][B 7][G 6][B 6] [G 5][B 5][G 4][B 4] [G 3][B - // 3][G 2][B 2] [G 1][B 1][G 0][B 0]) - const __m128i gb0 = _mm_loadu_si128((__m128i*)src2 + 2); - // Loads the 2nd half of GB components ([G f][B f][G e][B e] [G d][B d][G c][B c] [G b][B - // b][G a][B a] [G 9][B 9][G 8][B 8]) - const __m128i gb1 = _mm_loadu_si128((__m128i*)src2 + 3); - __m128i rgba00, rgba01, rgba10, rgba11; - const __m128i kMask_x000f = - _mm_set_epi32(0x000000FFL, 0x000000FFL, 0x000000FFL, 0x000000FFL); - const __m128i kMask_xf000 = - _mm_set_epi32(0xFF000000L, 0xFF000000L, 0xFF000000L, 0xFF000000L); - const __m128i kMask_x0ff0 = - _mm_set_epi32(0x00FFFF00L, 0x00FFFF00L, 0x00FFFF00L, 0x00FFFF00L); - // Expand the AR components to fill out 32-bit words: - // ([A 7][R 7][A 6][R 6] [A 5][R 5][A 4][R 4] [A 3][R 3][A 2][R 2] [A 1][R 1][A 0][R 0]) - // -> ([A 3][A 3][R 3][R 3] [A 2][A 2][R 2][R 2] [A 1][A 1][R 1][R 1] [A 0][A 0][R 0][R - // 0]) - const __m128i aarr00 = _mm_unpacklo_epi8(ar0, ar0); - // ([A 7][R 7][A 6][R 6] [A 5][R 5][A 4][R 4] [A 3][R 3][A 2][R 2] [A 1][R 1][A 0][R 0]) - // -> ([A 7][A 7][R 7][R 7] [A 6][A 6][R 6][R 6] [A 5][A 5][R 5][R 5] [A 4][A 4][R 4][R - // 4]) - const __m128i aarr01 = _mm_unpackhi_epi8(ar0, ar0); - // ([A f][R f][A e][R e] [A d][R d][A c][R c] [A b][R b][A a][R a] [A 9][R 9][A 8][R 8]) - // -> ([A b][A b][R b][R b] [A a][A a][R a][R a] [A 9][A 9][R 9][R 9] [A 8][A 8][R 8][R - // 8]) - const __m128i aarr10 = _mm_unpacklo_epi8(ar1, ar1); - // ([A f][R f][A e][R e] [A d][R d][A c][R c] [A b][R b][A a][R a] [A 9][R 9][A 8][R 8]) - // -> ([A f][A f][R f][R f] [A e][A e][R e][R e] [A d][A d][R d][R d] [A c][A c][R c][R - // c]) - const __m128i aarr11 = _mm_unpackhi_epi8(ar1, ar1); - - // Move A right 16 bits and mask off everything but the lowest 8 bits to get A in its - // final place: - const __m128i ___a00 = _mm_and_si128(_mm_srli_epi32(aarr00, 16), kMask_x000f); - // Move R left 16 bits and mask off everything but the highest 8 bits to get R in its - // final place: - const __m128i r___00 = _mm_and_si128(_mm_slli_epi32(aarr00, 16), kMask_xf000); - // OR the two together to get R and A in their final places: - const __m128i r__a00 = _mm_or_si128(r___00, ___a00); - - const __m128i ___a01 = _mm_and_si128(_mm_srli_epi32(aarr01, 16), kMask_x000f); - const __m128i r___01 = _mm_and_si128(_mm_slli_epi32(aarr01, 16), kMask_xf000); - const __m128i r__a01 = _mm_or_si128(r___01, ___a01); - - const __m128i ___a10 = _mm_and_si128(_mm_srli_epi32(aarr10, 16), kMask_x000f); - const __m128i r___10 = _mm_and_si128(_mm_slli_epi32(aarr10, 16), kMask_xf000); - const __m128i r__a10 = _mm_or_si128(r___10, ___a10); - - const __m128i ___a11 = _mm_and_si128(_mm_srli_epi32(aarr11, 16), kMask_x000f); - const __m128i r___11 = _mm_and_si128(_mm_slli_epi32(aarr11, 16), kMask_xf000); - const __m128i r__a11 = _mm_or_si128(r___11, ___a11); - - // Expand the GB components to fill out 32-bit words: - // ([G 7][B 7][G 6][B 6] [G 5][B 5][G 4][B 4] [G 3][B 3][G 2][B 2] [G 1][B 1][G 0][B 0]) - // -> ([G 3][G 3][B 3][B 3] [G 2][G 2][B 2][B 2] [G 1][G 1][B 1][B 1] [G 0][G 0][B 0][B - // 0]) - const __m128i ggbb00 = _mm_unpacklo_epi8(gb0, gb0); - // ([G 7][B 7][G 6][B 6] [G 5][B 5][G 4][B 4] [G 3][B 3][G 2][B 2] [G 1][B 1][G 0][B 0]) - // -> ([G 7][G 7][B 7][B 7] [G 6][G 6][B 6][B 6] [G 5][G 5][B 5][B 5] [G 4][G 4][B 4][B - // 4]) - const __m128i ggbb01 = _mm_unpackhi_epi8(gb0, gb0); - // ([G f][B f][G e][B e] [G d][B d][G c][B c] [G b][B b][G a][B a] [G 9][B 9][G 8][B 8]) - // -> ([G b][G b][B b][B b] [G a][G a][B a][B a] [G 9][G 9][B 9][B 9] [G 8][G 8][B 8][B - // 8]) - const __m128i ggbb10 = _mm_unpacklo_epi8(gb1, gb1); - // ([G f][B f][G e][B e] [G d][B d][G c][B c] [G b][B b][G a][B a] [G 9][B 9][G 8][B 8]) - // -> ([G f][G f][B f][B f] [G e][G e][B e][B e] [G d][G d][B d][B d] [G c][G c][B c][B - // c]) - const __m128i ggbb11 = _mm_unpackhi_epi8(gb1, gb1); - - // G and B are already in perfect spots in the center, just remove the extra copies in the - // 1st and 4th positions: - const __m128i _gb_00 = _mm_and_si128(ggbb00, kMask_x0ff0); - const __m128i _gb_01 = _mm_and_si128(ggbb01, kMask_x0ff0); - const __m128i _gb_10 = _mm_and_si128(ggbb10, kMask_x0ff0); - const __m128i _gb_11 = _mm_and_si128(ggbb11, kMask_x0ff0); - - // Now join up R__A and _GB_ to get RGBA! - rgba00 = _mm_or_si128(r__a00, _gb_00); - rgba01 = _mm_or_si128(r__a01, _gb_01); - rgba10 = _mm_or_si128(r__a10, _gb_10); - rgba11 = _mm_or_si128(r__a11, _gb_11); - // Write em out! - __m128i* dst128 = (__m128i*)(dst + (y + 0) * width + x); - _mm_storeu_si128(dst128, rgba00); - dst128 = (__m128i*)(dst + (y + 1) * width + x); - _mm_storeu_si128(dst128, rgba01); - dst128 = (__m128i*)(dst + (y + 2) * width + x); - _mm_storeu_si128(dst128, rgba10); - dst128 = (__m128i*)(dst + (y + 3) * width + x); - _mm_storeu_si128(dst128, rgba11); - } - } + for (int y = 0; y < height; y += 4) + for (int x = 0, yStep = (y / 4) * Wsteps4; x < width; x += 4, yStep++) + for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++) + DecodeBytes_C14X2_RGB565(dst + (y + iy) * width + x, (u16*)(src + 8 * xStep), tlut); } break; - case GX_TF_CMPR: // speed critical - // The metroid games use this format almost exclusively. + + default: + break; + } +} + +static void TexDecoder_DecodeImpl_RGB565(u32* dst, const u8* src, int width, int height, + int texformat, const u8* tlut, TlutFormat tlutfmt, + int Wsteps4, int Wsteps8) +{ + // JSD optimized with SSE2 intrinsics. + // Produces an ~78% speed improvement over reference C implementation. + const __m128i kMaskR0 = _mm_set1_epi32(0x000000F8); + const __m128i kMaskG0 = _mm_set1_epi32(0x0000FC00); + const __m128i kMaskG1 = _mm_set1_epi32(0x00000300); + const __m128i kMaskB0 = _mm_set1_epi32(0x00F80000); + const __m128i kAlpha = _mm_set1_epi32(0xFF000000); + for (int y = 0; y < height; y += 4) + { + for (int x = 0, yStep = (y / 4) * Wsteps4; x < width; x += 4, yStep++) { - // JSD optimized with SSE2 intrinsics. - // Produces a ~50% improvement for x86 and a ~40% improvement for x64 in speed over reference - // C implementation. - // The x64 compiled reference C code is faster than the x86 compiled reference C code, but the - // SSE2 is - // faster than both. - for (int y = 0; y < height; y += 8) + for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++) { - for (int x = 0, yStep = (y / 8) * Wsteps8; x < width; x += 8, yStep++) + __m128i* dxtsrc = (__m128i*)(src + 8 * xStep); + // Load 4x 16-bit colors: (0000 0000 hgfe dcba) + // where hg, fe, ba, and dc are 16-bit colors in big-endian order + const __m128i rgb565x4 = _mm_loadl_epi64(dxtsrc); + + // The big-endian 16-bit colors `ba` and `dc` look like 0b_gggBBBbb_RRRrrGGg in a little + // endian xmm register Unpack `hgfe dcba` to `hhgg ffee ddcc bbaa`, where each 32-bit word + // is now 0b_gggBBBbb_RRRrrGGg_gggBBBbb_RRRrrGGg + const __m128i c0 = _mm_unpacklo_epi16(rgb565x4, rgb565x4); + + // swizzle 0b_gggBBBbb_RRRrrGGg_gggBBBbb_RRRrrGGg + // to 0b_11111111_BBBbbBBB_GGggggGG_RRRrrRRR + + // 0b_gggBBBbb_RRRrrGGg_gggBBBbb_RRRrrGGg & + // 0b_00000000_00000000_00000000_11111000 = + // 0b_00000000_00000000_00000000_RRRrr000 + const __m128i r0 = _mm_and_si128(c0, kMaskR0); + // 0b_00000000_00000000_00000000_RRRrr000 >> 5 [32] = + // 0b_00000000_00000000_00000000_00000RRR + const __m128i r1 = _mm_srli_epi32(r0, 5); + + // 0b_gggBBBbb_RRRrrGGg_gggBBBbb_RRRrrGGg >> 3 [32] = + // 0b_000gggBB_BbbRRRrr_GGggggBB_BbbRRRrr & + // 0b_00000000_00000000_11111100_00000000 = + // 0b_00000000_00000000_GGgggg00_00000000 + const __m128i gtmp = _mm_srli_epi32(c0, 3); + const __m128i g0 = _mm_and_si128(gtmp, kMaskG0); + // 0b_GGggggBB_BbbRRRrr_GGggggBB_Bbb00000 >> 6 [32] = + // 0b_000000GG_ggggBBBb_bRRRrrGG_ggggBBBb & + // 0b_00000000_00000000_00000011_00000000 = + // 0b_00000000_00000000_000000GG_00000000 = + const __m128i g1 = _mm_and_si128(_mm_srli_epi32(gtmp, 6), kMaskG1); + + // 0b_gggBBBbb_RRRrrGGg_gggBBBbb_RRRrrGGg >> 5 [32] = + // 0b_00000ggg_BBBbbRRR_rrGGgggg_BBBbbRRR & + // 0b_00000000_11111000_00000000_00000000 = + // 0b_00000000_BBBbb000_00000000_00000000 + const __m128i b0 = _mm_and_si128(_mm_srli_epi32(c0, 5), kMaskB0); + // 0b_00000000_BBBbb000_00000000_00000000 >> 5 [16] = + // 0b_00000000_00000BBB_00000000_00000000 + const __m128i b1 = _mm_srli_epi16(b0, 5); + + // OR together the final RGB bits and the alpha component: + const __m128i abgr888x4 = + _mm_or_si128(_mm_or_si128(_mm_or_si128(r0, r1), _mm_or_si128(g0, g1)), + _mm_or_si128(_mm_or_si128(b0, b1), kAlpha)); + + __m128i* ptr = (__m128i*)(dst + (y + iy) * width + x); + _mm_storeu_si128(ptr, abgr888x4); + } + } + } +} + +static void TexDecoder_DecodeImpl_RGB5A3_SSSE3(u32* dst, const u8* src, int width, int height, + int texformat, const u8* tlut, TlutFormat tlutfmt, + int Wsteps4, int Wsteps8) +{ +#if _M_SSE >= 0x301 + const __m128i kMask_x1f = _mm_set1_epi32(0x0000001fL); + const __m128i kMask_x0f = _mm_set1_epi32(0x0000000fL); + const __m128i kMask_x07 = _mm_set1_epi32(0x00000007L); + // This is the hard-coded 0xFF alpha constant that is ORed in place after the RGB are calculated + // for the RGB555 case when (s[x] & 0x8000) is true for all pixels. + const __m128i aVxff00 = _mm_set1_epi32(0xFF000000L); + + // xsacha optimized with SSSE3 intrinsics (2 in 4 cases) + // Produces a ~10% speed improvement over SSE2 implementation + for (int y = 0; y < height; y += 4) + { + for (int x = 0, yStep = (y / 4) * Wsteps4; x < width; x += 4, yStep++) + { + for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++) + { + u32* newdst = dst + (y + iy) * width + x; + const __m128i mask = + _mm_set_epi8(-128, -128, 6, 7, -128, -128, 4, 5, -128, -128, 2, 3, -128, -128, 0, 1); + const __m128i valV = + _mm_shuffle_epi8(_mm_loadl_epi64((const __m128i*)(src + 8 * xStep)), mask); + int cmp = _mm_movemask_epi8(valV); // MSB: 0x2 = val0; 0x20=val1; 0x200 = val2; 0x2000=val3 + if ((cmp & 0x2222) == + 0x2222) // SSSE3 case #1: all 4 pixels are in RGB555 and alpha = 0xFF. { - // We handle two DXT blocks simultaneously to take full advantage of SSE2's 128-bit - // registers. - // This is ideal because a single DXT block contains 2 RGBA colors when decoded from their - // 16-bit. - // Two DXT blocks therefore contain 4 RGBA colors to be processed. The processing is - // parallelizable - // at this level, so we do. - for (int z = 0, xStep = 2 * yStep; z < 2; ++z, xStep++) + // Swizzle bits: 00012345 -> 12345123 + + // r0 = (((val0>>10) & 0x1f) << 3) | (((val0>>10) & 0x1f) >> 2); + const __m128i tmprV = _mm_and_si128(_mm_srli_epi16(valV, 10), kMask_x1f); + const __m128i rV = _mm_or_si128(_mm_slli_epi16(tmprV, 3), _mm_srli_epi16(tmprV, 2)); + + // g0 = (((val0>>5 ) & 0x1f) << 3) | (((val0>>5 ) & 0x1f) >> 2); + const __m128i tmpgV = _mm_and_si128(_mm_srli_epi16(valV, 5), kMask_x1f); + const __m128i gV = _mm_or_si128(_mm_slli_epi16(tmpgV, 3), _mm_srli_epi16(tmpgV, 2)); + + // b0 = (((val0 ) & 0x1f) << 3) | (((val0 ) & 0x1f) >> 2); + const __m128i tmpbV = _mm_and_si128(valV, kMask_x1f); + const __m128i bV = _mm_or_si128(_mm_slli_epi16(tmpbV, 3), _mm_srli_epi16(tmpbV, 2)); + + // newdst[0] = r0 | (g0 << 8) | (b0 << 16) | (a0 << 24); + const __m128i final = _mm_or_si128(_mm_or_si128(rV, _mm_slli_epi32(gV, 8)), + _mm_or_si128(_mm_slli_epi32(bV, 16), aVxff00)); + _mm_storeu_si128((__m128i*)newdst, final); + } + else if (!(cmp & 0x2222)) // SSSE3 case #2: all 4 pixels are in RGBA4443. + { + // Swizzle bits: 00001234 -> 12341234 + + // r0 = (((val0>>8 ) & 0xf) << 4) | ((val0>>8 ) & 0xf); + const __m128i tmprV = _mm_and_si128(_mm_srli_epi16(valV, 8), kMask_x0f); + const __m128i rV = _mm_or_si128(_mm_slli_epi16(tmprV, 4), tmprV); + + // g0 = (((val0>>4 ) & 0xf) << 4) | ((val0>>4 ) & 0xf); + const __m128i tmpgV = _mm_and_si128(_mm_srli_epi16(valV, 4), kMask_x0f); + const __m128i gV = _mm_or_si128(_mm_slli_epi16(tmpgV, 4), tmpgV); + + // b0 = (((val0 ) & 0xf) << 4) | ((val0 ) & 0xf); + const __m128i tmpbV = _mm_and_si128(valV, kMask_x0f); + const __m128i bV = _mm_or_si128(_mm_slli_epi16(tmpbV, 4), tmpbV); + // a0 = (((val0>>12) & 0x7) << 5) | (((val0>>12) & 0x7) << 2) | (((val0>>12) & 0x7) >> 1); + const __m128i tmpaV = _mm_and_si128(_mm_srli_epi16(valV, 12), kMask_x07); + const __m128i aV = + _mm_or_si128(_mm_slli_epi16(tmpaV, 5), + _mm_or_si128(_mm_slli_epi16(tmpaV, 2), _mm_srli_epi16(tmpaV, 1))); + + // newdst[0] = r0 | (g0 << 8) | (b0 << 16) | (a0 << 24); + const __m128i final = + _mm_or_si128(_mm_or_si128(rV, _mm_slli_epi32(gV, 8)), + _mm_or_si128(_mm_slli_epi32(bV, 16), _mm_slli_epi32(aV, 24))); + _mm_storeu_si128((__m128i*)newdst, final); + } + else + { + // TODO: Vectorise (Either 4-way branch or do both and select is better than this) + u32* vals = (u32*)&valV; + int r, g, b, a; + for (int i = 0; i < 4; ++i) { - // JSD NOTE: You may see many strange patterns of behavior in the below code, but they - // are for performance reasons. Sometimes, calculating what should be obvious hard-coded - // constants is faster than loading their values from memory. Unfortunately, there is no - // way to inline 128-bit constants from opcodes so they must be loaded from memory. This - // seems a little ridiculous to me in that you can't even generate a constant value of 1 - // without - // having to load it from memory. So, I stored the minimal constant I could, 128-bits - // worth - // of 1s :). Then I use sequences of shifts to squash it to the appropriate size and bit - // positions that I need. - - const __m128i allFFs128 = _mm_cmpeq_epi32(_mm_setzero_si128(), _mm_setzero_si128()); - - // Load 128 bits, i.e. two DXTBlocks (64-bits each) - const __m128i dxt = - _mm_loadu_si128((__m128i*)(src + sizeof(struct DXTBlock) * 2 * xStep)); - - // Copy the 2-bit indices from each DXT block: - alignas(16) u32 dxttmp[4]; - _mm_store_si128((__m128i*)dxttmp, dxt); - - u32 dxt0sel = dxttmp[1]; - u32 dxt1sel = dxttmp[3]; - - __m128i argb888x4; - __m128i c1 = _mm_unpackhi_epi16(dxt, dxt); - c1 = _mm_slli_si128(c1, 8); - const __m128i c0 = _mm_or_si128( - c1, _mm_srli_si128(_mm_slli_si128(_mm_unpacklo_epi16(dxt, dxt), 8), 8)); - - // Compare rgb0 to rgb1: - // Each 32-bit word will contain either 0xFFFFFFFF or 0x00000000 for true/false. - const __m128i c0cmp = _mm_srli_epi32(_mm_slli_epi32(_mm_srli_epi64(c0, 8), 16), 16); - const __m128i c0shr = _mm_srli_epi64(c0cmp, 32); - const __m128i cmprgb0rgb1 = _mm_cmpgt_epi32(c0cmp, c0shr); - - int cmp0 = _mm_extract_epi16(cmprgb0rgb1, 0); - int cmp1 = _mm_extract_epi16(cmprgb0rgb1, 4); - - // green: - // NOTE: We start with the larger number of bits (6) firts for G and shift the mask down - // 1 bit to get a 5-bit mask - // later for R and B components. - // low6mask == _mm_set_epi32(0x0000FC00, 0x0000FC00, 0x0000FC00, 0x0000FC00) - const __m128i low6mask = _mm_slli_epi32(_mm_srli_epi32(allFFs128, 24 + 2), 8 + 2); - const __m128i gtmp = _mm_srli_epi32(c0, 3); - const __m128i g0 = _mm_and_si128(gtmp, low6mask); - // low3mask == _mm_set_epi32(0x00000300, 0x00000300, 0x00000300, 0x00000300) - const __m128i g1 = - _mm_and_si128(_mm_srli_epi32(gtmp, 6), - _mm_set_epi32(0x00000300, 0x00000300, 0x00000300, 0x00000300)); - argb888x4 = _mm_or_si128(g0, g1); - // red: - // low5mask == _mm_set_epi32(0x000000F8, 0x000000F8, 0x000000F8, 0x000000F8) - const __m128i low5mask = _mm_slli_epi32(_mm_srli_epi32(low6mask, 8 + 3), 3); - const __m128i r0 = _mm_and_si128(c0, low5mask); - const __m128i r1 = _mm_srli_epi32(r0, 5); - argb888x4 = _mm_or_si128(argb888x4, _mm_or_si128(r0, r1)); - // blue: - // _mm_slli_epi32(low5mask, 16) == _mm_set_epi32(0x00F80000, 0x00F80000, 0x00F80000, - // 0x00F80000) - const __m128i b0 = _mm_and_si128(_mm_srli_epi32(c0, 5), _mm_slli_epi32(low5mask, 16)); - const __m128i b1 = _mm_srli_epi16(b0, 5); - // OR in the fixed alpha component - // _mm_slli_epi32( allFFs128, 24 ) == _mm_set_epi32(0xFF000000, 0xFF000000, 0xFF000000, - // 0xFF000000) - argb888x4 = _mm_or_si128(_mm_or_si128(argb888x4, _mm_slli_epi32(allFFs128, 24)), - _mm_or_si128(b0, b1)); - // calculate RGB2 and RGB3: - const __m128i rgb0 = _mm_shuffle_epi32(argb888x4, _MM_SHUFFLE(2, 2, 0, 0)); - const __m128i rgb1 = _mm_shuffle_epi32(argb888x4, _MM_SHUFFLE(3, 3, 1, 1)); - const __m128i rrggbb0 = - _mm_and_si128(_mm_unpacklo_epi8(rgb0, rgb0), _mm_srli_epi16(allFFs128, 8)); - const __m128i rrggbb1 = - _mm_and_si128(_mm_unpacklo_epi8(rgb1, rgb1), _mm_srli_epi16(allFFs128, 8)); - const __m128i rrggbb01 = - _mm_and_si128(_mm_unpackhi_epi8(rgb0, rgb0), _mm_srli_epi16(allFFs128, 8)); - const __m128i rrggbb11 = - _mm_and_si128(_mm_unpackhi_epi8(rgb1, rgb1), _mm_srli_epi16(allFFs128, 8)); - - __m128i rgb2, rgb3; - - // if (rgb0 > rgb1): - if (cmp0 != 0) + if (vals[i] & 0x8000) { - // RGB2a = ((RGB1 - RGB0) >> 1) - ((RGB1 - RGB0) >> 3) using arithmetic shifts to - // extend sign (not logical shifts) - const __m128i rrggbbsub = _mm_subs_epi16(rrggbb1, rrggbb0); - const __m128i rrggbbsubshr1 = _mm_srai_epi16(rrggbbsub, 1); - const __m128i rrggbbsubshr3 = _mm_srai_epi16(rrggbbsub, 3); - const __m128i shr1subshr3 = _mm_sub_epi16(rrggbbsubshr1, rrggbbsubshr3); - // low8mask16 == _mm_set_epi16(0x00ff, 0x00ff, 0x00ff, 0x00ff, 0x00ff, 0x00ff, 0x00ff, - // 0x00ff) - const __m128i low8mask16 = _mm_srli_epi16(allFFs128, 8); - const __m128i rrggbbdelta = _mm_and_si128(shr1subshr3, low8mask16); - const __m128i rgbdeltadup = _mm_packus_epi16(rrggbbdelta, rrggbbdelta); - const __m128i rgbdelta = _mm_srli_si128(_mm_slli_si128(rgbdeltadup, 8), 8); - - rgb2 = _mm_and_si128(_mm_add_epi8(rgb0, rgbdelta), _mm_srli_si128(allFFs128, 8)); - rgb3 = _mm_and_si128(_mm_sub_epi8(rgb1, rgbdelta), _mm_srli_si128(allFFs128, 8)); + // Swizzle bits: 00012345 -> 12345123 + r = (((vals[i] >> 10) & 0x1f) << 3) | (((vals[i] >> 10) & 0x1f) >> 2); + g = (((vals[i] >> 5) & 0x1f) << 3) | (((vals[i] >> 5) & 0x1f) >> 2); + b = (((vals[i]) & 0x1f) << 3) | (((vals[i]) & 0x1f) >> 2); + a = 0xFF; } else { - // RGB2b = avg(RGB0, RGB1) - const __m128i rrggbb21 = _mm_avg_epu16(rrggbb0, rrggbb1); - const __m128i rgb210 = _mm_srli_si128(_mm_packus_epi16(rrggbb21, rrggbb21), 8); - rgb2 = rgb210; - rgb3 = _mm_and_si128(rgb210, _mm_srli_epi32(allFFs128, 8)); + a = (((vals[i] >> 12) & 0x7) << 5) | (((vals[i] >> 12) & 0x7) << 2) | + (((vals[i] >> 12) & 0x7) >> 1); + // Swizzle bits: 00001234 -> 12341234 + r = (((vals[i] >> 8) & 0xf) << 4) | ((vals[i] >> 8) & 0xf); + g = (((vals[i] >> 4) & 0xf) << 4) | ((vals[i] >> 4) & 0xf); + b = (((vals[i]) & 0xf) << 4) | ((vals[i]) & 0xf); } + newdst[i] = r | (g << 8) | (b << 16) | (a << 24); + } + } + } + } + } +#endif +} - // if (rgb0 > rgb1): - if (cmp1 != 0) +static void TexDecoder_DecodeImpl_RGB5A3(u32* dst, const u8* src, int width, int height, + int texformat, const u8* tlut, TlutFormat tlutfmt, + int Wsteps4, int Wsteps8) +{ + const __m128i kMask_x1f = _mm_set1_epi32(0x0000001fL); + const __m128i kMask_x0f = _mm_set1_epi32(0x0000000fL); + const __m128i kMask_x07 = _mm_set1_epi32(0x00000007L); + // This is the hard-coded 0xFF alpha constant that is ORed in place after the RGB are calculated + // for the RGB555 case when (s[x] & 0x8000) is true for all pixels. + const __m128i aVxff00 = _mm_set1_epi32(0xFF000000L); + + // JSD optimized with SSE2 intrinsics (2 in 4 cases) + // Produces a ~25% speed improvement over reference C implementation. + for (int y = 0; y < height; y += 4) + { + for (int x = 0, yStep = (y / 4) * Wsteps4; x < width; x += 4, yStep++) + { + for (int iy = 0, xStep = 4 * yStep; iy < 4; iy++, xStep++) + { + u32* newdst = dst + (y + iy) * width + x; + const u16* newsrc = (const u16*)(src + 8 * xStep); + + // TODO: weak point + const u16 val0 = Common::swap16(newsrc[0]); + const u16 val1 = Common::swap16(newsrc[1]); + const u16 val2 = Common::swap16(newsrc[2]); + const u16 val3 = Common::swap16(newsrc[3]); + + const __m128i valV = _mm_set_epi16(0, val3, 0, val2, 0, val1, 0, val0); + + // Need to check all 4 pixels' MSBs to ensure we can do data-parallelism: + if (((val0 & 0x8000) & (val1 & 0x8000) & (val2 & 0x8000) & (val3 & 0x8000)) == 0x8000) + { + // SSE2 case #1: all 4 pixels are in RGB555 and alpha = 0xFF. + + // Swizzle bits: 00012345 -> 12345123 + + // r0 = (((val0>>10) & 0x1f) << 3) | (((val0>>10) & 0x1f) >> 2); + const __m128i tmprV = _mm_and_si128(_mm_srli_epi16(valV, 10), kMask_x1f); + const __m128i rV = _mm_or_si128(_mm_slli_epi16(tmprV, 3), _mm_srli_epi16(tmprV, 2)); + + // g0 = (((val0>>5 ) & 0x1f) << 3) | (((val0>>5 ) & 0x1f) >> 2); + const __m128i tmpgV = _mm_and_si128(_mm_srli_epi16(valV, 5), kMask_x1f); + const __m128i gV = _mm_or_si128(_mm_slli_epi16(tmpgV, 3), _mm_srli_epi16(tmpgV, 2)); + + // b0 = (((val0 ) & 0x1f) << 3) | (((val0 ) & 0x1f) >> 2); + const __m128i tmpbV = _mm_and_si128(valV, kMask_x1f); + const __m128i bV = _mm_or_si128(_mm_slli_epi16(tmpbV, 3), _mm_srli_epi16(tmpbV, 2)); + + // newdst[0] = r0 | (g0 << 8) | (b0 << 16) | (a0 << 24); + const __m128i final = _mm_or_si128(_mm_or_si128(rV, _mm_slli_epi32(gV, 8)), + _mm_or_si128(_mm_slli_epi32(bV, 16), aVxff00)); + + // write the final result: + _mm_storeu_si128((__m128i*)newdst, final); + } + else if (((val0 & 0x8000) | (val1 & 0x8000) | (val2 & 0x8000) | (val3 & 0x8000)) == 0x0000) + { + // SSE2 case #2: all 4 pixels are in RGBA4443. + + // Swizzle bits: 00001234 -> 12341234 + + // r0 = (((val0>>8 ) & 0xf) << 4) | ((val0>>8 ) & 0xf); + const __m128i tmprV = _mm_and_si128(_mm_srli_epi16(valV, 8), kMask_x0f); + const __m128i rV = _mm_or_si128(_mm_slli_epi16(tmprV, 4), tmprV); + + // g0 = (((val0>>4 ) & 0xf) << 4) | ((val0>>4 ) & 0xf); + const __m128i tmpgV = _mm_and_si128(_mm_srli_epi16(valV, 4), kMask_x0f); + const __m128i gV = _mm_or_si128(_mm_slli_epi16(tmpgV, 4), tmpgV); + + // b0 = (((val0 ) & 0xf) << 4) | ((val0 ) & 0xf); + const __m128i tmpbV = _mm_and_si128(valV, kMask_x0f); + const __m128i bV = _mm_or_si128(_mm_slli_epi16(tmpbV, 4), tmpbV); + + // a0 = (((val0>>12) & 0x7) << 5) | (((val0>>12) & 0x7) << 2) | (((val0>>12) & 0x7) >> 1); + const __m128i tmpaV = _mm_and_si128(_mm_srli_epi16(valV, 12), kMask_x07); + const __m128i aV = + _mm_or_si128(_mm_slli_epi16(tmpaV, 5), + _mm_or_si128(_mm_slli_epi16(tmpaV, 2), _mm_srli_epi16(tmpaV, 1))); + + // newdst[0] = r0 | (g0 << 8) | (b0 << 16) | (a0 << 24); + const __m128i final = + _mm_or_si128(_mm_or_si128(rV, _mm_slli_epi32(gV, 8)), + _mm_or_si128(_mm_slli_epi32(bV, 16), _mm_slli_epi32(aV, 24))); + + // write the final result: + _mm_storeu_si128((__m128i*)newdst, final); + } + else + { + // TODO: Vectorise (Either 4-way branch or do both and select is better than this) + u32* vals = (u32*)&valV; + int r, g, b, a; + for (int i = 0; i < 4; ++i) + { + if (vals[i] & 0x8000) { - // RGB2a = ((RGB1 - RGB0) >> 1) - ((RGB1 - RGB0) >> 3) using arithmetic shifts to - // extend sign (not logical shifts) - const __m128i rrggbbsub1 = _mm_subs_epi16(rrggbb11, rrggbb01); - const __m128i rrggbbsubshr11 = _mm_srai_epi16(rrggbbsub1, 1); - const __m128i rrggbbsubshr31 = _mm_srai_epi16(rrggbbsub1, 3); - const __m128i shr1subshr31 = _mm_sub_epi16(rrggbbsubshr11, rrggbbsubshr31); - // low8mask16 == _mm_set_epi16(0x00ff, 0x00ff, 0x00ff, 0x00ff, 0x00ff, 0x00ff, 0x00ff, - // 0x00ff) - const __m128i low8mask16 = _mm_srli_epi16(allFFs128, 8); - const __m128i rrggbbdelta1 = _mm_and_si128(shr1subshr31, low8mask16); - __m128i rgbdelta1 = _mm_packus_epi16(rrggbbdelta1, rrggbbdelta1); - rgbdelta1 = _mm_slli_si128(rgbdelta1, 8); - - rgb2 = _mm_or_si128( - rgb2, _mm_and_si128(_mm_add_epi8(rgb0, rgbdelta1), _mm_slli_si128(allFFs128, 8))); - rgb3 = _mm_or_si128( - rgb3, _mm_and_si128(_mm_sub_epi8(rgb1, rgbdelta1), _mm_slli_si128(allFFs128, 8))); + // Swizzle bits: 00012345 -> 12345123 + r = (((vals[i] >> 10) & 0x1f) << 3) | (((vals[i] >> 10) & 0x1f) >> 2); + g = (((vals[i] >> 5) & 0x1f) << 3) | (((vals[i] >> 5) & 0x1f) >> 2); + b = (((vals[i]) & 0x1f) << 3) | (((vals[i]) & 0x1f) >> 2); + a = 0xFF; } else { - // RGB2b = avg(RGB0, RGB1) - const __m128i rrggbb211 = _mm_avg_epu16(rrggbb01, rrggbb11); - const __m128i rgb211 = _mm_slli_si128(_mm_packus_epi16(rrggbb211, rrggbb211), 8); - rgb2 = _mm_or_si128(rgb2, rgb211); - - // _mm_srli_epi32( allFFs128, 8 ) == _mm_set_epi32(0x00FFFFFF, 0x00FFFFFF, 0x00FFFFFF, - // 0x00FFFFFF) - // Make this color fully transparent: - rgb3 = _mm_or_si128(rgb3, - _mm_and_si128(_mm_and_si128(rgb2, _mm_srli_epi32(allFFs128, 8)), - _mm_slli_si128(allFFs128, 8))); + a = (((vals[i] >> 12) & 0x7) << 5) | (((vals[i] >> 12) & 0x7) << 2) | + (((vals[i] >> 12) & 0x7) >> 1); + // Swizzle bits: 00001234 -> 12341234 + r = (((vals[i] >> 8) & 0xf) << 4) | ((vals[i] >> 8) & 0xf); + g = (((vals[i] >> 4) & 0xf) << 4) | ((vals[i] >> 4) & 0xf); + b = (((vals[i]) & 0xf) << 4) | ((vals[i]) & 0xf); } + newdst[i] = r | (g << 8) | (b << 16) | (a << 24); + } + } + } + } + } +} - // Create an array for color lookups for DXT0 so we can use the 2-bit indices: - const __m128i mmcolors0 = _mm_or_si128( - _mm_or_si128(_mm_srli_si128(_mm_slli_si128(argb888x4, 8), 8), - _mm_slli_si128(_mm_srli_si128(_mm_slli_si128(rgb2, 8), 8 + 4), 8)), - _mm_slli_si128(_mm_srli_si128(rgb3, 4), 8 + 4)); +static void TexDecoder_DecodeImpl_RGBA8_SSSE3(u32* dst, const u8* src, int width, int height, + int texformat, const u8* tlut, TlutFormat tlutfmt, + int Wsteps4, int Wsteps8) +{ +#if _M_SSE >= 0x301 + // xsacha optimized with SSSE3 instrinsics + // Produces a ~30% speed improvement over SSE2 implementation + for (int y = 0; y < height; y += 4) + { + for (int x = 0, yStep = (y / 4) * Wsteps4; x < width; x += 4, yStep++) + { + const u8* src2 = src + 64 * yStep; + const __m128i mask0312 = _mm_set_epi8(12, 15, 13, 14, 8, 11, 9, 10, 4, 7, 5, 6, 0, 3, 1, 2); + const __m128i ar0 = _mm_loadu_si128((__m128i*)src2); + const __m128i ar1 = _mm_loadu_si128((__m128i*)src2 + 1); + const __m128i gb0 = _mm_loadu_si128((__m128i*)src2 + 2); + const __m128i gb1 = _mm_loadu_si128((__m128i*)src2 + 3); - // Create an array for color lookups for DXT1 so we can use the 2-bit indices: - const __m128i mmcolors1 = - _mm_or_si128(_mm_or_si128(_mm_srli_si128(argb888x4, 8), - _mm_slli_si128(_mm_srli_si128(rgb2, 8 + 4), 8)), - _mm_slli_si128(_mm_srli_si128(rgb3, 8 + 4), 8 + 4)); + const __m128i rgba00 = _mm_shuffle_epi8(_mm_unpacklo_epi8(ar0, gb0), mask0312); + const __m128i rgba01 = _mm_shuffle_epi8(_mm_unpackhi_epi8(ar0, gb0), mask0312); + const __m128i rgba10 = _mm_shuffle_epi8(_mm_unpacklo_epi8(ar1, gb1), mask0312); + const __m128i rgba11 = _mm_shuffle_epi8(_mm_unpackhi_epi8(ar1, gb1), mask0312); + + __m128i* dst128 = (__m128i*)(dst + (y + 0) * width + x); + _mm_storeu_si128(dst128, rgba00); + dst128 = (__m128i*)(dst + (y + 1) * width + x); + _mm_storeu_si128(dst128, rgba01); + dst128 = (__m128i*)(dst + (y + 2) * width + x); + _mm_storeu_si128(dst128, rgba10); + dst128 = (__m128i*)(dst + (y + 3) * width + x); + _mm_storeu_si128(dst128, rgba11); + } + } +#endif +} + +static void TexDecoder_DecodeImpl_RGBA8(u32* dst, const u8* src, int width, int height, + int texformat, const u8* tlut, TlutFormat tlutfmt, + int Wsteps4, int Wsteps8) +{ + // JSD optimized with SSE2 intrinsics + // Produces a ~68% speed improvement over reference C implementation. + for (int y = 0; y < height; y += 4) + { + for (int x = 0, yStep = (y / 4) * Wsteps4; x < width; x += 4, yStep++) + { + // Input is divided up into 16-bit words. The texels are split up into AR and GB + // components where all AR components come grouped up first in 32 bytes followed by the GB + // components in 32 bytes. We are processing 16 texels per each loop iteration, numbered from + // 0-f. + // + // Convention is: + // one byte is [component-name texel-number] + // __m128i is (4-bytes 4-bytes 4-bytes 4-bytes) + // + // Input is: + // ([A 7][R 7][A 6][R 6] [A 5][R 5][A 4][R 4] [A 3][R 3][A 2][R 2] [A 1][R 1][A 0][R 0]) + // ([A f][R f][A e][R e] [A d][R d][A c][R c] [A b][R b][A a][R a] [A 9][R 9][A 8][R 8]) + // ([G 7][B 7][G 6][B 6] [G 5][B 5][G 4][B 4] [G 3][B 3][G 2][B 2] [G 1][B 1][G 0][B 0]) + // ([G f][B f][G e][B e] [G d][B d][G c][B c] [G b][B b][G a][B a] [G 9][B 9][G 8][B 8]) + // + // Output is: + // (RGBA3 RGBA2 RGBA1 RGBA0) + // (RGBA7 RGBA6 RGBA5 RGBA4) + // (RGBAb RGBAa RGBA9 RGBA8) + // (RGBAf RGBAe RGBAd RGBAc) + const u8* src2 = src + 64 * yStep; + // Loads the 1st half of AR components ([A 7][R 7][A 6][R 6] [A 5][R 5][A 4][R 4] [A 3][R + // 3][A 2][R 2] [A 1][R 1][A 0][R 0]) + const __m128i ar0 = _mm_loadu_si128((__m128i*)src2); + // Loads the 2nd half of AR components ([A f][R f][A e][R e] [A d][R d][A c][R c] [A b][R + // b][A a][R a] [A 9][R 9][A 8][R 8]) + const __m128i ar1 = _mm_loadu_si128((__m128i*)src2 + 1); + // Loads the 1st half of GB components ([G 7][B 7][G 6][B 6] [G 5][B 5][G 4][B 4] [G 3][B + // 3][G 2][B 2] [G 1][B 1][G 0][B 0]) + const __m128i gb0 = _mm_loadu_si128((__m128i*)src2 + 2); + // Loads the 2nd half of GB components ([G f][B f][G e][B e] [G d][B d][G c][B c] [G b][B + // b][G a][B a] [G 9][B 9][G 8][B 8]) + const __m128i gb1 = _mm_loadu_si128((__m128i*)src2 + 3); + __m128i rgba00, rgba01, rgba10, rgba11; + const __m128i kMask_x000f = _mm_set_epi32(0x000000FFL, 0x000000FFL, 0x000000FFL, 0x000000FFL); + const __m128i kMask_xf000 = _mm_set_epi32(0xFF000000L, 0xFF000000L, 0xFF000000L, 0xFF000000L); + const __m128i kMask_x0ff0 = _mm_set_epi32(0x00FFFF00L, 0x00FFFF00L, 0x00FFFF00L, 0x00FFFF00L); + // Expand the AR components to fill out 32-bit words: + // ([A 7][R 7][A 6][R 6] [A 5][R 5][A 4][R 4] [A 3][R 3][A 2][R 2] [A 1][R 1][A 0][R 0]) + // -> ([A 3][A 3][R 3][R 3] [A 2][A 2][R 2][R 2] [A 1][A 1][R 1][R 1] [A 0][A 0][R 0][R 0]) + const __m128i aarr00 = _mm_unpacklo_epi8(ar0, ar0); + // ([A 7][R 7][A 6][R 6] [A 5][R 5][A 4][R 4] [A 3][R 3][A 2][R 2] [A 1][R 1][A 0][R 0]) + // -> ([A 7][A 7][R 7][R 7] [A 6][A 6][R 6][R 6] [A 5][A 5][R 5][R 5] [A 4][A 4][R 4][R 4]) + const __m128i aarr01 = _mm_unpackhi_epi8(ar0, ar0); + // ([A f][R f][A e][R e] [A d][R d][A c][R c] [A b][R b][A a][R a] [A 9][R 9][A 8][R 8]) + // -> ([A b][A b][R b][R b] [A a][A a][R a][R a] [A 9][A 9][R 9][R 9] [A 8][A 8][R 8][R 8]) + const __m128i aarr10 = _mm_unpacklo_epi8(ar1, ar1); + // ([A f][R f][A e][R e] [A d][R d][A c][R c] [A b][R b][A a][R a] [A 9][R 9][A 8][R 8]) + // -> ([A f][A f][R f][R f] [A e][A e][R e][R e] [A d][A d][R d][R d] [A c][A c][R c][R c]) + const __m128i aarr11 = _mm_unpackhi_epi8(ar1, ar1); + + // Move A right 16 bits and mask off everything but the lowest 8 bits to get A in its + // final place: + const __m128i ___a00 = _mm_and_si128(_mm_srli_epi32(aarr00, 16), kMask_x000f); + // Move R left 16 bits and mask off everything but the highest 8 bits to get R in its + // final place: + const __m128i r___00 = _mm_and_si128(_mm_slli_epi32(aarr00, 16), kMask_xf000); + // OR the two together to get R and A in their final places: + const __m128i r__a00 = _mm_or_si128(r___00, ___a00); + + const __m128i ___a01 = _mm_and_si128(_mm_srli_epi32(aarr01, 16), kMask_x000f); + const __m128i r___01 = _mm_and_si128(_mm_slli_epi32(aarr01, 16), kMask_xf000); + const __m128i r__a01 = _mm_or_si128(r___01, ___a01); + + const __m128i ___a10 = _mm_and_si128(_mm_srli_epi32(aarr10, 16), kMask_x000f); + const __m128i r___10 = _mm_and_si128(_mm_slli_epi32(aarr10, 16), kMask_xf000); + const __m128i r__a10 = _mm_or_si128(r___10, ___a10); + + const __m128i ___a11 = _mm_and_si128(_mm_srli_epi32(aarr11, 16), kMask_x000f); + const __m128i r___11 = _mm_and_si128(_mm_slli_epi32(aarr11, 16), kMask_xf000); + const __m128i r__a11 = _mm_or_si128(r___11, ___a11); + + // Expand the GB components to fill out 32-bit words: + // ([G 7][B 7][G 6][B 6] [G 5][B 5][G 4][B 4] [G 3][B 3][G 2][B 2] [G 1][B 1][G 0][B 0]) + // -> ([G 3][G 3][B 3][B 3] [G 2][G 2][B 2][B 2] [G 1][G 1][B 1][B 1] [G 0][G 0][B 0][B 0]) + const __m128i ggbb00 = _mm_unpacklo_epi8(gb0, gb0); + // ([G 7][B 7][G 6][B 6] [G 5][B 5][G 4][B 4] [G 3][B 3][G 2][B 2] [G 1][B 1][G 0][B 0]) + // -> ([G 7][G 7][B 7][B 7] [G 6][G 6][B 6][B 6] [G 5][G 5][B 5][B 5] [G 4][G 4][B 4][B 4]) + const __m128i ggbb01 = _mm_unpackhi_epi8(gb0, gb0); + // ([G f][B f][G e][B e] [G d][B d][G c][B c] [G b][B b][G a][B a] [G 9][B 9][G 8][B 8]) + // -> ([G b][G b][B b][B b] [G a][G a][B a][B a] [G 9][G 9][B 9][B 9] [G 8][G 8][B 8][B 8]) + const __m128i ggbb10 = _mm_unpacklo_epi8(gb1, gb1); + // ([G f][B f][G e][B e] [G d][B d][G c][B c] [G b][B b][G a][B a] [G 9][B 9][G 8][B 8]) + // -> ([G f][G f][B f][B f] [G e][G e][B e][B e] [G d][G d][B d][B d] [G c][G c][B c][B c]) + const __m128i ggbb11 = _mm_unpackhi_epi8(gb1, gb1); + + // G and B are already in perfect spots in the center, just remove the extra copies in the + // 1st and 4th positions: + const __m128i _gb_00 = _mm_and_si128(ggbb00, kMask_x0ff0); + const __m128i _gb_01 = _mm_and_si128(ggbb01, kMask_x0ff0); + const __m128i _gb_10 = _mm_and_si128(ggbb10, kMask_x0ff0); + const __m128i _gb_11 = _mm_and_si128(ggbb11, kMask_x0ff0); + + // Now join up R__A and _GB_ to get RGBA! + rgba00 = _mm_or_si128(r__a00, _gb_00); + rgba01 = _mm_or_si128(r__a01, _gb_01); + rgba10 = _mm_or_si128(r__a10, _gb_10); + rgba11 = _mm_or_si128(r__a11, _gb_11); + // Write em out! + __m128i* dst128 = (__m128i*)(dst + (y + 0) * width + x); + _mm_storeu_si128(dst128, rgba00); + dst128 = (__m128i*)(dst + (y + 1) * width + x); + _mm_storeu_si128(dst128, rgba01); + dst128 = (__m128i*)(dst + (y + 2) * width + x); + _mm_storeu_si128(dst128, rgba10); + dst128 = (__m128i*)(dst + (y + 3) * width + x); + _mm_storeu_si128(dst128, rgba11); + } + } +} + +static void TexDecoder_DecodeImpl_CMPR(u32* dst, const u8* src, int width, int height, + int texformat, const u8* tlut, TlutFormat tlutfmt, + int Wsteps4, int Wsteps8) +{ + // The metroid games use this format almost exclusively. + // JSD optimized with SSE2 intrinsics. + // Produces a ~50% improvement for x86 and a ~40% improvement for x64 in speed over reference + // C implementation. The x64 compiled reference C code is faster than the x86 compiled reference + // C code, but the SSE2 is faster than both. + for (int y = 0; y < height; y += 8) + { + for (int x = 0, yStep = (y / 8) * Wsteps8; x < width; x += 8, yStep++) + { + // We handle two DXT blocks simultaneously to take full advantage of SSE2's 128-bit registers. + // This is ideal because a single DXT block contains 2 RGBA colors when decoded from their + // 16-bit. Two DXT blocks therefore contain 4 RGBA colors to be processed. The processing is + // parallelizable at this level, so we do. + for (int z = 0, xStep = 2 * yStep; z < 2; ++z, xStep++) + { + // JSD NOTE: You may see many strange patterns of behavior in the below code, but they + // are for performance reasons. Sometimes, calculating what should be obvious hard-coded + // constants is faster than loading their values from memory. Unfortunately, there is no + // way to inline 128-bit constants from opcodes so they must be loaded from memory. This + // seems a little ridiculous to me in that you can't even generate a constant value of 1 + // without having to load it from memory. So, I stored the minimal constant I could, + // 128-bits worth of 1s :). Then I use sequences of shifts to squash it to the appropriate + // size and bitpositions that I need. + const __m128i allFFs128 = _mm_cmpeq_epi32(_mm_setzero_si128(), _mm_setzero_si128()); + + // Load 128 bits, i.e. two DXTBlocks (64-bits each) + const __m128i dxt = _mm_loadu_si128((__m128i*)(src + sizeof(struct DXTBlock) * 2 * xStep)); + + // Copy the 2-bit indices from each DXT block: + alignas(16) u32 dxttmp[4]; + _mm_store_si128((__m128i*)dxttmp, dxt); + + u32 dxt0sel = dxttmp[1]; + u32 dxt1sel = dxttmp[3]; + + __m128i argb888x4; + __m128i c1 = _mm_unpackhi_epi16(dxt, dxt); + c1 = _mm_slli_si128(c1, 8); + const __m128i c0 = + _mm_or_si128(c1, _mm_srli_si128(_mm_slli_si128(_mm_unpacklo_epi16(dxt, dxt), 8), 8)); + + // Compare rgb0 to rgb1: + // Each 32-bit word will contain either 0xFFFFFFFF or 0x00000000 for true/false. + const __m128i c0cmp = _mm_srli_epi32(_mm_slli_epi32(_mm_srli_epi64(c0, 8), 16), 16); + const __m128i c0shr = _mm_srli_epi64(c0cmp, 32); + const __m128i cmprgb0rgb1 = _mm_cmpgt_epi32(c0cmp, c0shr); + + int cmp0 = _mm_extract_epi16(cmprgb0rgb1, 0); + int cmp1 = _mm_extract_epi16(cmprgb0rgb1, 4); + + // green: + // NOTE: We start with the larger number of bits (6) firts for G and shift the mask down + // 1 bit to get a 5-bit mask later for R and B components. + // low6mask == _mm_set_epi32(0x0000FC00, 0x0000FC00, 0x0000FC00, 0x0000FC00) + const __m128i low6mask = _mm_slli_epi32(_mm_srli_epi32(allFFs128, 24 + 2), 8 + 2); + const __m128i gtmp = _mm_srli_epi32(c0, 3); + const __m128i g0 = _mm_and_si128(gtmp, low6mask); + // low3mask == _mm_set_epi32(0x00000300, 0x00000300, 0x00000300, 0x00000300) + const __m128i g1 = _mm_and_si128( + _mm_srli_epi32(gtmp, 6), _mm_set_epi32(0x00000300, 0x00000300, 0x00000300, 0x00000300)); + argb888x4 = _mm_or_si128(g0, g1); + // red: + // low5mask == _mm_set_epi32(0x000000F8, 0x000000F8, 0x000000F8, 0x000000F8) + const __m128i low5mask = _mm_slli_epi32(_mm_srli_epi32(low6mask, 8 + 3), 3); + const __m128i r0 = _mm_and_si128(c0, low5mask); + const __m128i r1 = _mm_srli_epi32(r0, 5); + argb888x4 = _mm_or_si128(argb888x4, _mm_or_si128(r0, r1)); + // blue: + // _mm_slli_epi32(low5mask, 16) == _mm_set_epi32(0x00F80000, 0x00F80000, 0x00F80000, + // 0x00F80000) + const __m128i b0 = _mm_and_si128(_mm_srli_epi32(c0, 5), _mm_slli_epi32(low5mask, 16)); + const __m128i b1 = _mm_srli_epi16(b0, 5); + // OR in the fixed alpha component + // _mm_slli_epi32( allFFs128, 24 ) == _mm_set_epi32(0xFF000000, 0xFF000000, 0xFF000000, + // 0xFF000000) + argb888x4 = _mm_or_si128(_mm_or_si128(argb888x4, _mm_slli_epi32(allFFs128, 24)), + _mm_or_si128(b0, b1)); + // calculate RGB2 and RGB3: + const __m128i rgb0 = _mm_shuffle_epi32(argb888x4, _MM_SHUFFLE(2, 2, 0, 0)); + const __m128i rgb1 = _mm_shuffle_epi32(argb888x4, _MM_SHUFFLE(3, 3, 1, 1)); + const __m128i rrggbb0 = + _mm_and_si128(_mm_unpacklo_epi8(rgb0, rgb0), _mm_srli_epi16(allFFs128, 8)); + const __m128i rrggbb1 = + _mm_and_si128(_mm_unpacklo_epi8(rgb1, rgb1), _mm_srli_epi16(allFFs128, 8)); + const __m128i rrggbb01 = + _mm_and_si128(_mm_unpackhi_epi8(rgb0, rgb0), _mm_srli_epi16(allFFs128, 8)); + const __m128i rrggbb11 = + _mm_and_si128(_mm_unpackhi_epi8(rgb1, rgb1), _mm_srli_epi16(allFFs128, 8)); + + __m128i rgb2, rgb3; + + // if (rgb0 > rgb1): + if (cmp0 != 0) + { + // RGB2a = ((RGB1 - RGB0) >> 1) - ((RGB1 - RGB0) >> 3) using arithmetic shifts to + // extend sign (not logical shifts) + const __m128i rrggbbsub = _mm_subs_epi16(rrggbb1, rrggbb0); + const __m128i rrggbbsubshr1 = _mm_srai_epi16(rrggbbsub, 1); + const __m128i rrggbbsubshr3 = _mm_srai_epi16(rrggbbsub, 3); + const __m128i shr1subshr3 = _mm_sub_epi16(rrggbbsubshr1, rrggbbsubshr3); + // low8mask16 == _mm_set_epi16(0x00ff, 0x00ff, 0x00ff, 0x00ff, 0x00ff, 0x00ff, 0x00ff, + // 0x00ff) + const __m128i low8mask16 = _mm_srli_epi16(allFFs128, 8); + const __m128i rrggbbdelta = _mm_and_si128(shr1subshr3, low8mask16); + const __m128i rgbdeltadup = _mm_packus_epi16(rrggbbdelta, rrggbbdelta); + const __m128i rgbdelta = _mm_srli_si128(_mm_slli_si128(rgbdeltadup, 8), 8); + + rgb2 = _mm_and_si128(_mm_add_epi8(rgb0, rgbdelta), _mm_srli_si128(allFFs128, 8)); + rgb3 = _mm_and_si128(_mm_sub_epi8(rgb1, rgbdelta), _mm_srli_si128(allFFs128, 8)); + } + else + { + // RGB2b = avg(RGB0, RGB1) + const __m128i rrggbb21 = _mm_avg_epu16(rrggbb0, rrggbb1); + const __m128i rgb210 = _mm_srli_si128(_mm_packus_epi16(rrggbb21, rrggbb21), 8); + rgb2 = rgb210; + rgb3 = _mm_and_si128(rgb210, _mm_srli_epi32(allFFs128, 8)); + } + + // if (rgb0 > rgb1): + if (cmp1 != 0) + { + // RGB2a = ((RGB1 - RGB0) >> 1) - ((RGB1 - RGB0) >> 3) using arithmetic shifts to + // extend sign (not logical shifts) + const __m128i rrggbbsub1 = _mm_subs_epi16(rrggbb11, rrggbb01); + const __m128i rrggbbsubshr11 = _mm_srai_epi16(rrggbbsub1, 1); + const __m128i rrggbbsubshr31 = _mm_srai_epi16(rrggbbsub1, 3); + const __m128i shr1subshr31 = _mm_sub_epi16(rrggbbsubshr11, rrggbbsubshr31); + // low8mask16 == _mm_set_epi16(0x00ff, 0x00ff, 0x00ff, 0x00ff, 0x00ff, 0x00ff, 0x00ff, + // 0x00ff) + const __m128i low8mask16 = _mm_srli_epi16(allFFs128, 8); + const __m128i rrggbbdelta1 = _mm_and_si128(shr1subshr31, low8mask16); + __m128i rgbdelta1 = _mm_packus_epi16(rrggbbdelta1, rrggbbdelta1); + rgbdelta1 = _mm_slli_si128(rgbdelta1, 8); + + rgb2 = _mm_or_si128( + rgb2, _mm_and_si128(_mm_add_epi8(rgb0, rgbdelta1), _mm_slli_si128(allFFs128, 8))); + rgb3 = _mm_or_si128( + rgb3, _mm_and_si128(_mm_sub_epi8(rgb1, rgbdelta1), _mm_slli_si128(allFFs128, 8))); + } + else + { + // RGB2b = avg(RGB0, RGB1) + const __m128i rrggbb211 = _mm_avg_epu16(rrggbb01, rrggbb11); + const __m128i rgb211 = _mm_slli_si128(_mm_packus_epi16(rrggbb211, rrggbb211), 8); + rgb2 = _mm_or_si128(rgb2, rgb211); + + // _mm_srli_epi32( allFFs128, 8 ) == _mm_set_epi32(0x00FFFFFF, 0x00FFFFFF, 0x00FFFFFF, + // 0x00FFFFFF) + // Make this color fully transparent: + rgb3 = _mm_or_si128(rgb3, _mm_and_si128(_mm_and_si128(rgb2, _mm_srli_epi32(allFFs128, 8)), + _mm_slli_si128(allFFs128, 8))); + } + + // Create an array for color lookups for DXT0 so we can use the 2-bit indices: + const __m128i mmcolors0 = _mm_or_si128( + _mm_or_si128(_mm_srli_si128(_mm_slli_si128(argb888x4, 8), 8), + _mm_slli_si128(_mm_srli_si128(_mm_slli_si128(rgb2, 8), 8 + 4), 8)), + _mm_slli_si128(_mm_srli_si128(rgb3, 4), 8 + 4)); + + // Create an array for color lookups for DXT1 so we can use the 2-bit indices: + const __m128i mmcolors1 = + _mm_or_si128(_mm_or_si128(_mm_srli_si128(argb888x4, 8), + _mm_slli_si128(_mm_srli_si128(rgb2, 8 + 4), 8)), + _mm_slli_si128(_mm_srli_si128(rgb3, 8 + 4), 8 + 4)); // The #ifdef CHECKs here and below are to compare correctness of output against the reference code. // Don't use them in a normal build. #ifdef CHECK - // REFERENCE: - u32 tmp0[4][4], tmp1[4][4]; + // REFERENCE: + u32 tmp0[4][4], tmp1[4][4]; - DecodeDXTBlock(&(tmp0[0][0]), - reinterpret_cast(src + sizeof(DXTBlock) * 2 * xStep), - 4); - DecodeDXTBlock( - &(tmp1[0][0]), - reinterpret_cast((src + sizeof(DXTBlock) * 2 * xStep) + 8), 4); + DecodeDXTBlock(&(tmp0[0][0]), + reinterpret_cast(src + sizeof(DXTBlock) * 2 * xStep), 4); + DecodeDXTBlock(&(tmp1[0][0]), + reinterpret_cast((src + sizeof(DXTBlock) * 2 * xStep) + 8), + 4); #endif - u32* dst32 = (dst + (y + z * 4) * width + x); + u32* dst32 = (dst + (y + z * 4) * width + x); - // Copy the colors here: - alignas(16) u32 colors0[4]; - alignas(16) u32 colors1[4]; - _mm_store_si128((__m128i*)colors0, mmcolors0); - _mm_store_si128((__m128i*)colors1, mmcolors1); + // Copy the colors here: + alignas(16) u32 colors0[4]; + alignas(16) u32 colors1[4]; + _mm_store_si128((__m128i*)colors0, mmcolors0); + _mm_store_si128((__m128i*)colors1, mmcolors1); - // Row 0: - dst32[(width * 0) + 0] = colors0[(dxt0sel >> ((0 * 8) + 6)) & 3]; - dst32[(width * 0) + 1] = colors0[(dxt0sel >> ((0 * 8) + 4)) & 3]; - dst32[(width * 0) + 2] = colors0[(dxt0sel >> ((0 * 8) + 2)) & 3]; - dst32[(width * 0) + 3] = colors0[(dxt0sel >> ((0 * 8) + 0)) & 3]; - dst32[(width * 0) + 4] = colors1[(dxt1sel >> ((0 * 8) + 6)) & 3]; - dst32[(width * 0) + 5] = colors1[(dxt1sel >> ((0 * 8) + 4)) & 3]; - dst32[(width * 0) + 6] = colors1[(dxt1sel >> ((0 * 8) + 2)) & 3]; - dst32[(width * 0) + 7] = colors1[(dxt1sel >> ((0 * 8) + 0)) & 3]; + // Row 0: + dst32[(width * 0) + 0] = colors0[(dxt0sel >> ((0 * 8) + 6)) & 3]; + dst32[(width * 0) + 1] = colors0[(dxt0sel >> ((0 * 8) + 4)) & 3]; + dst32[(width * 0) + 2] = colors0[(dxt0sel >> ((0 * 8) + 2)) & 3]; + dst32[(width * 0) + 3] = colors0[(dxt0sel >> ((0 * 8) + 0)) & 3]; + dst32[(width * 0) + 4] = colors1[(dxt1sel >> ((0 * 8) + 6)) & 3]; + dst32[(width * 0) + 5] = colors1[(dxt1sel >> ((0 * 8) + 4)) & 3]; + dst32[(width * 0) + 6] = colors1[(dxt1sel >> ((0 * 8) + 2)) & 3]; + dst32[(width * 0) + 7] = colors1[(dxt1sel >> ((0 * 8) + 0)) & 3]; #ifdef CHECK - assert(memcmp(&(tmp0[0]), &dst32[(width * 0)], 16) == 0); - assert(memcmp(&(tmp1[0]), &dst32[(width * 0) + 4], 16) == 0); + assert(memcmp(&(tmp0[0]), &dst32[(width * 0)], 16) == 0); + assert(memcmp(&(tmp1[0]), &dst32[(width * 0) + 4], 16) == 0); #endif - // Row 1: - dst32[(width * 1) + 0] = colors0[(dxt0sel >> ((1 * 8) + 6)) & 3]; - dst32[(width * 1) + 1] = colors0[(dxt0sel >> ((1 * 8) + 4)) & 3]; - dst32[(width * 1) + 2] = colors0[(dxt0sel >> ((1 * 8) + 2)) & 3]; - dst32[(width * 1) + 3] = colors0[(dxt0sel >> ((1 * 8) + 0)) & 3]; - dst32[(width * 1) + 4] = colors1[(dxt1sel >> ((1 * 8) + 6)) & 3]; - dst32[(width * 1) + 5] = colors1[(dxt1sel >> ((1 * 8) + 4)) & 3]; - dst32[(width * 1) + 6] = colors1[(dxt1sel >> ((1 * 8) + 2)) & 3]; - dst32[(width * 1) + 7] = colors1[(dxt1sel >> ((1 * 8) + 0)) & 3]; + // Row 1: + dst32[(width * 1) + 0] = colors0[(dxt0sel >> ((1 * 8) + 6)) & 3]; + dst32[(width * 1) + 1] = colors0[(dxt0sel >> ((1 * 8) + 4)) & 3]; + dst32[(width * 1) + 2] = colors0[(dxt0sel >> ((1 * 8) + 2)) & 3]; + dst32[(width * 1) + 3] = colors0[(dxt0sel >> ((1 * 8) + 0)) & 3]; + dst32[(width * 1) + 4] = colors1[(dxt1sel >> ((1 * 8) + 6)) & 3]; + dst32[(width * 1) + 5] = colors1[(dxt1sel >> ((1 * 8) + 4)) & 3]; + dst32[(width * 1) + 6] = colors1[(dxt1sel >> ((1 * 8) + 2)) & 3]; + dst32[(width * 1) + 7] = colors1[(dxt1sel >> ((1 * 8) + 0)) & 3]; #ifdef CHECK - assert(memcmp(&(tmp0[1]), &dst32[(width * 1)], 16) == 0); - assert(memcmp(&(tmp1[1]), &dst32[(width * 1) + 4], 16) == 0); + assert(memcmp(&(tmp0[1]), &dst32[(width * 1)], 16) == 0); + assert(memcmp(&(tmp1[1]), &dst32[(width * 1) + 4], 16) == 0); #endif - // Row 2: - dst32[(width * 2) + 0] = colors0[(dxt0sel >> ((2 * 8) + 6)) & 3]; - dst32[(width * 2) + 1] = colors0[(dxt0sel >> ((2 * 8) + 4)) & 3]; - dst32[(width * 2) + 2] = colors0[(dxt0sel >> ((2 * 8) + 2)) & 3]; - dst32[(width * 2) + 3] = colors0[(dxt0sel >> ((2 * 8) + 0)) & 3]; - dst32[(width * 2) + 4] = colors1[(dxt1sel >> ((2 * 8) + 6)) & 3]; - dst32[(width * 2) + 5] = colors1[(dxt1sel >> ((2 * 8) + 4)) & 3]; - dst32[(width * 2) + 6] = colors1[(dxt1sel >> ((2 * 8) + 2)) & 3]; - dst32[(width * 2) + 7] = colors1[(dxt1sel >> ((2 * 8) + 0)) & 3]; + // Row 2: + dst32[(width * 2) + 0] = colors0[(dxt0sel >> ((2 * 8) + 6)) & 3]; + dst32[(width * 2) + 1] = colors0[(dxt0sel >> ((2 * 8) + 4)) & 3]; + dst32[(width * 2) + 2] = colors0[(dxt0sel >> ((2 * 8) + 2)) & 3]; + dst32[(width * 2) + 3] = colors0[(dxt0sel >> ((2 * 8) + 0)) & 3]; + dst32[(width * 2) + 4] = colors1[(dxt1sel >> ((2 * 8) + 6)) & 3]; + dst32[(width * 2) + 5] = colors1[(dxt1sel >> ((2 * 8) + 4)) & 3]; + dst32[(width * 2) + 6] = colors1[(dxt1sel >> ((2 * 8) + 2)) & 3]; + dst32[(width * 2) + 7] = colors1[(dxt1sel >> ((2 * 8) + 0)) & 3]; #ifdef CHECK - assert(memcmp(&(tmp0[2]), &dst32[(width * 2)], 16) == 0); - assert(memcmp(&(tmp1[2]), &dst32[(width * 2) + 4], 16) == 0); + assert(memcmp(&(tmp0[2]), &dst32[(width * 2)], 16) == 0); + assert(memcmp(&(tmp1[2]), &dst32[(width * 2) + 4], 16) == 0); #endif - // Row 3: - dst32[(width * 3) + 0] = colors0[(dxt0sel >> ((3 * 8) + 6)) & 3]; - dst32[(width * 3) + 1] = colors0[(dxt0sel >> ((3 * 8) + 4)) & 3]; - dst32[(width * 3) + 2] = colors0[(dxt0sel >> ((3 * 8) + 2)) & 3]; - dst32[(width * 3) + 3] = colors0[(dxt0sel >> ((3 * 8) + 0)) & 3]; - dst32[(width * 3) + 4] = colors1[(dxt1sel >> ((3 * 8) + 6)) & 3]; - dst32[(width * 3) + 5] = colors1[(dxt1sel >> ((3 * 8) + 4)) & 3]; - dst32[(width * 3) + 6] = colors1[(dxt1sel >> ((3 * 8) + 2)) & 3]; - dst32[(width * 3) + 7] = colors1[(dxt1sel >> ((3 * 8) + 0)) & 3]; + // Row 3: + dst32[(width * 3) + 0] = colors0[(dxt0sel >> ((3 * 8) + 6)) & 3]; + dst32[(width * 3) + 1] = colors0[(dxt0sel >> ((3 * 8) + 4)) & 3]; + dst32[(width * 3) + 2] = colors0[(dxt0sel >> ((3 * 8) + 2)) & 3]; + dst32[(width * 3) + 3] = colors0[(dxt0sel >> ((3 * 8) + 0)) & 3]; + dst32[(width * 3) + 4] = colors1[(dxt1sel >> ((3 * 8) + 6)) & 3]; + dst32[(width * 3) + 5] = colors1[(dxt1sel >> ((3 * 8) + 4)) & 3]; + dst32[(width * 3) + 6] = colors1[(dxt1sel >> ((3 * 8) + 2)) & 3]; + dst32[(width * 3) + 7] = colors1[(dxt1sel >> ((3 * 8) + 0)) & 3]; #ifdef CHECK - assert(memcmp(&(tmp0[3]), &dst32[(width * 3)], 16) == 0); - assert(memcmp(&(tmp1[3]), &dst32[(width * 3) + 4], 16) == 0); + assert(memcmp(&(tmp0[3]), &dst32[(width * 3)], 16) == 0); + assert(memcmp(&(tmp1[3]), &dst32[(width * 3) + 4], 16) == 0); #endif - } - } } - break; } } } + +void _TexDecoder_DecodeImpl(u32* dst, const u8* src, int width, int height, int texformat, + const u8* tlut, TlutFormat tlutfmt) +{ + int Wsteps4 = (width + 3) / 4; + int Wsteps8 = (width + 7) / 8; + +// If the binary was not compiled with SSSE3 support, the functions turn into no-ops. +// Therefore, we shouldn't call them based on what the CPU reports at runtime alone. +#if _M_SSE >= 0x301 + bool has_SSSE3 = cpu_info.bSSSE3; +#else + bool has_SSSE3 = false; +#endif + + switch (texformat) + { + case GX_TF_C4: + TexDecoder_DecodeImpl_C4(dst, src, width, height, texformat, tlut, tlutfmt, Wsteps4, Wsteps8); + break; + + case GX_TF_I4: + if (has_SSSE3) + TexDecoder_DecodeImpl_I4_SSSE3(dst, src, width, height, texformat, tlut, tlutfmt, Wsteps4, + Wsteps8); + else + TexDecoder_DecodeImpl_I4(dst, src, width, height, texformat, tlut, tlutfmt, Wsteps4, Wsteps8); + break; + + case GX_TF_I8: + if (has_SSSE3) + TexDecoder_DecodeImpl_I8_SSSE3(dst, src, width, height, texformat, tlut, tlutfmt, Wsteps4, + Wsteps8); + else + TexDecoder_DecodeImpl_I8(dst, src, width, height, texformat, tlut, tlutfmt, Wsteps4, Wsteps8); + break; + + case GX_TF_C8: + TexDecoder_DecodeImpl_C8(dst, src, width, height, texformat, tlut, tlutfmt, Wsteps4, Wsteps8); + break; + + case GX_TF_IA4: + TexDecoder_DecodeImpl_IA4(dst, src, width, height, texformat, tlut, tlutfmt, Wsteps4, Wsteps8); + break; + + case GX_TF_IA8: + if (has_SSSE3) + TexDecoder_DecodeImpl_IA8_SSSE3(dst, src, width, height, texformat, tlut, tlutfmt, Wsteps4, + Wsteps8); + else + TexDecoder_DecodeImpl_IA8(dst, src, width, height, texformat, tlut, tlutfmt, Wsteps4, + Wsteps8); + break; + + case GX_TF_C14X2: + TexDecoder_DecodeImpl_C14X2(dst, src, width, height, texformat, tlut, tlutfmt, Wsteps4, + Wsteps8); + break; + + case GX_TF_RGB565: + TexDecoder_DecodeImpl_RGB565(dst, src, width, height, texformat, tlut, tlutfmt, Wsteps4, + Wsteps8); + break; + + case GX_TF_RGB5A3: + if (has_SSSE3) + TexDecoder_DecodeImpl_RGB5A3_SSSE3(dst, src, width, height, texformat, tlut, tlutfmt, Wsteps4, + Wsteps8); + else + TexDecoder_DecodeImpl_RGB5A3(dst, src, width, height, texformat, tlut, tlutfmt, Wsteps4, + Wsteps8); + break; + + case GX_TF_RGBA8: + if (has_SSSE3) + TexDecoder_DecodeImpl_RGBA8_SSSE3(dst, src, width, height, texformat, tlut, tlutfmt, Wsteps4, + Wsteps8); + else + TexDecoder_DecodeImpl_RGBA8(dst, src, width, height, texformat, tlut, tlutfmt, Wsteps4, + Wsteps8); + break; + + case GX_TF_CMPR: + TexDecoder_DecodeImpl_CMPR(dst, src, width, height, texformat, tlut, tlutfmt, Wsteps4, Wsteps8); + break; + + default: + PanicAlert("Unhandled texture format %d", texformat); + break; + } +}