Update SoundTouch to 2.3.2 commit 1eda9c0b01039f29d230a46cda9f2290bbd1f62b
This commit is contained in:
parent
7de01597c6
commit
4e3a366b2d
|
@ -12,13 +12,6 @@
|
|||
///
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Last changed : $Date: 2014-01-05 23:40:22 +0200 (Sun, 05 Jan 2014) $
|
||||
// File revision : $Revision: 4 $
|
||||
//
|
||||
// $Id: AAFilter.cpp 177 2014-01-05 21:40:22Z oparviai $
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// License :
|
||||
//
|
||||
// SoundTouch audio processing library
|
||||
|
@ -49,7 +42,7 @@
|
|||
|
||||
using namespace soundtouch;
|
||||
|
||||
#define PI 3.141592655357989
|
||||
#define PI 3.14159265358979323846
|
||||
#define TWOPI (2 * PI)
|
||||
|
||||
// define this to save AA filter coefficients to a file
|
||||
|
@ -61,7 +54,7 @@ using namespace soundtouch;
|
|||
static void _DEBUG_SAVE_AAFIR_COEFFS(SAMPLETYPE *coeffs, int len)
|
||||
{
|
||||
FILE *fptr = fopen("aa_filter_coeffs.txt", "wt");
|
||||
if (fptr == NULL) return;
|
||||
if (fptr == nullptr) return;
|
||||
|
||||
for (int i = 0; i < len; i ++)
|
||||
{
|
||||
|
@ -75,7 +68,6 @@ using namespace soundtouch;
|
|||
#define _DEBUG_SAVE_AAFIR_COEFFS(x, y)
|
||||
#endif
|
||||
|
||||
|
||||
/*****************************************************************************
|
||||
*
|
||||
* Implementation of the class 'AAFilter'
|
||||
|
@ -90,14 +82,12 @@ AAFilter::AAFilter(uint len)
|
|||
}
|
||||
|
||||
|
||||
|
||||
AAFilter::~AAFilter()
|
||||
{
|
||||
delete pFIR;
|
||||
}
|
||||
|
||||
|
||||
|
||||
// Sets new anti-alias filter cut-off edge frequency, scaled to
|
||||
// sampling frequency (nyquist frequency = 0.5).
|
||||
// The filter will cut frequencies higher than the given frequency.
|
||||
|
@ -108,7 +98,6 @@ void AAFilter::setCutoffFreq(double newCutoffFreq)
|
|||
}
|
||||
|
||||
|
||||
|
||||
// Sets number of FIR filter taps
|
||||
void AAFilter::setLength(uint newLength)
|
||||
{
|
||||
|
@ -117,7 +106,6 @@ void AAFilter::setLength(uint newLength)
|
|||
}
|
||||
|
||||
|
||||
|
||||
// Calculates coefficients for a low-pass FIR filter using Hamming window
|
||||
void AAFilter::calculateCoeffs()
|
||||
{
|
||||
|
@ -177,12 +165,10 @@ void AAFilter::calculateCoeffs()
|
|||
for (i = 0; i < length; i ++)
|
||||
{
|
||||
temp = work[i] * scaleCoeff;
|
||||
//#if SOUNDTOUCH_INTEGER_SAMPLES
|
||||
// scale & round to nearest integer
|
||||
temp += (temp >= 0) ? 0.5 : -0.5;
|
||||
// ensure no overfloods
|
||||
assert(temp >= -32768 && temp <= 32767);
|
||||
//#endif
|
||||
coeffs[i] = (SAMPLETYPE)temp;
|
||||
}
|
||||
|
||||
|
|
|
@ -13,13 +13,6 @@
|
|||
///
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Last changed : $Date: 2014-01-07 21:41:23 +0200 (Tue, 07 Jan 2014) $
|
||||
// File revision : $Revision: 4 $
|
||||
//
|
||||
// $Id: AAFilter.h 187 2014-01-07 19:41:23Z oparviai $
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// License :
|
||||
//
|
||||
// SoundTouch audio processing library
|
||||
|
|
|
@ -26,13 +26,6 @@
|
|||
///
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Last changed : $Date: 2015-02-21 23:24:29 +0200 (Sat, 21 Feb 2015) $
|
||||
// File revision : $Revision: 4 $
|
||||
//
|
||||
// $Id: BPMDetect.cpp 202 2015-02-21 21:24:29Z oparviai $
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// License :
|
||||
//
|
||||
// SoundTouch audio processing library
|
||||
|
@ -54,45 +47,62 @@
|
|||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#define _USE_MATH_DEFINES
|
||||
|
||||
#include <math.h>
|
||||
#include <assert.h>
|
||||
#include <string.h>
|
||||
#include <stdio.h>
|
||||
#include <cfloat>
|
||||
#include "FIFOSampleBuffer.h"
|
||||
#include "PeakFinder.h"
|
||||
#include "BPMDetect.h"
|
||||
|
||||
using namespace soundtouch;
|
||||
|
||||
#define INPUT_BLOCK_SAMPLES 2048
|
||||
#define DECIMATED_BLOCK_SAMPLES 256
|
||||
// algorithm input sample block size
|
||||
static const int INPUT_BLOCK_SIZE = 2048;
|
||||
|
||||
/// decay constant for calculating RMS volume sliding average approximation
|
||||
/// (time constant is about 10 sec)
|
||||
const float avgdecay = 0.99986f;
|
||||
// decimated sample block size
|
||||
static const int DECIMATED_BLOCK_SIZE = 256;
|
||||
|
||||
/// Normalization coefficient for calculating RMS sliding average approximation.
|
||||
const float avgnorm = (1 - avgdecay);
|
||||
/// Target sample rate after decimation
|
||||
static const int TARGET_SRATE = 1000;
|
||||
|
||||
/// XCorr update sequence size, update in about 200msec chunks
|
||||
static const int XCORR_UPDATE_SEQUENCE = (int)(TARGET_SRATE / 5);
|
||||
|
||||
/// Moving average N size
|
||||
static const int MOVING_AVERAGE_N = 15;
|
||||
|
||||
/// XCorr decay time constant, decay to half in 30 seconds
|
||||
/// If it's desired to have the system adapt quicker to beat rate
|
||||
/// changes within a continuing music stream, then the
|
||||
/// 'xcorr_decay_time_constant' value can be reduced, yet that
|
||||
/// can increase possibility of glitches in bpm detection.
|
||||
static const double XCORR_DECAY_TIME_CONSTANT = 30.0;
|
||||
|
||||
/// Data overlap factor for beat detection algorithm
|
||||
static const int OVERLAP_FACTOR = 4;
|
||||
|
||||
static const double TWOPI = (2 * M_PI);
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// Enable following define to create bpm analysis file:
|
||||
|
||||
// #define _CREATE_BPM_DEBUG_FILE
|
||||
//#define _CREATE_BPM_DEBUG_FILE
|
||||
|
||||
#ifdef _CREATE_BPM_DEBUG_FILE
|
||||
|
||||
#define DEBUGFILE_NAME "c:\\temp\\soundtouch-bpm-debug.txt"
|
||||
|
||||
static void _SaveDebugData(const float *data, int minpos, int maxpos, double coeff)
|
||||
static void _SaveDebugData(const char *name, const float *data, int minpos, int maxpos, double coeff)
|
||||
{
|
||||
FILE *fptr = fopen(DEBUGFILE_NAME, "wt");
|
||||
FILE *fptr = fopen(name, "wt");
|
||||
int i;
|
||||
|
||||
if (fptr)
|
||||
{
|
||||
printf("\n\nWriting BPM debug data into file " DEBUGFILE_NAME "\n\n");
|
||||
printf("\nWriting BPM debug data into file %s\n", name);
|
||||
for (i = minpos; i < maxpos; i ++)
|
||||
{
|
||||
fprintf(fptr, "%d\t%.1lf\t%f\n", i, coeff / (double)i, data[i]);
|
||||
|
@ -100,42 +110,90 @@ const float avgnorm = (1 - avgdecay);
|
|||
fclose(fptr);
|
||||
}
|
||||
}
|
||||
|
||||
void _SaveDebugBeatPos(const char *name, const std::vector<BEAT> &beats)
|
||||
{
|
||||
printf("\nWriting beat detections data into file %s\n", name);
|
||||
|
||||
FILE *fptr = fopen(name, "wt");
|
||||
if (fptr)
|
||||
{
|
||||
for (uint i = 0; i < beats.size(); i++)
|
||||
{
|
||||
BEAT b = beats[i];
|
||||
fprintf(fptr, "%lf\t%lf\n", b.pos, b.strength);
|
||||
}
|
||||
fclose(fptr);
|
||||
}
|
||||
}
|
||||
#else
|
||||
#define _SaveDebugData(a,b,c,d)
|
||||
#define _SaveDebugData(name, a,b,c,d)
|
||||
#define _SaveDebugBeatPos(name, b)
|
||||
#endif
|
||||
|
||||
// Hamming window
|
||||
void hamming(float *w, int N)
|
||||
{
|
||||
for (int i = 0; i < N; i++)
|
||||
{
|
||||
w[i] = (float)(0.54 - 0.46 * cos(TWOPI * i / (N - 1)));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IIR2_filter - 2nd order IIR filter
|
||||
|
||||
IIR2_filter::IIR2_filter(const double *lpf_coeffs)
|
||||
{
|
||||
memcpy(coeffs, lpf_coeffs, 5 * sizeof(double));
|
||||
memset(prev, 0, sizeof(prev));
|
||||
}
|
||||
|
||||
|
||||
float IIR2_filter::update(float x)
|
||||
{
|
||||
prev[0] = x;
|
||||
double y = x * coeffs[0];
|
||||
|
||||
for (int i = 4; i >= 1; i--)
|
||||
{
|
||||
y += coeffs[i] * prev[i];
|
||||
prev[i] = prev[i - 1];
|
||||
}
|
||||
|
||||
prev[3] = y;
|
||||
return (float)y;
|
||||
}
|
||||
|
||||
|
||||
// IIR low-pass filter coefficients, calculated with matlab/octave cheby2(2,40,0.05)
|
||||
const double _LPF_coeffs[5] = { 0.00996655391939, -0.01944529148401, 0.00996655391939, 1.96867605796247, -0.96916387431724 };
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
BPMDetect::BPMDetect(int numChannels, int aSampleRate)
|
||||
BPMDetect::BPMDetect(int numChannels, int aSampleRate) :
|
||||
beat_lpf(_LPF_coeffs)
|
||||
{
|
||||
beats.reserve(250); // initial reservation to prevent frequent reallocation
|
||||
|
||||
this->sampleRate = aSampleRate;
|
||||
this->channels = numChannels;
|
||||
|
||||
decimateSum = 0;
|
||||
decimateCount = 0;
|
||||
|
||||
envelopeAccu = 0;
|
||||
|
||||
// Initialize RMS volume accumulator to RMS level of 1500 (out of 32768) that's
|
||||
// safe initial RMS signal level value for song data. This value is then adapted
|
||||
// to the actual level during processing.
|
||||
#ifdef SOUNDTOUCH_INTEGER_SAMPLES
|
||||
// integer samples
|
||||
RMSVolumeAccu = (1500 * 1500) / avgnorm;
|
||||
#else
|
||||
// float samples, scaled to range [-1..+1[
|
||||
RMSVolumeAccu = (0.045f * 0.045f) / avgnorm;
|
||||
#endif
|
||||
|
||||
// choose decimation factor so that result is approx. 1000 Hz
|
||||
decimateBy = sampleRate / 1000;
|
||||
assert(decimateBy > 0);
|
||||
assert(INPUT_BLOCK_SAMPLES < decimateBy * DECIMATED_BLOCK_SAMPLES);
|
||||
decimateBy = sampleRate / TARGET_SRATE;
|
||||
if ((decimateBy <= 0) || (decimateBy * DECIMATED_BLOCK_SIZE < INPUT_BLOCK_SIZE))
|
||||
{
|
||||
ST_THROW_RT_ERROR("Too small samplerate");
|
||||
}
|
||||
|
||||
// Calculate window length & starting item according to desired min & max bpms
|
||||
windowLen = (60 * sampleRate) / (decimateBy * MIN_BPM);
|
||||
windowStart = (60 * sampleRate) / (decimateBy * MAX_BPM);
|
||||
windowStart = (60 * sampleRate) / (decimateBy * MAX_BPM_RANGE);
|
||||
|
||||
assert(windowLen > windowStart);
|
||||
|
||||
|
@ -143,23 +201,38 @@ BPMDetect::BPMDetect(int numChannels, int aSampleRate)
|
|||
xcorr = new float[windowLen];
|
||||
memset(xcorr, 0, windowLen * sizeof(float));
|
||||
|
||||
pos = 0;
|
||||
peakPos = 0;
|
||||
peakVal = 0;
|
||||
init_scaler = 1;
|
||||
beatcorr_ringbuffpos = 0;
|
||||
beatcorr_ringbuff = new float[windowLen];
|
||||
memset(beatcorr_ringbuff, 0, windowLen * sizeof(float));
|
||||
|
||||
// allocate processing buffer
|
||||
buffer = new FIFOSampleBuffer();
|
||||
// we do processing in mono mode
|
||||
buffer->setChannels(1);
|
||||
buffer->clear();
|
||||
}
|
||||
|
||||
// calculate hamming windows
|
||||
hamw = new float[XCORR_UPDATE_SEQUENCE];
|
||||
hamming(hamw, XCORR_UPDATE_SEQUENCE);
|
||||
hamw2 = new float[XCORR_UPDATE_SEQUENCE / 2];
|
||||
hamming(hamw2, XCORR_UPDATE_SEQUENCE / 2);
|
||||
}
|
||||
|
||||
|
||||
BPMDetect::~BPMDetect()
|
||||
{
|
||||
delete[] xcorr;
|
||||
delete[] beatcorr_ringbuff;
|
||||
delete[] hamw;
|
||||
delete[] hamw2;
|
||||
delete buffer;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/// convert to mono, low-pass filter & decimate to about 500 Hz.
|
||||
/// return number of outputted samples.
|
||||
///
|
||||
|
@ -216,7 +289,6 @@ int BPMDetect::decimate(SAMPLETYPE *dest, const SAMPLETYPE *src, int numsamples)
|
|||
}
|
||||
|
||||
|
||||
|
||||
// Calculates autocorrelation function of the sample history buffer
|
||||
void BPMDetect::updateXCorr(int process_samples)
|
||||
{
|
||||
|
@ -224,72 +296,122 @@ void BPMDetect::updateXCorr(int process_samples)
|
|||
SAMPLETYPE *pBuffer;
|
||||
|
||||
assert(buffer->numSamples() >= (uint)(process_samples + windowLen));
|
||||
assert(process_samples == XCORR_UPDATE_SEQUENCE);
|
||||
|
||||
pBuffer = buffer->ptrBegin();
|
||||
|
||||
// calculate decay factor for xcorr filtering
|
||||
float xcorr_decay = (float)pow(0.5, 1.0 / (XCORR_DECAY_TIME_CONSTANT * TARGET_SRATE / process_samples));
|
||||
|
||||
// prescale pbuffer
|
||||
float tmp[XCORR_UPDATE_SEQUENCE];
|
||||
for (int i = 0; i < process_samples; i++)
|
||||
{
|
||||
tmp[i] = hamw[i] * hamw[i] * pBuffer[i];
|
||||
}
|
||||
|
||||
#pragma omp parallel for
|
||||
for (offs = windowStart; offs < windowLen; offs ++)
|
||||
{
|
||||
LONG_SAMPLETYPE sum;
|
||||
float sum;
|
||||
int i;
|
||||
|
||||
sum = 0;
|
||||
for (i = 0; i < process_samples; i ++)
|
||||
{
|
||||
sum += pBuffer[i] * pBuffer[i + offs]; // scaling the sub-result shouldn't be necessary
|
||||
sum += tmp[i] * pBuffer[i + offs]; // scaling the sub-result shouldn't be necessary
|
||||
}
|
||||
// xcorr[offs] *= xcorr_decay; // decay 'xcorr' here with suitable coefficients
|
||||
// if it's desired that the system adapts automatically to
|
||||
// various bpms, e.g. in processing continouos music stream.
|
||||
// The 'xcorr_decay' should be a value that's smaller than but
|
||||
// close to one, and should also depend on 'process_samples' value.
|
||||
xcorr[offs] *= xcorr_decay; // decay 'xcorr' here with suitable time constant.
|
||||
|
||||
xcorr[offs] += (float)sum;
|
||||
xcorr[offs] += (float)fabs(sum);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Calculates envelope of the sample data
|
||||
void BPMDetect::calcEnvelope(SAMPLETYPE *samples, int numsamples)
|
||||
// Detect individual beat positions
|
||||
void BPMDetect::updateBeatPos(int process_samples)
|
||||
{
|
||||
const static double decay = 0.7f; // decay constant for smoothing the envelope
|
||||
const static double norm = (1 - decay);
|
||||
SAMPLETYPE *pBuffer;
|
||||
|
||||
int i;
|
||||
LONG_SAMPLETYPE out;
|
||||
double val;
|
||||
assert(buffer->numSamples() >= (uint)(process_samples + windowLen));
|
||||
|
||||
for (i = 0; i < numsamples; i ++)
|
||||
pBuffer = buffer->ptrBegin();
|
||||
assert(process_samples == XCORR_UPDATE_SEQUENCE / 2);
|
||||
|
||||
// static double thr = 0.0003;
|
||||
double posScale = (double)this->decimateBy / (double)this->sampleRate;
|
||||
int resetDur = (int)(0.12 / posScale + 0.5);
|
||||
|
||||
// prescale pbuffer
|
||||
float tmp[XCORR_UPDATE_SEQUENCE / 2];
|
||||
for (int i = 0; i < process_samples; i++)
|
||||
{
|
||||
// calc average RMS volume
|
||||
RMSVolumeAccu *= avgdecay;
|
||||
val = (float)fabs((float)samples[i]);
|
||||
RMSVolumeAccu += val * val;
|
||||
tmp[i] = hamw2[i] * hamw2[i] * pBuffer[i];
|
||||
}
|
||||
|
||||
// cut amplitudes that are below cutoff ~2 times RMS volume
|
||||
// (we're interested in peak values, not the silent moments)
|
||||
if (val < 0.5 * sqrt(RMSVolumeAccu * avgnorm))
|
||||
#pragma omp parallel for
|
||||
for (int offs = windowStart; offs < windowLen; offs++)
|
||||
{
|
||||
float sum = 0;
|
||||
for (int i = 0; i < process_samples; i++)
|
||||
{
|
||||
val = 0;
|
||||
sum += tmp[i] * pBuffer[offs + i];
|
||||
}
|
||||
beatcorr_ringbuff[(beatcorr_ringbuffpos + offs) % windowLen] += (float)((sum > 0) ? sum : 0); // accumulate only positive correlations
|
||||
}
|
||||
|
||||
int skipstep = XCORR_UPDATE_SEQUENCE / OVERLAP_FACTOR;
|
||||
|
||||
// compensate empty buffer at beginning by scaling coefficient
|
||||
float scale = (float)windowLen / (float)(skipstep * init_scaler);
|
||||
if (scale > 1.0f)
|
||||
{
|
||||
init_scaler++;
|
||||
}
|
||||
else
|
||||
{
|
||||
scale = 1.0f;
|
||||
}
|
||||
|
||||
// detect beats
|
||||
for (int i = 0; i < skipstep; i++)
|
||||
{
|
||||
float sum = beatcorr_ringbuff[beatcorr_ringbuffpos];
|
||||
sum -= beat_lpf.update(sum);
|
||||
|
||||
if (sum > peakVal)
|
||||
{
|
||||
// found new local largest value
|
||||
peakVal = sum;
|
||||
peakPos = pos;
|
||||
}
|
||||
if (pos > peakPos + resetDur)
|
||||
{
|
||||
// largest value not updated for 200msec => accept as beat
|
||||
peakPos += skipstep;
|
||||
if (peakVal > 0)
|
||||
{
|
||||
// add detected beat to end of "beats" vector
|
||||
BEAT temp = { (float)(peakPos * posScale), (float)(peakVal * scale) };
|
||||
beats.push_back(temp);
|
||||
}
|
||||
|
||||
peakVal = 0;
|
||||
peakPos = pos;
|
||||
}
|
||||
|
||||
// smooth amplitude envelope
|
||||
envelopeAccu *= decay;
|
||||
envelopeAccu += val;
|
||||
out = (LONG_SAMPLETYPE)(envelopeAccu * norm);
|
||||
|
||||
#ifdef SOUNDTOUCH_INTEGER_SAMPLES
|
||||
// cut peaks (shouldn't be necessary though)
|
||||
if (out > 32767) out = 32767;
|
||||
#endif // SOUNDTOUCH_INTEGER_SAMPLES
|
||||
samples[i] = (SAMPLETYPE)out;
|
||||
beatcorr_ringbuff[beatcorr_ringbuffpos] = 0;
|
||||
pos++;
|
||||
beatcorr_ringbuffpos = (beatcorr_ringbuffpos + 1) % windowLen;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#define max(x,y) ((x) > (y) ? (x) : (y))
|
||||
|
||||
void BPMDetect::inputSamples(const SAMPLETYPE *samples, int numSamples)
|
||||
{
|
||||
SAMPLETYPE decimated[DECIMATED_BLOCK_SAMPLES];
|
||||
SAMPLETYPE decimated[DECIMATED_BLOCK_SIZE];
|
||||
|
||||
// iterate so that max INPUT_BLOCK_SAMPLES processed per iteration
|
||||
while (numSamples > 0)
|
||||
|
@ -297,48 +419,70 @@ void BPMDetect::inputSamples(const SAMPLETYPE *samples, int numSamples)
|
|||
int block;
|
||||
int decSamples;
|
||||
|
||||
block = (numSamples > INPUT_BLOCK_SAMPLES) ? INPUT_BLOCK_SAMPLES : numSamples;
|
||||
block = (numSamples > INPUT_BLOCK_SIZE) ? INPUT_BLOCK_SIZE : numSamples;
|
||||
|
||||
// decimate. note that converts to mono at the same time
|
||||
decSamples = decimate(decimated, samples, block);
|
||||
samples += block * channels;
|
||||
numSamples -= block;
|
||||
|
||||
// envelope new samples and add them to buffer
|
||||
calcEnvelope(decimated, decSamples);
|
||||
buffer->putSamples(decimated, decSamples);
|
||||
}
|
||||
|
||||
// when the buffer has enought samples for processing...
|
||||
if ((int)buffer->numSamples() > windowLen)
|
||||
// when the buffer has enough samples for processing...
|
||||
int req = max(windowLen + XCORR_UPDATE_SEQUENCE, 2 * XCORR_UPDATE_SEQUENCE);
|
||||
while ((int)buffer->numSamples() >= req)
|
||||
{
|
||||
int processLength;
|
||||
|
||||
// how many samples are processed
|
||||
processLength = (int)buffer->numSamples() - windowLen;
|
||||
|
||||
// ... calculate autocorrelations for oldest samples...
|
||||
updateXCorr(processLength);
|
||||
// ... and remove them from the buffer
|
||||
buffer->receiveSamples(processLength);
|
||||
// ... update autocorrelations...
|
||||
updateXCorr(XCORR_UPDATE_SEQUENCE);
|
||||
// ...update beat position calculation...
|
||||
updateBeatPos(XCORR_UPDATE_SEQUENCE / 2);
|
||||
// ... and remove proceessed samples from the buffer
|
||||
int n = XCORR_UPDATE_SEQUENCE / OVERLAP_FACTOR;
|
||||
buffer->receiveSamples(n);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
void BPMDetect::removeBias()
|
||||
{
|
||||
int i;
|
||||
float minval = 1e12f; // arbitrary large number
|
||||
|
||||
// Remove linear bias: calculate linear regression coefficient
|
||||
// 1. calc mean of 'xcorr' and 'i'
|
||||
double mean_i = 0;
|
||||
double mean_x = 0;
|
||||
for (i = windowStart; i < windowLen; i++)
|
||||
{
|
||||
mean_x += xcorr[i];
|
||||
}
|
||||
mean_x /= (windowLen - windowStart);
|
||||
mean_i = 0.5 * (windowLen - 1 + windowStart);
|
||||
|
||||
// 2. calculate linear regression coefficient
|
||||
double b = 0;
|
||||
double div = 0;
|
||||
for (i = windowStart; i < windowLen; i++)
|
||||
{
|
||||
double xt = xcorr[i] - mean_x;
|
||||
double xi = i - mean_i;
|
||||
b += xt * xi;
|
||||
div += xi * xi;
|
||||
}
|
||||
b /= div;
|
||||
|
||||
// subtract linear regression and resolve min. value bias
|
||||
float minval = FLT_MAX; // arbitrary large number
|
||||
for (i = windowStart; i < windowLen; i ++)
|
||||
{
|
||||
xcorr[i] -= (float)(b * i);
|
||||
if (xcorr[i] < minval)
|
||||
{
|
||||
minval = xcorr[i];
|
||||
}
|
||||
}
|
||||
|
||||
// subtract min.value
|
||||
for (i = windowStart; i < windowLen; i ++)
|
||||
{
|
||||
xcorr[i] -= minval;
|
||||
|
@ -346,26 +490,82 @@ void BPMDetect::removeBias()
|
|||
}
|
||||
|
||||
|
||||
// Calculate N-point moving average for "source" values
|
||||
void MAFilter(float *dest, const float *source, int start, int end, int N)
|
||||
{
|
||||
for (int i = start; i < end; i++)
|
||||
{
|
||||
int i1 = i - N / 2;
|
||||
int i2 = i + N / 2 + 1;
|
||||
if (i1 < start) i1 = start;
|
||||
if (i2 > end) i2 = end;
|
||||
|
||||
double sum = 0;
|
||||
for (int j = i1; j < i2; j ++)
|
||||
{
|
||||
sum += source[j];
|
||||
}
|
||||
dest[i] = (float)(sum / (i2 - i1));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
float BPMDetect::getBpm()
|
||||
{
|
||||
double peakPos;
|
||||
double coeff;
|
||||
PeakFinder peakFinder;
|
||||
|
||||
coeff = 60.0 * ((double)sampleRate / (double)decimateBy);
|
||||
|
||||
// save bpm debug analysis data if debug data enabled
|
||||
_SaveDebugData(xcorr, windowStart, windowLen, coeff);
|
||||
|
||||
// remove bias from xcorr data
|
||||
removeBias();
|
||||
|
||||
coeff = 60.0 * ((double)sampleRate / (double)decimateBy);
|
||||
|
||||
// save bpm debug data if debug data writing enabled
|
||||
_SaveDebugData("soundtouch-bpm-xcorr.txt", xcorr, windowStart, windowLen, coeff);
|
||||
|
||||
// Smoothen by N-point moving-average
|
||||
float *data = new float[windowLen];
|
||||
memset(data, 0, sizeof(float) * windowLen);
|
||||
MAFilter(data, xcorr, windowStart, windowLen, MOVING_AVERAGE_N);
|
||||
|
||||
// find peak position
|
||||
peakPos = peakFinder.detectPeak(xcorr, windowStart, windowLen);
|
||||
peakPos = peakFinder.detectPeak(data, windowStart, windowLen);
|
||||
|
||||
// save bpm debug data if debug data writing enabled
|
||||
_SaveDebugData("soundtouch-bpm-smoothed.txt", data, windowStart, windowLen, coeff);
|
||||
|
||||
delete[] data;
|
||||
|
||||
assert(decimateBy != 0);
|
||||
if (peakPos < 1e-9) return 0.0; // detection failed.
|
||||
|
||||
_SaveDebugBeatPos("soundtouch-detected-beats.txt", beats);
|
||||
|
||||
// calculate BPM
|
||||
return (float) (coeff / peakPos);
|
||||
float bpm = (float)(coeff / peakPos);
|
||||
return (bpm >= MIN_BPM && bpm <= MAX_BPM_VALID) ? bpm : 0;
|
||||
}
|
||||
|
||||
|
||||
/// Get beat position arrays. Note: The array includes also really low beat detection values
|
||||
/// in absence of clear strong beats. Consumer may wish to filter low values away.
|
||||
/// - "pos" receive array of beat positions
|
||||
/// - "values" receive array of beat detection strengths
|
||||
/// - max_num indicates max.size of "pos" and "values" array.
|
||||
///
|
||||
/// You can query a suitable array sized by calling this with nullptr in "pos" & "values".
|
||||
///
|
||||
/// \return number of beats in the arrays.
|
||||
int BPMDetect::getBeats(float *pos, float *values, int max_num)
|
||||
{
|
||||
int num = (int)beats.size();
|
||||
if ((!pos) || (!values)) return num; // pos or values nullptr, return just size
|
||||
|
||||
for (int i = 0; (i < num) && (i < max_num); i++)
|
||||
{
|
||||
pos[i] = beats[i].pos;
|
||||
values[i] = beats[i].strength;
|
||||
}
|
||||
return num;
|
||||
}
|
||||
|
|
|
@ -26,13 +26,6 @@
|
|||
///
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Last changed : $Date: 2012-08-30 22:53:44 +0300 (Thu, 30 Aug 2012) $
|
||||
// File revision : $Revision: 4 $
|
||||
//
|
||||
// $Id: BPMDetect.h 150 2012-08-30 19:53:44Z oparviai $
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// License :
|
||||
//
|
||||
// SoundTouch audio processing library
|
||||
|
@ -57,108 +50,156 @@
|
|||
#ifndef _BPMDetect_H_
|
||||
#define _BPMDetect_H_
|
||||
|
||||
#include <vector>
|
||||
#include "STTypes.h"
|
||||
#include "FIFOSampleBuffer.h"
|
||||
|
||||
namespace soundtouch
|
||||
{
|
||||
|
||||
/// Minimum allowed BPM rate. Used to restrict accepted result above a reasonable limit.
|
||||
#define MIN_BPM 29
|
||||
/// Minimum allowed BPM rate. Used to restrict accepted result above a reasonable limit.
|
||||
#define MIN_BPM 45
|
||||
|
||||
/// Maximum allowed BPM rate. Used to restrict accepted result below a reasonable limit.
|
||||
#define MAX_BPM 200
|
||||
/// Maximum allowed BPM rate range. Used for calculating algorithm parametrs
|
||||
#define MAX_BPM_RANGE 200
|
||||
|
||||
/// Maximum allowed BPM rate range. Used to restrict accepted result below a reasonable limit.
|
||||
#define MAX_BPM_VALID 190
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
typedef struct
|
||||
{
|
||||
float pos;
|
||||
float strength;
|
||||
} BEAT;
|
||||
|
||||
|
||||
/// Class for calculating BPM rate for audio data.
|
||||
class BPMDetect
|
||||
{
|
||||
protected:
|
||||
/// Auto-correlation accumulator bins.
|
||||
float *xcorr;
|
||||
|
||||
/// Amplitude envelope sliding average approximation level accumulator
|
||||
double envelopeAccu;
|
||||
class IIR2_filter
|
||||
{
|
||||
double coeffs[5];
|
||||
double prev[5];
|
||||
|
||||
/// RMS volume sliding average approximation level accumulator
|
||||
double RMSVolumeAccu;
|
||||
|
||||
/// Sample average counter.
|
||||
int decimateCount;
|
||||
|
||||
/// Sample average accumulator for FIFO-like decimation.
|
||||
soundtouch::LONG_SAMPLETYPE decimateSum;
|
||||
|
||||
/// Decimate sound by this coefficient to reach approx. 500 Hz.
|
||||
int decimateBy;
|
||||
|
||||
/// Auto-correlation window length
|
||||
int windowLen;
|
||||
|
||||
/// Number of channels (1 = mono, 2 = stereo)
|
||||
int channels;
|
||||
|
||||
/// sample rate
|
||||
int sampleRate;
|
||||
|
||||
/// Beginning of auto-correlation window: Autocorrelation isn't being updated for
|
||||
/// the first these many correlation bins.
|
||||
int windowStart;
|
||||
|
||||
/// FIFO-buffer for decimated processing samples.
|
||||
soundtouch::FIFOSampleBuffer *buffer;
|
||||
|
||||
/// Updates auto-correlation function for given number of decimated samples that
|
||||
/// are read from the internal 'buffer' pipe (samples aren't removed from the pipe
|
||||
/// though).
|
||||
void updateXCorr(int process_samples /// How many samples are processed.
|
||||
);
|
||||
|
||||
/// Decimates samples to approx. 500 Hz.
|
||||
///
|
||||
/// \return Number of output samples.
|
||||
int decimate(soundtouch::SAMPLETYPE *dest, ///< Destination buffer
|
||||
const soundtouch::SAMPLETYPE *src, ///< Source sample buffer
|
||||
int numsamples ///< Number of source samples.
|
||||
);
|
||||
|
||||
/// Calculates amplitude envelope for the buffer of samples.
|
||||
/// Result is output to 'samples'.
|
||||
void calcEnvelope(soundtouch::SAMPLETYPE *samples, ///< Pointer to input/output data buffer
|
||||
int numsamples ///< Number of samples in buffer
|
||||
);
|
||||
|
||||
/// remove constant bias from xcorr data
|
||||
void removeBias();
|
||||
|
||||
public:
|
||||
/// Constructor.
|
||||
BPMDetect(int numChannels, ///< Number of channels in sample data.
|
||||
int sampleRate ///< Sample rate in Hz.
|
||||
);
|
||||
|
||||
/// Destructor.
|
||||
virtual ~BPMDetect();
|
||||
|
||||
/// Inputs a block of samples for analyzing: Envelopes the samples and then
|
||||
/// updates the autocorrelation estimation. When whole song data has been input
|
||||
/// in smaller blocks using this function, read the resulting bpm with 'getBpm'
|
||||
/// function.
|
||||
///
|
||||
/// Notice that data in 'samples' array can be disrupted in processing.
|
||||
void inputSamples(const soundtouch::SAMPLETYPE *samples, ///< Pointer to input/working data buffer
|
||||
int numSamples ///< Number of samples in buffer
|
||||
);
|
||||
public:
|
||||
IIR2_filter(const double *lpf_coeffs);
|
||||
float update(float x);
|
||||
};
|
||||
|
||||
|
||||
/// Analyzes the results and returns the BPM rate. Use this function to read result
|
||||
/// after whole song data has been input to the class by consecutive calls of
|
||||
/// 'inputSamples' function.
|
||||
///
|
||||
/// \return Beats-per-minute rate, or zero if detection failed.
|
||||
float getBpm();
|
||||
};
|
||||
/// Class for calculating BPM rate for audio data.
|
||||
class BPMDetect
|
||||
{
|
||||
protected:
|
||||
/// Auto-correlation accumulator bins.
|
||||
float *xcorr;
|
||||
|
||||
/// Sample average counter.
|
||||
int decimateCount;
|
||||
|
||||
/// Sample average accumulator for FIFO-like decimation.
|
||||
soundtouch::LONG_SAMPLETYPE decimateSum;
|
||||
|
||||
/// Decimate sound by this coefficient to reach approx. 500 Hz.
|
||||
int decimateBy;
|
||||
|
||||
/// Auto-correlation window length
|
||||
int windowLen;
|
||||
|
||||
/// Number of channels (1 = mono, 2 = stereo)
|
||||
int channels;
|
||||
|
||||
/// sample rate
|
||||
int sampleRate;
|
||||
|
||||
/// Beginning of auto-correlation window: Autocorrelation isn't being updated for
|
||||
/// the first these many correlation bins.
|
||||
int windowStart;
|
||||
|
||||
/// window functions for data preconditioning
|
||||
float *hamw;
|
||||
float *hamw2;
|
||||
|
||||
// beat detection variables
|
||||
int pos;
|
||||
int peakPos;
|
||||
int beatcorr_ringbuffpos;
|
||||
int init_scaler;
|
||||
float peakVal;
|
||||
float *beatcorr_ringbuff;
|
||||
|
||||
/// FIFO-buffer for decimated processing samples.
|
||||
soundtouch::FIFOSampleBuffer *buffer;
|
||||
|
||||
/// Collection of detected beat positions
|
||||
//BeatCollection beats;
|
||||
std::vector<BEAT> beats;
|
||||
|
||||
// 2nd order low-pass-filter
|
||||
IIR2_filter beat_lpf;
|
||||
|
||||
/// Updates auto-correlation function for given number of decimated samples that
|
||||
/// are read from the internal 'buffer' pipe (samples aren't removed from the pipe
|
||||
/// though).
|
||||
void updateXCorr(int process_samples /// How many samples are processed.
|
||||
);
|
||||
|
||||
/// Decimates samples to approx. 500 Hz.
|
||||
///
|
||||
/// \return Number of output samples.
|
||||
int decimate(soundtouch::SAMPLETYPE *dest, ///< Destination buffer
|
||||
const soundtouch::SAMPLETYPE *src, ///< Source sample buffer
|
||||
int numsamples ///< Number of source samples.
|
||||
);
|
||||
|
||||
/// Calculates amplitude envelope for the buffer of samples.
|
||||
/// Result is output to 'samples'.
|
||||
void calcEnvelope(soundtouch::SAMPLETYPE *samples, ///< Pointer to input/output data buffer
|
||||
int numsamples ///< Number of samples in buffer
|
||||
);
|
||||
|
||||
/// remove constant bias from xcorr data
|
||||
void removeBias();
|
||||
|
||||
// Detect individual beat positions
|
||||
void updateBeatPos(int process_samples);
|
||||
|
||||
|
||||
public:
|
||||
/// Constructor.
|
||||
BPMDetect(int numChannels, ///< Number of channels in sample data.
|
||||
int sampleRate ///< Sample rate in Hz.
|
||||
);
|
||||
|
||||
/// Destructor.
|
||||
virtual ~BPMDetect();
|
||||
|
||||
/// Inputs a block of samples for analyzing: Envelopes the samples and then
|
||||
/// updates the autocorrelation estimation. When whole song data has been input
|
||||
/// in smaller blocks using this function, read the resulting bpm with 'getBpm'
|
||||
/// function.
|
||||
///
|
||||
/// Notice that data in 'samples' array can be disrupted in processing.
|
||||
void inputSamples(const soundtouch::SAMPLETYPE *samples, ///< Pointer to input/working data buffer
|
||||
int numSamples ///< Number of samples in buffer
|
||||
);
|
||||
|
||||
/// Analyzes the results and returns the BPM rate. Use this function to read result
|
||||
/// after whole song data has been input to the class by consecutive calls of
|
||||
/// 'inputSamples' function.
|
||||
///
|
||||
/// \return Beats-per-minute rate, or zero if detection failed.
|
||||
float getBpm();
|
||||
|
||||
/// Get beat position arrays. Note: The array includes also really low beat detection values
|
||||
/// in absence of clear strong beats. Consumer may wish to filter low values away.
|
||||
/// - "pos" receive array of beat positions
|
||||
/// - "values" receive array of beat detection strengths
|
||||
/// - max_num indicates max.size of "pos" and "values" array.
|
||||
///
|
||||
/// You can query a suitable array sized by calling this with nullptr in "pos" & "values".
|
||||
///
|
||||
/// \return number of beats in the arrays.
|
||||
int getBeats(float *pos, float *strength, int max_num);
|
||||
};
|
||||
}
|
||||
|
||||
#endif // _BPMDetect_H_
|
||||
|
|
|
@ -1,3 +1,6 @@
|
|||
# OSX meeds to know
|
||||
check_and_add_flag(CXX11 -std=c++11)
|
||||
|
||||
set(SRCS
|
||||
AAFilter.cpp
|
||||
BPMDetect.cpp
|
||||
|
@ -17,4 +20,3 @@ set(SRCS
|
|||
|
||||
add_library(SoundTouch STATIC ${SRCS})
|
||||
dolphin_disable_warnings_msvc(SoundTouch)
|
||||
add_definitions(-w)
|
||||
|
|
|
@ -15,13 +15,6 @@
|
|||
///
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Last changed : $Date: 2012-11-08 20:53:01 +0200 (Thu, 08 Nov 2012) $
|
||||
// File revision : $Revision: 4 $
|
||||
//
|
||||
// $Id: FIFOSampleBuffer.cpp 160 2012-11-08 18:53:01Z oparviai $
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// License :
|
||||
//
|
||||
// SoundTouch audio processing library
|
||||
|
@ -57,8 +50,8 @@ FIFOSampleBuffer::FIFOSampleBuffer(int numChannels)
|
|||
{
|
||||
assert(numChannels > 0);
|
||||
sizeInBytes = 0; // reasonable initial value
|
||||
buffer = NULL;
|
||||
bufferUnaligned = NULL;
|
||||
buffer = nullptr;
|
||||
bufferUnaligned = nullptr;
|
||||
samplesInBuffer = 0;
|
||||
bufferPos = 0;
|
||||
channels = (uint)numChannels;
|
||||
|
@ -70,8 +63,8 @@ FIFOSampleBuffer::FIFOSampleBuffer(int numChannels)
|
|||
FIFOSampleBuffer::~FIFOSampleBuffer()
|
||||
{
|
||||
delete[] bufferUnaligned;
|
||||
bufferUnaligned = NULL;
|
||||
buffer = NULL;
|
||||
bufferUnaligned = nullptr;
|
||||
buffer = nullptr;
|
||||
}
|
||||
|
||||
|
||||
|
@ -80,7 +73,8 @@ void FIFOSampleBuffer::setChannels(int numChannels)
|
|||
{
|
||||
uint usedBytes;
|
||||
|
||||
assert(numChannels > 0);
|
||||
if (!verifyNumberOfChannels(numChannels)) return;
|
||||
|
||||
usedBytes = channels * samplesInBuffer;
|
||||
channels = (uint)numChannels;
|
||||
samplesInBuffer = usedBytes / channels;
|
||||
|
@ -131,7 +125,7 @@ void FIFOSampleBuffer::putSamples(uint nSamples)
|
|||
//
|
||||
// Parameter 'slackCapacity' tells the function how much free capacity (in
|
||||
// terms of samples) there _at least_ should be, in order to the caller to
|
||||
// succesfully insert all the required samples to the buffer. When necessary,
|
||||
// successfully insert all the required samples to the buffer. When necessary,
|
||||
// the function grows the buffer size to comply with this requirement.
|
||||
//
|
||||
// When using this function as means for inserting new samples, also remember
|
||||
|
@ -158,7 +152,7 @@ SAMPLETYPE *FIFOSampleBuffer::ptrBegin()
|
|||
}
|
||||
|
||||
|
||||
// Ensures that the buffer has enought capacity, i.e. space for _at least_
|
||||
// Ensures that the buffer has enough capacity, i.e. space for _at least_
|
||||
// 'capacityRequirement' number of samples. The buffer is grown in steps of
|
||||
// 4 kilobytes to eliminate the need for frequently growing up the buffer,
|
||||
// as well as to round the buffer size up to the virtual memory page size.
|
||||
|
@ -172,7 +166,7 @@ void FIFOSampleBuffer::ensureCapacity(uint capacityRequirement)
|
|||
sizeInBytes = (capacityRequirement * channels * sizeof(SAMPLETYPE) + 4095) & (uint)-4096;
|
||||
assert(sizeInBytes % 2 == 0);
|
||||
tempUnaligned = new SAMPLETYPE[sizeInBytes / sizeof(SAMPLETYPE) + 16 / sizeof(SAMPLETYPE)];
|
||||
if (tempUnaligned == NULL)
|
||||
if (tempUnaligned == nullptr)
|
||||
{
|
||||
ST_THROW_RT_ERROR("Couldn't allocate memory!\n");
|
||||
}
|
||||
|
@ -272,3 +266,10 @@ uint FIFOSampleBuffer::adjustAmountOfSamples(uint numSamples)
|
|||
return samplesInBuffer;
|
||||
}
|
||||
|
||||
|
||||
/// Add silence to end of buffer
|
||||
void FIFOSampleBuffer::addSilent(uint nSamples)
|
||||
{
|
||||
memset(ptrEnd(nSamples), 0, sizeof(SAMPLETYPE) * nSamples * channels);
|
||||
samplesInBuffer += nSamples;
|
||||
}
|
||||
|
|
|
@ -15,13 +15,6 @@
|
|||
///
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Last changed : $Date: 2014-01-05 23:40:22 +0200 (Sun, 05 Jan 2014) $
|
||||
// File revision : $Revision: 4 $
|
||||
//
|
||||
// $Id: FIFOSampleBuffer.h 177 2014-01-05 21:40:22Z oparviai $
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// License :
|
||||
//
|
||||
// SoundTouch audio processing library
|
||||
|
@ -98,7 +91,7 @@ public:
|
|||
);
|
||||
|
||||
/// destructor
|
||||
~FIFOSampleBuffer();
|
||||
~FIFOSampleBuffer() override;
|
||||
|
||||
/// Returns a pointer to the beginning of the output samples.
|
||||
/// This function is provided for accessing the output samples directly.
|
||||
|
@ -107,7 +100,7 @@ public:
|
|||
/// When using this function to output samples, also remember to 'remove' the
|
||||
/// output samples from the buffer by calling the
|
||||
/// 'receiveSamples(numSamples)' function
|
||||
virtual SAMPLETYPE *ptrBegin();
|
||||
virtual SAMPLETYPE *ptrBegin() override;
|
||||
|
||||
/// Returns a pointer to the end of the used part of the sample buffer (i.e.
|
||||
/// where the new samples are to be inserted). This function may be used for
|
||||
|
@ -119,7 +112,7 @@ public:
|
|||
/// 'putSamples(numSamples)' function.
|
||||
SAMPLETYPE *ptrEnd(
|
||||
uint slackCapacity ///< How much free capacity (in samples) there _at least_
|
||||
///< should be so that the caller can succesfully insert the
|
||||
///< should be so that the caller can successfully insert the
|
||||
///< desired samples to the buffer. If necessary, the function
|
||||
///< grows the buffer size to comply with this requirement.
|
||||
);
|
||||
|
@ -128,7 +121,7 @@ public:
|
|||
/// the sample buffer.
|
||||
virtual void putSamples(const SAMPLETYPE *samples, ///< Pointer to samples.
|
||||
uint numSamples ///< Number of samples to insert.
|
||||
);
|
||||
) override;
|
||||
|
||||
/// Adjusts the book-keeping to increase number of samples in the buffer without
|
||||
/// copying any actual samples.
|
||||
|
@ -146,7 +139,7 @@ public:
|
|||
/// \return Number of samples returned.
|
||||
virtual uint receiveSamples(SAMPLETYPE *output, ///< Buffer where to copy output samples.
|
||||
uint maxSamples ///< How many samples to receive at max.
|
||||
);
|
||||
) override;
|
||||
|
||||
/// Adjusts book-keeping so that given number of samples are removed from beginning of the
|
||||
/// sample buffer without copying them anywhere.
|
||||
|
@ -154,10 +147,10 @@ public:
|
|||
/// Used to reduce the number of samples in the buffer when accessing the sample buffer directly
|
||||
/// with 'ptrBegin' function.
|
||||
virtual uint receiveSamples(uint maxSamples ///< Remove this many samples from the beginning of pipe.
|
||||
);
|
||||
) override;
|
||||
|
||||
/// Returns number of samples currently available.
|
||||
virtual uint numSamples() const;
|
||||
virtual uint numSamples() const override;
|
||||
|
||||
/// Sets number of channels, 1 = mono, 2 = stereo.
|
||||
void setChannels(int numChannels);
|
||||
|
@ -169,14 +162,17 @@ public:
|
|||
}
|
||||
|
||||
/// Returns nonzero if there aren't any samples available for outputting.
|
||||
virtual int isEmpty() const;
|
||||
virtual int isEmpty() const override;
|
||||
|
||||
/// Clears all the samples.
|
||||
virtual void clear();
|
||||
virtual void clear() override;
|
||||
|
||||
/// allow trimming (downwards) amount of samples in pipeline.
|
||||
/// Returns adjusted amount of samples
|
||||
uint adjustAmountOfSamples(uint numSamples);
|
||||
uint adjustAmountOfSamples(uint numSamples) override;
|
||||
|
||||
/// Add silence to end of buffer
|
||||
void addSilent(uint nSamples);
|
||||
};
|
||||
|
||||
}
|
||||
|
|
|
@ -17,13 +17,6 @@
|
|||
///
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Last changed : $Date: 2012-06-13 22:29:53 +0300 (Wed, 13 Jun 2012) $
|
||||
// File revision : $Revision: 4 $
|
||||
//
|
||||
// $Id: FIFOSamplePipe.h 143 2012-06-13 19:29:53Z oparviai $
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// License :
|
||||
//
|
||||
// SoundTouch audio processing library
|
||||
|
@ -58,6 +51,18 @@ namespace soundtouch
|
|||
/// Abstract base class for FIFO (first-in-first-out) sample processing classes.
|
||||
class FIFOSamplePipe
|
||||
{
|
||||
protected:
|
||||
|
||||
bool verifyNumberOfChannels(int nChannels) const
|
||||
{
|
||||
if ((nChannels > 0) && (nChannels <= SOUNDTOUCH_MAX_CHANNELS))
|
||||
{
|
||||
return true;
|
||||
}
|
||||
ST_THROW_RT_ERROR("Error: Illegal number of channels");
|
||||
return false;
|
||||
}
|
||||
|
||||
public:
|
||||
// virtual default destructor
|
||||
virtual ~FIFOSamplePipe() {}
|
||||
|
@ -122,7 +127,6 @@ public:
|
|||
};
|
||||
|
||||
|
||||
|
||||
/// Base-class for sound processing routines working in FIFO principle. With this base
|
||||
/// class it's easy to implement sound processing stages that can be chained together,
|
||||
/// so that samples that are fed into beginning of the pipe automatically go through
|
||||
|
@ -140,20 +144,18 @@ protected:
|
|||
/// Sets output pipe.
|
||||
void setOutPipe(FIFOSamplePipe *pOutput)
|
||||
{
|
||||
assert(output == NULL);
|
||||
assert(pOutput != NULL);
|
||||
assert(output == nullptr);
|
||||
assert(pOutput != nullptr);
|
||||
output = pOutput;
|
||||
}
|
||||
|
||||
|
||||
/// Constructor. Doesn't define output pipe; it has to be set be
|
||||
/// 'setOutPipe' function.
|
||||
FIFOProcessor()
|
||||
{
|
||||
output = NULL;
|
||||
output = nullptr;
|
||||
}
|
||||
|
||||
|
||||
/// Constructor. Configures output pipe.
|
||||
FIFOProcessor(FIFOSamplePipe *pOutput ///< Output pipe.
|
||||
)
|
||||
|
@ -161,13 +163,11 @@ protected:
|
|||
output = pOutput;
|
||||
}
|
||||
|
||||
|
||||
/// Destructor.
|
||||
virtual ~FIFOProcessor()
|
||||
virtual ~FIFOProcessor() override
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
/// Returns a pointer to the beginning of the output samples.
|
||||
/// This function is provided for accessing the output samples directly.
|
||||
/// Please be careful for not to corrupt the book-keeping!
|
||||
|
@ -175,7 +175,7 @@ protected:
|
|||
/// When using this function to output samples, also remember to 'remove' the
|
||||
/// output samples from the buffer by calling the
|
||||
/// 'receiveSamples(numSamples)' function
|
||||
virtual SAMPLETYPE *ptrBegin()
|
||||
virtual SAMPLETYPE *ptrBegin() override
|
||||
{
|
||||
return output->ptrBegin();
|
||||
}
|
||||
|
@ -189,44 +189,40 @@ public:
|
|||
/// \return Number of samples returned.
|
||||
virtual uint receiveSamples(SAMPLETYPE *outBuffer, ///< Buffer where to copy output samples.
|
||||
uint maxSamples ///< How many samples to receive at max.
|
||||
)
|
||||
) override
|
||||
{
|
||||
return output->receiveSamples(outBuffer, maxSamples);
|
||||
}
|
||||
|
||||
|
||||
/// Adjusts book-keeping so that given number of samples are removed from beginning of the
|
||||
/// sample buffer without copying them anywhere.
|
||||
///
|
||||
/// Used to reduce the number of samples in the buffer when accessing the sample buffer directly
|
||||
/// with 'ptrBegin' function.
|
||||
virtual uint receiveSamples(uint maxSamples ///< Remove this many samples from the beginning of pipe.
|
||||
)
|
||||
) override
|
||||
{
|
||||
return output->receiveSamples(maxSamples);
|
||||
}
|
||||
|
||||
|
||||
/// Returns number of samples currently available.
|
||||
virtual uint numSamples() const
|
||||
virtual uint numSamples() const override
|
||||
{
|
||||
return output->numSamples();
|
||||
}
|
||||
|
||||
|
||||
/// Returns nonzero if there aren't any samples available for outputting.
|
||||
virtual int isEmpty() const
|
||||
virtual int isEmpty() const override
|
||||
{
|
||||
return output->isEmpty();
|
||||
}
|
||||
|
||||
/// allow trimming (downwards) amount of samples in pipeline.
|
||||
/// Returns adjusted amount of samples
|
||||
virtual uint adjustAmountOfSamples(uint numSamples)
|
||||
virtual uint adjustAmountOfSamples(uint numSamples) override
|
||||
{
|
||||
return output->adjustAmountOfSamples(numSamples);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
}
|
||||
|
|
|
@ -2,22 +2,21 @@
|
|||
///
|
||||
/// General FIR digital filter routines with MMX optimization.
|
||||
///
|
||||
/// Note : MMX optimized functions reside in a separate, platform-specific file,
|
||||
/// Notes : MMX optimized functions reside in a separate, platform-specific file,
|
||||
/// e.g. 'mmx_win.cpp' or 'mmx_gcc.cpp'
|
||||
///
|
||||
/// This source file contains OpenMP optimizations that allow speeding up the
|
||||
/// corss-correlation algorithm by executing it in several threads / CPU cores
|
||||
/// in parallel. See the following article link for more detailed discussion
|
||||
/// about SoundTouch OpenMP optimizations:
|
||||
/// http://www.softwarecoven.com/parallel-computing-in-embedded-mobile-devices
|
||||
///
|
||||
/// Author : Copyright (c) Olli Parviainen
|
||||
/// Author e-mail : oparviai 'at' iki.fi
|
||||
/// SoundTouch WWW: http://www.surina.net/soundtouch
|
||||
///
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Last changed : $Date: 2015-02-21 23:24:29 +0200 (Sat, 21 Feb 2015) $
|
||||
// File revision : $Revision: 4 $
|
||||
//
|
||||
// $Id: FIRFilter.cpp 202 2015-02-21 21:24:29Z oparviai $
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// License :
|
||||
//
|
||||
// SoundTouch audio processing library
|
||||
|
@ -60,53 +59,43 @@ FIRFilter::FIRFilter()
|
|||
resultDivider = 0;
|
||||
length = 0;
|
||||
lengthDiv8 = 0;
|
||||
filterCoeffs = NULL;
|
||||
filterCoeffs = nullptr;
|
||||
filterCoeffsStereo = nullptr;
|
||||
}
|
||||
|
||||
|
||||
FIRFilter::~FIRFilter()
|
||||
{
|
||||
delete[] filterCoeffs;
|
||||
delete[] filterCoeffsStereo;
|
||||
}
|
||||
|
||||
|
||||
// Usual C-version of the filter routine for stereo sound
|
||||
uint FIRFilter::evaluateFilterStereo(SAMPLETYPE *dest, const SAMPLETYPE *src, uint numSamples) const
|
||||
{
|
||||
int j, end;
|
||||
#ifdef SOUNDTOUCH_FLOAT_SAMPLES
|
||||
// when using floating point samples, use a scaler instead of a divider
|
||||
// because division is much slower operation than multiplying.
|
||||
double dScaler = 1.0 / (double)resultDivider;
|
||||
#endif
|
||||
// hint compiler autovectorization that loop length is divisible by 8
|
||||
uint ilength = length & -8;
|
||||
|
||||
assert(length != 0);
|
||||
assert(src != NULL);
|
||||
assert(dest != NULL);
|
||||
assert(filterCoeffs != NULL);
|
||||
assert((length != 0) && (length == ilength) && (src != nullptr) && (dest != nullptr) && (filterCoeffs != nullptr));
|
||||
assert(numSamples > ilength);
|
||||
|
||||
end = 2 * (numSamples - length);
|
||||
end = 2 * (numSamples - ilength);
|
||||
|
||||
#pragma omp parallel for
|
||||
for (j = 0; j < end; j += 2)
|
||||
{
|
||||
const SAMPLETYPE *ptr;
|
||||
LONG_SAMPLETYPE suml, sumr;
|
||||
uint i;
|
||||
|
||||
suml = sumr = 0;
|
||||
ptr = src + j;
|
||||
|
||||
for (i = 0; i < length; i += 4)
|
||||
for (uint i = 0; i < ilength; i ++)
|
||||
{
|
||||
// loop is unrolled by factor of 4 here for efficiency
|
||||
suml += ptr[2 * i + 0] * filterCoeffs[i + 0] +
|
||||
ptr[2 * i + 2] * filterCoeffs[i + 1] +
|
||||
ptr[2 * i + 4] * filterCoeffs[i + 2] +
|
||||
ptr[2 * i + 6] * filterCoeffs[i + 3];
|
||||
sumr += ptr[2 * i + 1] * filterCoeffs[i + 0] +
|
||||
ptr[2 * i + 3] * filterCoeffs[i + 1] +
|
||||
ptr[2 * i + 5] * filterCoeffs[i + 2] +
|
||||
ptr[2 * i + 7] * filterCoeffs[i + 3];
|
||||
suml += ptr[2 * i] * filterCoeffsStereo[2 * i];
|
||||
sumr += ptr[2 * i + 1] * filterCoeffsStereo[2 * i + 1];
|
||||
}
|
||||
|
||||
#ifdef SOUNDTOUCH_INTEGER_SAMPLES
|
||||
|
@ -116,54 +105,41 @@ uint FIRFilter::evaluateFilterStereo(SAMPLETYPE *dest, const SAMPLETYPE *src, ui
|
|||
suml = (suml < -32768) ? -32768 : (suml > 32767) ? 32767 : suml;
|
||||
// saturate to 16 bit integer limits
|
||||
sumr = (sumr < -32768) ? -32768 : (sumr > 32767) ? 32767 : sumr;
|
||||
#else
|
||||
suml *= dScaler;
|
||||
sumr *= dScaler;
|
||||
#endif // SOUNDTOUCH_INTEGER_SAMPLES
|
||||
dest[j] = (SAMPLETYPE)suml;
|
||||
dest[j + 1] = (SAMPLETYPE)sumr;
|
||||
}
|
||||
return numSamples - length;
|
||||
return numSamples - ilength;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
// Usual C-version of the filter routine for mono sound
|
||||
uint FIRFilter::evaluateFilterMono(SAMPLETYPE *dest, const SAMPLETYPE *src, uint numSamples) const
|
||||
{
|
||||
int j, end;
|
||||
#ifdef SOUNDTOUCH_FLOAT_SAMPLES
|
||||
// when using floating point samples, use a scaler instead of a divider
|
||||
// because division is much slower operation than multiplying.
|
||||
double dScaler = 1.0 / (double)resultDivider;
|
||||
#endif
|
||||
|
||||
assert(length != 0);
|
||||
// hint compiler autovectorization that loop length is divisible by 8
|
||||
int ilength = length & -8;
|
||||
|
||||
end = numSamples - length;
|
||||
assert(ilength != 0);
|
||||
|
||||
end = numSamples - ilength;
|
||||
#pragma omp parallel for
|
||||
for (j = 0; j < end; j ++)
|
||||
for (j = 0; j < end; j ++)
|
||||
{
|
||||
const SAMPLETYPE *pSrc = src + j;
|
||||
LONG_SAMPLETYPE sum;
|
||||
uint i;
|
||||
int i;
|
||||
|
||||
sum = 0;
|
||||
for (i = 0; i < length; i += 4)
|
||||
for (i = 0; i < ilength; i ++)
|
||||
{
|
||||
// loop is unrolled by factor of 4 here for efficiency
|
||||
sum += pSrc[i + 0] * filterCoeffs[i + 0] +
|
||||
pSrc[i + 1] * filterCoeffs[i + 1] +
|
||||
pSrc[i + 2] * filterCoeffs[i + 2] +
|
||||
pSrc[i + 3] * filterCoeffs[i + 3];
|
||||
sum += pSrc[i] * filterCoeffs[i];
|
||||
}
|
||||
#ifdef SOUNDTOUCH_INTEGER_SAMPLES
|
||||
sum >>= resultDivFactor;
|
||||
// saturate to 16 bit integer limits
|
||||
sum = (sum < -32768) ? -32768 : (sum > 32767) ? 32767 : sum;
|
||||
#else
|
||||
sum *= dScaler;
|
||||
#endif // SOUNDTOUCH_INTEGER_SAMPLES
|
||||
dest[j] = (SAMPLETYPE)sum;
|
||||
}
|
||||
|
@ -175,26 +151,24 @@ uint FIRFilter::evaluateFilterMulti(SAMPLETYPE *dest, const SAMPLETYPE *src, uin
|
|||
{
|
||||
int j, end;
|
||||
|
||||
#ifdef SOUNDTOUCH_FLOAT_SAMPLES
|
||||
// when using floating point samples, use a scaler instead of a divider
|
||||
// because division is much slower operation than multiplying.
|
||||
double dScaler = 1.0 / (double)resultDivider;
|
||||
#endif
|
||||
|
||||
assert(length != 0);
|
||||
assert(src != NULL);
|
||||
assert(dest != NULL);
|
||||
assert(filterCoeffs != NULL);
|
||||
assert(src != nullptr);
|
||||
assert(dest != nullptr);
|
||||
assert(filterCoeffs != nullptr);
|
||||
assert(numChannels < 16);
|
||||
|
||||
end = numChannels * (numSamples - length);
|
||||
// hint compiler autovectorization that loop length is divisible by 8
|
||||
int ilength = length & -8;
|
||||
|
||||
end = numChannels * (numSamples - ilength);
|
||||
|
||||
#pragma omp parallel for
|
||||
for (j = 0; j < end; j += numChannels)
|
||||
{
|
||||
const SAMPLETYPE *ptr;
|
||||
LONG_SAMPLETYPE sums[16];
|
||||
uint c, i;
|
||||
uint c;
|
||||
int i;
|
||||
|
||||
for (c = 0; c < numChannels; c ++)
|
||||
{
|
||||
|
@ -203,7 +177,7 @@ uint FIRFilter::evaluateFilterMulti(SAMPLETYPE *dest, const SAMPLETYPE *src, uin
|
|||
|
||||
ptr = src + j;
|
||||
|
||||
for (i = 0; i < length; i ++)
|
||||
for (i = 0; i < ilength; i ++)
|
||||
{
|
||||
SAMPLETYPE coef=filterCoeffs[i];
|
||||
for (c = 0; c < numChannels; c ++)
|
||||
|
@ -217,13 +191,11 @@ uint FIRFilter::evaluateFilterMulti(SAMPLETYPE *dest, const SAMPLETYPE *src, uin
|
|||
{
|
||||
#ifdef SOUNDTOUCH_INTEGER_SAMPLES
|
||||
sums[c] >>= resultDivFactor;
|
||||
#else
|
||||
sums[c] *= dScaler;
|
||||
#endif // SOUNDTOUCH_INTEGER_SAMPLES
|
||||
dest[j+c] = (SAMPLETYPE)sums[c];
|
||||
}
|
||||
}
|
||||
return numSamples - length;
|
||||
return numSamples - ilength;
|
||||
}
|
||||
|
||||
|
||||
|
@ -235,6 +207,13 @@ void FIRFilter::setCoefficients(const SAMPLETYPE *coeffs, uint newLength, uint u
|
|||
assert(newLength > 0);
|
||||
if (newLength % 8) ST_THROW_RT_ERROR("FIR filter length not divisible by 8");
|
||||
|
||||
#ifdef SOUNDTOUCH_FLOAT_SAMPLES
|
||||
// scale coefficients already here if using floating samples
|
||||
double scale = 1.0 / resultDivider;
|
||||
#else
|
||||
short scale = 1;
|
||||
#endif
|
||||
|
||||
lengthDiv8 = newLength / 8;
|
||||
length = lengthDiv8 * 8;
|
||||
assert(length == newLength);
|
||||
|
@ -244,7 +223,16 @@ void FIRFilter::setCoefficients(const SAMPLETYPE *coeffs, uint newLength, uint u
|
|||
|
||||
delete[] filterCoeffs;
|
||||
filterCoeffs = new SAMPLETYPE[length];
|
||||
memcpy(filterCoeffs, coeffs, length * sizeof(SAMPLETYPE));
|
||||
delete[] filterCoeffsStereo;
|
||||
filterCoeffsStereo = new SAMPLETYPE[length*2];
|
||||
for (uint i = 0; i < length; i ++)
|
||||
{
|
||||
filterCoeffs[i] = (SAMPLETYPE)(coeffs[i] * scale);
|
||||
// create also stereo set of filter coefficients: this allows compiler
|
||||
// to autovectorize filter evaluation much more efficiently
|
||||
filterCoeffsStereo[2 * i] = (SAMPLETYPE)(coeffs[i] * scale);
|
||||
filterCoeffsStereo[2 * i + 1] = (SAMPLETYPE)(coeffs[i] * scale);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
@ -254,7 +242,6 @@ uint FIRFilter::getLength() const
|
|||
}
|
||||
|
||||
|
||||
|
||||
// Applies the filter to the given sequence of samples.
|
||||
//
|
||||
// Note : The amount of outputted samples is by value of 'filter_length'
|
||||
|
@ -284,10 +271,9 @@ uint FIRFilter::evaluate(SAMPLETYPE *dest, const SAMPLETYPE *src, uint numSample
|
|||
}
|
||||
|
||||
|
||||
|
||||
// Operator 'new' is overloaded so that it automatically creates a suitable instance
|
||||
// depending on if we've a MMX-capable CPU available or not.
|
||||
void * FIRFilter::operator new(size_t s)
|
||||
void * FIRFilter::operator new(size_t)
|
||||
{
|
||||
// Notice! don't use "new FIRFilter" directly, use "newInstance" to create a new instance instead!
|
||||
ST_THROW_RT_ERROR("Error in FIRFilter::new: Don't use 'new FIRFilter', use 'newInstance' member instead!");
|
||||
|
|
|
@ -11,13 +11,6 @@
|
|||
///
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Last changed : $Date: 2015-02-21 23:24:29 +0200 (Sat, 21 Feb 2015) $
|
||||
// File revision : $Revision: 4 $
|
||||
//
|
||||
// $Id: FIRFilter.h 202 2015-02-21 21:24:29Z oparviai $
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// License :
|
||||
//
|
||||
// SoundTouch audio processing library
|
||||
|
@ -64,6 +57,7 @@ protected:
|
|||
|
||||
// Memory for filter coefficients
|
||||
SAMPLETYPE *filterCoeffs;
|
||||
SAMPLETYPE *filterCoeffsStereo;
|
||||
|
||||
virtual uint evaluateFilterStereo(SAMPLETYPE *dest,
|
||||
const SAMPLETYPE *src,
|
||||
|
@ -112,12 +106,12 @@ public:
|
|||
short *filterCoeffsUnalign;
|
||||
short *filterCoeffsAlign;
|
||||
|
||||
virtual uint evaluateFilterStereo(short *dest, const short *src, uint numSamples) const;
|
||||
virtual uint evaluateFilterStereo(short *dest, const short *src, uint numSamples) const override;
|
||||
public:
|
||||
FIRFilterMMX();
|
||||
~FIRFilterMMX();
|
||||
|
||||
virtual void setCoefficients(const short *coeffs, uint newLength, uint uResultDivFactor);
|
||||
virtual void setCoefficients(const short *coeffs, uint newLength, uint uResultDivFactor) override;
|
||||
};
|
||||
|
||||
#endif // SOUNDTOUCH_ALLOW_MMX
|
||||
|
@ -131,12 +125,12 @@ public:
|
|||
float *filterCoeffsUnalign;
|
||||
float *filterCoeffsAlign;
|
||||
|
||||
virtual uint evaluateFilterStereo(float *dest, const float *src, uint numSamples) const;
|
||||
virtual uint evaluateFilterStereo(float *dest, const float *src, uint numSamples) const override;
|
||||
public:
|
||||
FIRFilterSSE();
|
||||
~FIRFilterSSE();
|
||||
|
||||
virtual void setCoefficients(const float *coeffs, uint newLength, uint uResultDivFactor);
|
||||
virtual void setCoefficients(const float *coeffs, uint newLength, uint uResultDivFactor) override;
|
||||
};
|
||||
|
||||
#endif // SOUNDTOUCH_ALLOW_SSE
|
||||
|
|
|
@ -1,200 +1,196 @@
|
|||
////////////////////////////////////////////////////////////////////////////////
|
||||
///
|
||||
/// Cubic interpolation routine.
|
||||
///
|
||||
/// Author : Copyright (c) Olli Parviainen
|
||||
/// Author e-mail : oparviai 'at' iki.fi
|
||||
/// SoundTouch WWW: http://www.surina.net/soundtouch
|
||||
///
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// $Id: InterpolateCubic.cpp 179 2014-01-06 18:41:42Z oparviai $
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// License :
|
||||
//
|
||||
// SoundTouch audio processing library
|
||||
// Copyright (c) Olli Parviainen
|
||||
//
|
||||
// This library is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 2.1 of the License, or (at your option) any later version.
|
||||
//
|
||||
// This library is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
// Lesser General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License along with this library; if not, write to the Free Software
|
||||
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#include <stddef.h>
|
||||
#include <math.h>
|
||||
#include "InterpolateCubic.h"
|
||||
#include "STTypes.h"
|
||||
|
||||
using namespace soundtouch;
|
||||
|
||||
// cubic interpolation coefficients
|
||||
static const float _coeffs[]=
|
||||
{ -0.5f, 1.0f, -0.5f, 0.0f,
|
||||
1.5f, -2.5f, 0.0f, 1.0f,
|
||||
-1.5f, 2.0f, 0.5f, 0.0f,
|
||||
0.5f, -0.5f, 0.0f, 0.0f};
|
||||
|
||||
|
||||
InterpolateCubic::InterpolateCubic()
|
||||
{
|
||||
fract = 0;
|
||||
}
|
||||
|
||||
|
||||
void InterpolateCubic::resetRegisters()
|
||||
{
|
||||
fract = 0;
|
||||
}
|
||||
|
||||
|
||||
/// Transpose mono audio. Returns number of produced output samples, and
|
||||
/// updates "srcSamples" to amount of consumed source samples
|
||||
int InterpolateCubic::transposeMono(SAMPLETYPE *pdest,
|
||||
const SAMPLETYPE *psrc,
|
||||
int &srcSamples)
|
||||
{
|
||||
int i;
|
||||
int srcSampleEnd = srcSamples - 4;
|
||||
int srcCount = 0;
|
||||
|
||||
i = 0;
|
||||
while (srcCount < srcSampleEnd)
|
||||
{
|
||||
float out;
|
||||
const float x3 = 1.0f;
|
||||
const float x2 = (float)fract; // x
|
||||
const float x1 = x2*x2; // x^2
|
||||
const float x0 = x1*x2; // x^3
|
||||
float y0, y1, y2, y3;
|
||||
|
||||
assert(fract < 1.0);
|
||||
|
||||
y0 = _coeffs[0] * x0 + _coeffs[1] * x1 + _coeffs[2] * x2 + _coeffs[3] * x3;
|
||||
y1 = _coeffs[4] * x0 + _coeffs[5] * x1 + _coeffs[6] * x2 + _coeffs[7] * x3;
|
||||
y2 = _coeffs[8] * x0 + _coeffs[9] * x1 + _coeffs[10] * x2 + _coeffs[11] * x3;
|
||||
y3 = _coeffs[12] * x0 + _coeffs[13] * x1 + _coeffs[14] * x2 + _coeffs[15] * x3;
|
||||
|
||||
out = y0 * psrc[0] + y1 * psrc[1] + y2 * psrc[2] + y3 * psrc[3];
|
||||
|
||||
pdest[i] = (SAMPLETYPE)out;
|
||||
i ++;
|
||||
|
||||
// update position fraction
|
||||
fract += rate;
|
||||
// update whole positions
|
||||
int whole = (int)fract;
|
||||
fract -= whole;
|
||||
psrc += whole;
|
||||
srcCount += whole;
|
||||
}
|
||||
srcSamples = srcCount;
|
||||
return i;
|
||||
}
|
||||
|
||||
|
||||
/// Transpose stereo audio. Returns number of produced output samples, and
|
||||
/// updates "srcSamples" to amount of consumed source samples
|
||||
int InterpolateCubic::transposeStereo(SAMPLETYPE *pdest,
|
||||
const SAMPLETYPE *psrc,
|
||||
int &srcSamples)
|
||||
{
|
||||
int i;
|
||||
int srcSampleEnd = srcSamples - 4;
|
||||
int srcCount = 0;
|
||||
|
||||
i = 0;
|
||||
while (srcCount < srcSampleEnd)
|
||||
{
|
||||
const float x3 = 1.0f;
|
||||
const float x2 = (float)fract; // x
|
||||
const float x1 = x2*x2; // x^2
|
||||
const float x0 = x1*x2; // x^3
|
||||
float y0, y1, y2, y3;
|
||||
float out0, out1;
|
||||
|
||||
assert(fract < 1.0);
|
||||
|
||||
y0 = _coeffs[0] * x0 + _coeffs[1] * x1 + _coeffs[2] * x2 + _coeffs[3] * x3;
|
||||
y1 = _coeffs[4] * x0 + _coeffs[5] * x1 + _coeffs[6] * x2 + _coeffs[7] * x3;
|
||||
y2 = _coeffs[8] * x0 + _coeffs[9] * x1 + _coeffs[10] * x2 + _coeffs[11] * x3;
|
||||
y3 = _coeffs[12] * x0 + _coeffs[13] * x1 + _coeffs[14] * x2 + _coeffs[15] * x3;
|
||||
|
||||
out0 = y0 * psrc[0] + y1 * psrc[2] + y2 * psrc[4] + y3 * psrc[6];
|
||||
out1 = y0 * psrc[1] + y1 * psrc[3] + y2 * psrc[5] + y3 * psrc[7];
|
||||
|
||||
pdest[2*i] = (SAMPLETYPE)out0;
|
||||
pdest[2*i+1] = (SAMPLETYPE)out1;
|
||||
i ++;
|
||||
|
||||
// update position fraction
|
||||
fract += rate;
|
||||
// update whole positions
|
||||
int whole = (int)fract;
|
||||
fract -= whole;
|
||||
psrc += 2*whole;
|
||||
srcCount += whole;
|
||||
}
|
||||
srcSamples = srcCount;
|
||||
return i;
|
||||
}
|
||||
|
||||
|
||||
/// Transpose multi-channel audio. Returns number of produced output samples, and
|
||||
/// updates "srcSamples" to amount of consumed source samples
|
||||
int InterpolateCubic::transposeMulti(SAMPLETYPE *pdest,
|
||||
const SAMPLETYPE *psrc,
|
||||
int &srcSamples)
|
||||
{
|
||||
int i;
|
||||
int srcSampleEnd = srcSamples - 4;
|
||||
int srcCount = 0;
|
||||
|
||||
i = 0;
|
||||
while (srcCount < srcSampleEnd)
|
||||
{
|
||||
const float x3 = 1.0f;
|
||||
const float x2 = (float)fract; // x
|
||||
const float x1 = x2*x2; // x^2
|
||||
const float x0 = x1*x2; // x^3
|
||||
float y0, y1, y2, y3;
|
||||
|
||||
assert(fract < 1.0);
|
||||
|
||||
y0 = _coeffs[0] * x0 + _coeffs[1] * x1 + _coeffs[2] * x2 + _coeffs[3] * x3;
|
||||
y1 = _coeffs[4] * x0 + _coeffs[5] * x1 + _coeffs[6] * x2 + _coeffs[7] * x3;
|
||||
y2 = _coeffs[8] * x0 + _coeffs[9] * x1 + _coeffs[10] * x2 + _coeffs[11] * x3;
|
||||
y3 = _coeffs[12] * x0 + _coeffs[13] * x1 + _coeffs[14] * x2 + _coeffs[15] * x3;
|
||||
|
||||
for (int c = 0; c < numChannels; c ++)
|
||||
{
|
||||
float out;
|
||||
out = y0 * psrc[c] + y1 * psrc[c + numChannels] + y2 * psrc[c + 2 * numChannels] + y3 * psrc[c + 3 * numChannels];
|
||||
pdest[0] = (SAMPLETYPE)out;
|
||||
pdest ++;
|
||||
}
|
||||
i ++;
|
||||
|
||||
// update position fraction
|
||||
fract += rate;
|
||||
// update whole positions
|
||||
int whole = (int)fract;
|
||||
fract -= whole;
|
||||
psrc += numChannels*whole;
|
||||
srcCount += whole;
|
||||
}
|
||||
srcSamples = srcCount;
|
||||
return i;
|
||||
}
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
///
|
||||
/// Cubic interpolation routine.
|
||||
///
|
||||
/// Author : Copyright (c) Olli Parviainen
|
||||
/// Author e-mail : oparviai 'at' iki.fi
|
||||
/// SoundTouch WWW: http://www.surina.net/soundtouch
|
||||
///
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// License :
|
||||
//
|
||||
// SoundTouch audio processing library
|
||||
// Copyright (c) Olli Parviainen
|
||||
//
|
||||
// This library is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 2.1 of the License, or (at your option) any later version.
|
||||
//
|
||||
// This library is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
// Lesser General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License along with this library; if not, write to the Free Software
|
||||
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#include <stddef.h>
|
||||
#include <math.h>
|
||||
#include "InterpolateCubic.h"
|
||||
#include "STTypes.h"
|
||||
|
||||
using namespace soundtouch;
|
||||
|
||||
// cubic interpolation coefficients
|
||||
static const float _coeffs[]=
|
||||
{ -0.5f, 1.0f, -0.5f, 0.0f,
|
||||
1.5f, -2.5f, 0.0f, 1.0f,
|
||||
-1.5f, 2.0f, 0.5f, 0.0f,
|
||||
0.5f, -0.5f, 0.0f, 0.0f};
|
||||
|
||||
|
||||
InterpolateCubic::InterpolateCubic()
|
||||
{
|
||||
fract = 0;
|
||||
}
|
||||
|
||||
|
||||
void InterpolateCubic::resetRegisters()
|
||||
{
|
||||
fract = 0;
|
||||
}
|
||||
|
||||
|
||||
/// Transpose mono audio. Returns number of produced output samples, and
|
||||
/// updates "srcSamples" to amount of consumed source samples
|
||||
int InterpolateCubic::transposeMono(SAMPLETYPE *pdest,
|
||||
const SAMPLETYPE *psrc,
|
||||
int &srcSamples)
|
||||
{
|
||||
int i;
|
||||
int srcSampleEnd = srcSamples - 4;
|
||||
int srcCount = 0;
|
||||
|
||||
i = 0;
|
||||
while (srcCount < srcSampleEnd)
|
||||
{
|
||||
float out;
|
||||
const float x3 = 1.0f;
|
||||
const float x2 = (float)fract; // x
|
||||
const float x1 = x2*x2; // x^2
|
||||
const float x0 = x1*x2; // x^3
|
||||
float y0, y1, y2, y3;
|
||||
|
||||
assert(fract < 1.0);
|
||||
|
||||
y0 = _coeffs[0] * x0 + _coeffs[1] * x1 + _coeffs[2] * x2 + _coeffs[3] * x3;
|
||||
y1 = _coeffs[4] * x0 + _coeffs[5] * x1 + _coeffs[6] * x2 + _coeffs[7] * x3;
|
||||
y2 = _coeffs[8] * x0 + _coeffs[9] * x1 + _coeffs[10] * x2 + _coeffs[11] * x3;
|
||||
y3 = _coeffs[12] * x0 + _coeffs[13] * x1 + _coeffs[14] * x2 + _coeffs[15] * x3;
|
||||
|
||||
out = y0 * psrc[0] + y1 * psrc[1] + y2 * psrc[2] + y3 * psrc[3];
|
||||
|
||||
pdest[i] = (SAMPLETYPE)out;
|
||||
i ++;
|
||||
|
||||
// update position fraction
|
||||
fract += rate;
|
||||
// update whole positions
|
||||
int whole = (int)fract;
|
||||
fract -= whole;
|
||||
psrc += whole;
|
||||
srcCount += whole;
|
||||
}
|
||||
srcSamples = srcCount;
|
||||
return i;
|
||||
}
|
||||
|
||||
|
||||
/// Transpose stereo audio. Returns number of produced output samples, and
|
||||
/// updates "srcSamples" to amount of consumed source samples
|
||||
int InterpolateCubic::transposeStereo(SAMPLETYPE *pdest,
|
||||
const SAMPLETYPE *psrc,
|
||||
int &srcSamples)
|
||||
{
|
||||
int i;
|
||||
int srcSampleEnd = srcSamples - 4;
|
||||
int srcCount = 0;
|
||||
|
||||
i = 0;
|
||||
while (srcCount < srcSampleEnd)
|
||||
{
|
||||
const float x3 = 1.0f;
|
||||
const float x2 = (float)fract; // x
|
||||
const float x1 = x2*x2; // x^2
|
||||
const float x0 = x1*x2; // x^3
|
||||
float y0, y1, y2, y3;
|
||||
float out0, out1;
|
||||
|
||||
assert(fract < 1.0);
|
||||
|
||||
y0 = _coeffs[0] * x0 + _coeffs[1] * x1 + _coeffs[2] * x2 + _coeffs[3] * x3;
|
||||
y1 = _coeffs[4] * x0 + _coeffs[5] * x1 + _coeffs[6] * x2 + _coeffs[7] * x3;
|
||||
y2 = _coeffs[8] * x0 + _coeffs[9] * x1 + _coeffs[10] * x2 + _coeffs[11] * x3;
|
||||
y3 = _coeffs[12] * x0 + _coeffs[13] * x1 + _coeffs[14] * x2 + _coeffs[15] * x3;
|
||||
|
||||
out0 = y0 * psrc[0] + y1 * psrc[2] + y2 * psrc[4] + y3 * psrc[6];
|
||||
out1 = y0 * psrc[1] + y1 * psrc[3] + y2 * psrc[5] + y3 * psrc[7];
|
||||
|
||||
pdest[2*i] = (SAMPLETYPE)out0;
|
||||
pdest[2*i+1] = (SAMPLETYPE)out1;
|
||||
i ++;
|
||||
|
||||
// update position fraction
|
||||
fract += rate;
|
||||
// update whole positions
|
||||
int whole = (int)fract;
|
||||
fract -= whole;
|
||||
psrc += 2*whole;
|
||||
srcCount += whole;
|
||||
}
|
||||
srcSamples = srcCount;
|
||||
return i;
|
||||
}
|
||||
|
||||
|
||||
/// Transpose multi-channel audio. Returns number of produced output samples, and
|
||||
/// updates "srcSamples" to amount of consumed source samples
|
||||
int InterpolateCubic::transposeMulti(SAMPLETYPE *pdest,
|
||||
const SAMPLETYPE *psrc,
|
||||
int &srcSamples)
|
||||
{
|
||||
int i;
|
||||
int srcSampleEnd = srcSamples - 4;
|
||||
int srcCount = 0;
|
||||
|
||||
i = 0;
|
||||
while (srcCount < srcSampleEnd)
|
||||
{
|
||||
const float x3 = 1.0f;
|
||||
const float x2 = (float)fract; // x
|
||||
const float x1 = x2*x2; // x^2
|
||||
const float x0 = x1*x2; // x^3
|
||||
float y0, y1, y2, y3;
|
||||
|
||||
assert(fract < 1.0);
|
||||
|
||||
y0 = _coeffs[0] * x0 + _coeffs[1] * x1 + _coeffs[2] * x2 + _coeffs[3] * x3;
|
||||
y1 = _coeffs[4] * x0 + _coeffs[5] * x1 + _coeffs[6] * x2 + _coeffs[7] * x3;
|
||||
y2 = _coeffs[8] * x0 + _coeffs[9] * x1 + _coeffs[10] * x2 + _coeffs[11] * x3;
|
||||
y3 = _coeffs[12] * x0 + _coeffs[13] * x1 + _coeffs[14] * x2 + _coeffs[15] * x3;
|
||||
|
||||
for (int c = 0; c < numChannels; c ++)
|
||||
{
|
||||
float out;
|
||||
out = y0 * psrc[c] + y1 * psrc[c + numChannels] + y2 * psrc[c + 2 * numChannels] + y3 * psrc[c + 3 * numChannels];
|
||||
pdest[0] = (SAMPLETYPE)out;
|
||||
pdest ++;
|
||||
}
|
||||
i ++;
|
||||
|
||||
// update position fraction
|
||||
fract += rate;
|
||||
// update whole positions
|
||||
int whole = (int)fract;
|
||||
fract -= whole;
|
||||
psrc += numChannels*whole;
|
||||
srcCount += whole;
|
||||
}
|
||||
srcSamples = srcCount;
|
||||
return i;
|
||||
}
|
||||
|
|
|
@ -1,67 +1,69 @@
|
|||
////////////////////////////////////////////////////////////////////////////////
|
||||
///
|
||||
/// Cubic interpolation routine.
|
||||
///
|
||||
/// Author : Copyright (c) Olli Parviainen
|
||||
/// Author e-mail : oparviai 'at' iki.fi
|
||||
/// SoundTouch WWW: http://www.surina.net/soundtouch
|
||||
///
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// $Id: InterpolateCubic.h 225 2015-07-26 14:45:48Z oparviai $
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// License :
|
||||
//
|
||||
// SoundTouch audio processing library
|
||||
// Copyright (c) Olli Parviainen
|
||||
//
|
||||
// This library is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 2.1 of the License, or (at your option) any later version.
|
||||
//
|
||||
// This library is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
// Lesser General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License along with this library; if not, write to the Free Software
|
||||
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#ifndef _InterpolateCubic_H_
|
||||
#define _InterpolateCubic_H_
|
||||
|
||||
#include "RateTransposer.h"
|
||||
#include "STTypes.h"
|
||||
|
||||
namespace soundtouch
|
||||
{
|
||||
|
||||
class InterpolateCubic : public TransposerBase
|
||||
{
|
||||
protected:
|
||||
virtual void resetRegisters();
|
||||
virtual int transposeMono(SAMPLETYPE *dest,
|
||||
const SAMPLETYPE *src,
|
||||
int &srcSamples);
|
||||
virtual int transposeStereo(SAMPLETYPE *dest,
|
||||
const SAMPLETYPE *src,
|
||||
int &srcSamples);
|
||||
virtual int transposeMulti(SAMPLETYPE *dest,
|
||||
const SAMPLETYPE *src,
|
||||
int &srcSamples);
|
||||
|
||||
double fract;
|
||||
|
||||
public:
|
||||
InterpolateCubic();
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
///
|
||||
/// Cubic interpolation routine.
|
||||
///
|
||||
/// Author : Copyright (c) Olli Parviainen
|
||||
/// Author e-mail : oparviai 'at' iki.fi
|
||||
/// SoundTouch WWW: http://www.surina.net/soundtouch
|
||||
///
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// License :
|
||||
//
|
||||
// SoundTouch audio processing library
|
||||
// Copyright (c) Olli Parviainen
|
||||
//
|
||||
// This library is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 2.1 of the License, or (at your option) any later version.
|
||||
//
|
||||
// This library is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
// Lesser General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License along with this library; if not, write to the Free Software
|
||||
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#ifndef _InterpolateCubic_H_
|
||||
#define _InterpolateCubic_H_
|
||||
|
||||
#include "RateTransposer.h"
|
||||
#include "STTypes.h"
|
||||
|
||||
namespace soundtouch
|
||||
{
|
||||
|
||||
class InterpolateCubic : public TransposerBase
|
||||
{
|
||||
protected:
|
||||
virtual int transposeMono(SAMPLETYPE *dest,
|
||||
const SAMPLETYPE *src,
|
||||
int &srcSamples) override;
|
||||
virtual int transposeStereo(SAMPLETYPE *dest,
|
||||
const SAMPLETYPE *src,
|
||||
int &srcSamples) override;
|
||||
virtual int transposeMulti(SAMPLETYPE *dest,
|
||||
const SAMPLETYPE *src,
|
||||
int &srcSamples) override;
|
||||
|
||||
double fract;
|
||||
|
||||
public:
|
||||
InterpolateCubic();
|
||||
|
||||
virtual void resetRegisters() override;
|
||||
|
||||
virtual int getLatency() const override
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -1,300 +1,296 @@
|
|||
////////////////////////////////////////////////////////////////////////////////
|
||||
///
|
||||
/// Linear interpolation algorithm.
|
||||
///
|
||||
/// Author : Copyright (c) Olli Parviainen
|
||||
/// Author e-mail : oparviai 'at' iki.fi
|
||||
/// SoundTouch WWW: http://www.surina.net/soundtouch
|
||||
///
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// $Id: InterpolateLinear.cpp 225 2015-07-26 14:45:48Z oparviai $
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// License :
|
||||
//
|
||||
// SoundTouch audio processing library
|
||||
// Copyright (c) Olli Parviainen
|
||||
//
|
||||
// This library is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 2.1 of the License, or (at your option) any later version.
|
||||
//
|
||||
// This library is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
// Lesser General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License along with this library; if not, write to the Free Software
|
||||
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#include <assert.h>
|
||||
#include <stdlib.h>
|
||||
#include "InterpolateLinear.h"
|
||||
|
||||
using namespace soundtouch;
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// InterpolateLinearInteger - integer arithmetic implementation
|
||||
//
|
||||
|
||||
/// fixed-point interpolation routine precision
|
||||
#define SCALE 65536
|
||||
|
||||
|
||||
// Constructor
|
||||
InterpolateLinearInteger::InterpolateLinearInteger() : TransposerBase()
|
||||
{
|
||||
// Notice: use local function calling syntax for sake of clarity,
|
||||
// to indicate the fact that C++ constructor can't call virtual functions.
|
||||
resetRegisters();
|
||||
setRate(1.0f);
|
||||
}
|
||||
|
||||
|
||||
void InterpolateLinearInteger::resetRegisters()
|
||||
{
|
||||
iFract = 0;
|
||||
}
|
||||
|
||||
|
||||
// Transposes the sample rate of the given samples using linear interpolation.
|
||||
// 'Mono' version of the routine. Returns the number of samples returned in
|
||||
// the "dest" buffer
|
||||
int InterpolateLinearInteger::transposeMono(SAMPLETYPE *dest, const SAMPLETYPE *src, int &srcSamples)
|
||||
{
|
||||
int i;
|
||||
int srcSampleEnd = srcSamples - 1;
|
||||
int srcCount = 0;
|
||||
|
||||
i = 0;
|
||||
while (srcCount < srcSampleEnd)
|
||||
{
|
||||
LONG_SAMPLETYPE temp;
|
||||
|
||||
assert(iFract < SCALE);
|
||||
|
||||
temp = (SCALE - iFract) * src[0] + iFract * src[1];
|
||||
dest[i] = (SAMPLETYPE)(temp / SCALE);
|
||||
i++;
|
||||
|
||||
iFract += iRate;
|
||||
|
||||
int iWhole = iFract / SCALE;
|
||||
iFract -= iWhole * SCALE;
|
||||
srcCount += iWhole;
|
||||
src += iWhole;
|
||||
}
|
||||
srcSamples = srcCount;
|
||||
|
||||
return i;
|
||||
}
|
||||
|
||||
|
||||
// Transposes the sample rate of the given samples using linear interpolation.
|
||||
// 'Stereo' version of the routine. Returns the number of samples returned in
|
||||
// the "dest" buffer
|
||||
int InterpolateLinearInteger::transposeStereo(SAMPLETYPE *dest, const SAMPLETYPE *src, int &srcSamples)
|
||||
{
|
||||
int i;
|
||||
int srcSampleEnd = srcSamples - 1;
|
||||
int srcCount = 0;
|
||||
|
||||
i = 0;
|
||||
while (srcCount < srcSampleEnd)
|
||||
{
|
||||
LONG_SAMPLETYPE temp0;
|
||||
LONG_SAMPLETYPE temp1;
|
||||
|
||||
assert(iFract < SCALE);
|
||||
|
||||
temp0 = (SCALE - iFract) * src[0] + iFract * src[2];
|
||||
temp1 = (SCALE - iFract) * src[1] + iFract * src[3];
|
||||
dest[0] = (SAMPLETYPE)(temp0 / SCALE);
|
||||
dest[1] = (SAMPLETYPE)(temp1 / SCALE);
|
||||
dest += 2;
|
||||
i++;
|
||||
|
||||
iFract += iRate;
|
||||
|
||||
int iWhole = iFract / SCALE;
|
||||
iFract -= iWhole * SCALE;
|
||||
srcCount += iWhole;
|
||||
src += 2*iWhole;
|
||||
}
|
||||
srcSamples = srcCount;
|
||||
|
||||
return i;
|
||||
}
|
||||
|
||||
|
||||
int InterpolateLinearInteger::transposeMulti(SAMPLETYPE *dest, const SAMPLETYPE *src, int &srcSamples)
|
||||
{
|
||||
int i;
|
||||
int srcSampleEnd = srcSamples - 1;
|
||||
int srcCount = 0;
|
||||
|
||||
i = 0;
|
||||
while (srcCount < srcSampleEnd)
|
||||
{
|
||||
LONG_SAMPLETYPE temp, vol1;
|
||||
|
||||
assert(iFract < SCALE);
|
||||
vol1 = (SCALE - iFract);
|
||||
for (int c = 0; c < numChannels; c ++)
|
||||
{
|
||||
temp = vol1 * src[c] + iFract * src[c + numChannels];
|
||||
dest[0] = (SAMPLETYPE)(temp / SCALE);
|
||||
dest ++;
|
||||
}
|
||||
i++;
|
||||
|
||||
iFract += iRate;
|
||||
|
||||
int iWhole = iFract / SCALE;
|
||||
iFract -= iWhole * SCALE;
|
||||
srcCount += iWhole;
|
||||
src += iWhole * numChannels;
|
||||
}
|
||||
srcSamples = srcCount;
|
||||
|
||||
return i;
|
||||
}
|
||||
|
||||
|
||||
// Sets new target iRate. Normal iRate = 1.0, smaller values represent slower
|
||||
// iRate, larger faster iRates.
|
||||
void InterpolateLinearInteger::setRate(double newRate)
|
||||
{
|
||||
iRate = (int)(newRate * SCALE + 0.5);
|
||||
TransposerBase::setRate(newRate);
|
||||
}
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// InterpolateLinearFloat - floating point arithmetic implementation
|
||||
//
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
// Constructor
|
||||
InterpolateLinearFloat::InterpolateLinearFloat() : TransposerBase()
|
||||
{
|
||||
// Notice: use local function calling syntax for sake of clarity,
|
||||
// to indicate the fact that C++ constructor can't call virtual functions.
|
||||
resetRegisters();
|
||||
setRate(1.0);
|
||||
}
|
||||
|
||||
|
||||
void InterpolateLinearFloat::resetRegisters()
|
||||
{
|
||||
fract = 0;
|
||||
}
|
||||
|
||||
|
||||
// Transposes the sample rate of the given samples using linear interpolation.
|
||||
// 'Mono' version of the routine. Returns the number of samples returned in
|
||||
// the "dest" buffer
|
||||
int InterpolateLinearFloat::transposeMono(SAMPLETYPE *dest, const SAMPLETYPE *src, int &srcSamples)
|
||||
{
|
||||
int i;
|
||||
int srcSampleEnd = srcSamples - 1;
|
||||
int srcCount = 0;
|
||||
|
||||
i = 0;
|
||||
while (srcCount < srcSampleEnd)
|
||||
{
|
||||
double out;
|
||||
assert(fract < 1.0);
|
||||
|
||||
out = (1.0 - fract) * src[0] + fract * src[1];
|
||||
dest[i] = (SAMPLETYPE)out;
|
||||
i ++;
|
||||
|
||||
// update position fraction
|
||||
fract += rate;
|
||||
// update whole positions
|
||||
int whole = (int)fract;
|
||||
fract -= whole;
|
||||
src += whole;
|
||||
srcCount += whole;
|
||||
}
|
||||
srcSamples = srcCount;
|
||||
return i;
|
||||
}
|
||||
|
||||
|
||||
// Transposes the sample rate of the given samples using linear interpolation.
|
||||
// 'Mono' version of the routine. Returns the number of samples returned in
|
||||
// the "dest" buffer
|
||||
int InterpolateLinearFloat::transposeStereo(SAMPLETYPE *dest, const SAMPLETYPE *src, int &srcSamples)
|
||||
{
|
||||
int i;
|
||||
int srcSampleEnd = srcSamples - 1;
|
||||
int srcCount = 0;
|
||||
|
||||
i = 0;
|
||||
while (srcCount < srcSampleEnd)
|
||||
{
|
||||
double out0, out1;
|
||||
assert(fract < 1.0);
|
||||
|
||||
out0 = (1.0 - fract) * src[0] + fract * src[2];
|
||||
out1 = (1.0 - fract) * src[1] + fract * src[3];
|
||||
dest[2*i] = (SAMPLETYPE)out0;
|
||||
dest[2*i+1] = (SAMPLETYPE)out1;
|
||||
i ++;
|
||||
|
||||
// update position fraction
|
||||
fract += rate;
|
||||
// update whole positions
|
||||
int whole = (int)fract;
|
||||
fract -= whole;
|
||||
src += 2*whole;
|
||||
srcCount += whole;
|
||||
}
|
||||
srcSamples = srcCount;
|
||||
return i;
|
||||
}
|
||||
|
||||
|
||||
int InterpolateLinearFloat::transposeMulti(SAMPLETYPE *dest, const SAMPLETYPE *src, int &srcSamples)
|
||||
{
|
||||
int i;
|
||||
int srcSampleEnd = srcSamples - 1;
|
||||
int srcCount = 0;
|
||||
|
||||
i = 0;
|
||||
while (srcCount < srcSampleEnd)
|
||||
{
|
||||
float temp, vol1, fract_float;
|
||||
|
||||
vol1 = (float)(1.0 - fract);
|
||||
fract_float = (float)fract;
|
||||
for (int c = 0; c < numChannels; c ++)
|
||||
{
|
||||
temp = vol1 * src[c] + fract_float * src[c + numChannels];
|
||||
*dest = (SAMPLETYPE)temp;
|
||||
dest ++;
|
||||
}
|
||||
i++;
|
||||
|
||||
fract += rate;
|
||||
|
||||
int iWhole = (int)fract;
|
||||
fract -= iWhole;
|
||||
srcCount += iWhole;
|
||||
src += iWhole * numChannels;
|
||||
}
|
||||
srcSamples = srcCount;
|
||||
|
||||
return i;
|
||||
}
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
///
|
||||
/// Linear interpolation algorithm.
|
||||
///
|
||||
/// Author : Copyright (c) Olli Parviainen
|
||||
/// Author e-mail : oparviai 'at' iki.fi
|
||||
/// SoundTouch WWW: http://www.surina.net/soundtouch
|
||||
///
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// License :
|
||||
//
|
||||
// SoundTouch audio processing library
|
||||
// Copyright (c) Olli Parviainen
|
||||
//
|
||||
// This library is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 2.1 of the License, or (at your option) any later version.
|
||||
//
|
||||
// This library is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
// Lesser General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License along with this library; if not, write to the Free Software
|
||||
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#include <assert.h>
|
||||
#include <stdlib.h>
|
||||
#include "InterpolateLinear.h"
|
||||
|
||||
using namespace soundtouch;
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// InterpolateLinearInteger - integer arithmetic implementation
|
||||
//
|
||||
|
||||
/// fixed-point interpolation routine precision
|
||||
#define SCALE 65536
|
||||
|
||||
|
||||
// Constructor
|
||||
InterpolateLinearInteger::InterpolateLinearInteger() : TransposerBase()
|
||||
{
|
||||
// Notice: use local function calling syntax for sake of clarity,
|
||||
// to indicate the fact that C++ constructor can't call virtual functions.
|
||||
resetRegisters();
|
||||
setRate(1.0f);
|
||||
}
|
||||
|
||||
|
||||
void InterpolateLinearInteger::resetRegisters()
|
||||
{
|
||||
iFract = 0;
|
||||
}
|
||||
|
||||
|
||||
// Transposes the sample rate of the given samples using linear interpolation.
|
||||
// 'Mono' version of the routine. Returns the number of samples returned in
|
||||
// the "dest" buffer
|
||||
int InterpolateLinearInteger::transposeMono(SAMPLETYPE *dest, const SAMPLETYPE *src, int &srcSamples)
|
||||
{
|
||||
int i;
|
||||
int srcSampleEnd = srcSamples - 1;
|
||||
int srcCount = 0;
|
||||
|
||||
i = 0;
|
||||
while (srcCount < srcSampleEnd)
|
||||
{
|
||||
LONG_SAMPLETYPE temp;
|
||||
|
||||
assert(iFract < SCALE);
|
||||
|
||||
temp = (SCALE - iFract) * src[0] + iFract * src[1];
|
||||
dest[i] = (SAMPLETYPE)(temp / SCALE);
|
||||
i++;
|
||||
|
||||
iFract += iRate;
|
||||
|
||||
int iWhole = iFract / SCALE;
|
||||
iFract -= iWhole * SCALE;
|
||||
srcCount += iWhole;
|
||||
src += iWhole;
|
||||
}
|
||||
srcSamples = srcCount;
|
||||
|
||||
return i;
|
||||
}
|
||||
|
||||
|
||||
// Transposes the sample rate of the given samples using linear interpolation.
|
||||
// 'Stereo' version of the routine. Returns the number of samples returned in
|
||||
// the "dest" buffer
|
||||
int InterpolateLinearInteger::transposeStereo(SAMPLETYPE *dest, const SAMPLETYPE *src, int &srcSamples)
|
||||
{
|
||||
int i;
|
||||
int srcSampleEnd = srcSamples - 1;
|
||||
int srcCount = 0;
|
||||
|
||||
i = 0;
|
||||
while (srcCount < srcSampleEnd)
|
||||
{
|
||||
LONG_SAMPLETYPE temp0;
|
||||
LONG_SAMPLETYPE temp1;
|
||||
|
||||
assert(iFract < SCALE);
|
||||
|
||||
temp0 = (SCALE - iFract) * src[0] + iFract * src[2];
|
||||
temp1 = (SCALE - iFract) * src[1] + iFract * src[3];
|
||||
dest[0] = (SAMPLETYPE)(temp0 / SCALE);
|
||||
dest[1] = (SAMPLETYPE)(temp1 / SCALE);
|
||||
dest += 2;
|
||||
i++;
|
||||
|
||||
iFract += iRate;
|
||||
|
||||
int iWhole = iFract / SCALE;
|
||||
iFract -= iWhole * SCALE;
|
||||
srcCount += iWhole;
|
||||
src += 2*iWhole;
|
||||
}
|
||||
srcSamples = srcCount;
|
||||
|
||||
return i;
|
||||
}
|
||||
|
||||
|
||||
int InterpolateLinearInteger::transposeMulti(SAMPLETYPE *dest, const SAMPLETYPE *src, int &srcSamples)
|
||||
{
|
||||
int i;
|
||||
int srcSampleEnd = srcSamples - 1;
|
||||
int srcCount = 0;
|
||||
|
||||
i = 0;
|
||||
while (srcCount < srcSampleEnd)
|
||||
{
|
||||
LONG_SAMPLETYPE temp, vol1;
|
||||
|
||||
assert(iFract < SCALE);
|
||||
vol1 = (LONG_SAMPLETYPE)(SCALE - iFract);
|
||||
for (int c = 0; c < numChannels; c ++)
|
||||
{
|
||||
temp = vol1 * src[c] + iFract * src[c + numChannels];
|
||||
dest[0] = (SAMPLETYPE)(temp / SCALE);
|
||||
dest ++;
|
||||
}
|
||||
i++;
|
||||
|
||||
iFract += iRate;
|
||||
|
||||
int iWhole = iFract / SCALE;
|
||||
iFract -= iWhole * SCALE;
|
||||
srcCount += iWhole;
|
||||
src += iWhole * numChannels;
|
||||
}
|
||||
srcSamples = srcCount;
|
||||
|
||||
return i;
|
||||
}
|
||||
|
||||
|
||||
// Sets new target iRate. Normal iRate = 1.0, smaller values represent slower
|
||||
// iRate, larger faster iRates.
|
||||
void InterpolateLinearInteger::setRate(double newRate)
|
||||
{
|
||||
iRate = (int)(newRate * SCALE + 0.5);
|
||||
TransposerBase::setRate(newRate);
|
||||
}
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// InterpolateLinearFloat - floating point arithmetic implementation
|
||||
//
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
// Constructor
|
||||
InterpolateLinearFloat::InterpolateLinearFloat() : TransposerBase()
|
||||
{
|
||||
// Notice: use local function calling syntax for sake of clarity,
|
||||
// to indicate the fact that C++ constructor can't call virtual functions.
|
||||
resetRegisters();
|
||||
setRate(1.0);
|
||||
}
|
||||
|
||||
|
||||
void InterpolateLinearFloat::resetRegisters()
|
||||
{
|
||||
fract = 0;
|
||||
}
|
||||
|
||||
|
||||
// Transposes the sample rate of the given samples using linear interpolation.
|
||||
// 'Mono' version of the routine. Returns the number of samples returned in
|
||||
// the "dest" buffer
|
||||
int InterpolateLinearFloat::transposeMono(SAMPLETYPE *dest, const SAMPLETYPE *src, int &srcSamples)
|
||||
{
|
||||
int i;
|
||||
int srcSampleEnd = srcSamples - 1;
|
||||
int srcCount = 0;
|
||||
|
||||
i = 0;
|
||||
while (srcCount < srcSampleEnd)
|
||||
{
|
||||
double out;
|
||||
assert(fract < 1.0);
|
||||
|
||||
out = (1.0 - fract) * src[0] + fract * src[1];
|
||||
dest[i] = (SAMPLETYPE)out;
|
||||
i ++;
|
||||
|
||||
// update position fraction
|
||||
fract += rate;
|
||||
// update whole positions
|
||||
int whole = (int)fract;
|
||||
fract -= whole;
|
||||
src += whole;
|
||||
srcCount += whole;
|
||||
}
|
||||
srcSamples = srcCount;
|
||||
return i;
|
||||
}
|
||||
|
||||
|
||||
// Transposes the sample rate of the given samples using linear interpolation.
|
||||
// 'Mono' version of the routine. Returns the number of samples returned in
|
||||
// the "dest" buffer
|
||||
int InterpolateLinearFloat::transposeStereo(SAMPLETYPE *dest, const SAMPLETYPE *src, int &srcSamples)
|
||||
{
|
||||
int i;
|
||||
int srcSampleEnd = srcSamples - 1;
|
||||
int srcCount = 0;
|
||||
|
||||
i = 0;
|
||||
while (srcCount < srcSampleEnd)
|
||||
{
|
||||
double out0, out1;
|
||||
assert(fract < 1.0);
|
||||
|
||||
out0 = (1.0 - fract) * src[0] + fract * src[2];
|
||||
out1 = (1.0 - fract) * src[1] + fract * src[3];
|
||||
dest[2*i] = (SAMPLETYPE)out0;
|
||||
dest[2*i+1] = (SAMPLETYPE)out1;
|
||||
i ++;
|
||||
|
||||
// update position fraction
|
||||
fract += rate;
|
||||
// update whole positions
|
||||
int whole = (int)fract;
|
||||
fract -= whole;
|
||||
src += 2*whole;
|
||||
srcCount += whole;
|
||||
}
|
||||
srcSamples = srcCount;
|
||||
return i;
|
||||
}
|
||||
|
||||
|
||||
int InterpolateLinearFloat::transposeMulti(SAMPLETYPE *dest, const SAMPLETYPE *src, int &srcSamples)
|
||||
{
|
||||
int i;
|
||||
int srcSampleEnd = srcSamples - 1;
|
||||
int srcCount = 0;
|
||||
|
||||
i = 0;
|
||||
while (srcCount < srcSampleEnd)
|
||||
{
|
||||
float temp, vol1, fract_float;
|
||||
|
||||
vol1 = (float)(1.0 - fract);
|
||||
fract_float = (float)fract;
|
||||
for (int c = 0; c < numChannels; c ++)
|
||||
{
|
||||
temp = vol1 * src[c] + fract_float * src[c + numChannels];
|
||||
*dest = (SAMPLETYPE)temp;
|
||||
dest ++;
|
||||
}
|
||||
i++;
|
||||
|
||||
fract += rate;
|
||||
|
||||
int iWhole = (int)fract;
|
||||
fract -= iWhole;
|
||||
srcCount += iWhole;
|
||||
src += iWhole * numChannels;
|
||||
}
|
||||
srcSamples = srcCount;
|
||||
|
||||
return i;
|
||||
}
|
||||
|
|
|
@ -1,92 +1,98 @@
|
|||
////////////////////////////////////////////////////////////////////////////////
|
||||
///
|
||||
/// Linear interpolation routine.
|
||||
///
|
||||
/// Author : Copyright (c) Olli Parviainen
|
||||
/// Author e-mail : oparviai 'at' iki.fi
|
||||
/// SoundTouch WWW: http://www.surina.net/soundtouch
|
||||
///
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// $Id: InterpolateLinear.h 225 2015-07-26 14:45:48Z oparviai $
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// License :
|
||||
//
|
||||
// SoundTouch audio processing library
|
||||
// Copyright (c) Olli Parviainen
|
||||
//
|
||||
// This library is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 2.1 of the License, or (at your option) any later version.
|
||||
//
|
||||
// This library is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
// Lesser General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License along with this library; if not, write to the Free Software
|
||||
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#ifndef _InterpolateLinear_H_
|
||||
#define _InterpolateLinear_H_
|
||||
|
||||
#include "RateTransposer.h"
|
||||
#include "STTypes.h"
|
||||
|
||||
namespace soundtouch
|
||||
{
|
||||
|
||||
/// Linear transposer class that uses integer arithmetics
|
||||
class InterpolateLinearInteger : public TransposerBase
|
||||
{
|
||||
protected:
|
||||
int iFract;
|
||||
int iRate;
|
||||
|
||||
virtual void resetRegisters();
|
||||
|
||||
virtual int transposeMono(SAMPLETYPE *dest,
|
||||
const SAMPLETYPE *src,
|
||||
int &srcSamples);
|
||||
virtual int transposeStereo(SAMPLETYPE *dest,
|
||||
const SAMPLETYPE *src,
|
||||
int &srcSamples);
|
||||
virtual int transposeMulti(SAMPLETYPE *dest, const SAMPLETYPE *src, int &srcSamples);
|
||||
public:
|
||||
InterpolateLinearInteger();
|
||||
|
||||
/// Sets new target rate. Normal rate = 1.0, smaller values represent slower
|
||||
/// rate, larger faster rates.
|
||||
virtual void setRate(double newRate);
|
||||
};
|
||||
|
||||
|
||||
/// Linear transposer class that uses floating point arithmetics
|
||||
class InterpolateLinearFloat : public TransposerBase
|
||||
{
|
||||
protected:
|
||||
double fract;
|
||||
|
||||
virtual void resetRegisters();
|
||||
|
||||
virtual int transposeMono(SAMPLETYPE *dest,
|
||||
const SAMPLETYPE *src,
|
||||
int &srcSamples);
|
||||
virtual int transposeStereo(SAMPLETYPE *dest,
|
||||
const SAMPLETYPE *src,
|
||||
int &srcSamples);
|
||||
virtual int transposeMulti(SAMPLETYPE *dest, const SAMPLETYPE *src, int &srcSamples);
|
||||
|
||||
public:
|
||||
InterpolateLinearFloat();
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
///
|
||||
/// Linear interpolation routine.
|
||||
///
|
||||
/// Author : Copyright (c) Olli Parviainen
|
||||
/// Author e-mail : oparviai 'at' iki.fi
|
||||
/// SoundTouch WWW: http://www.surina.net/soundtouch
|
||||
///
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// License :
|
||||
//
|
||||
// SoundTouch audio processing library
|
||||
// Copyright (c) Olli Parviainen
|
||||
//
|
||||
// This library is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 2.1 of the License, or (at your option) any later version.
|
||||
//
|
||||
// This library is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
// Lesser General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License along with this library; if not, write to the Free Software
|
||||
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#ifndef _InterpolateLinear_H_
|
||||
#define _InterpolateLinear_H_
|
||||
|
||||
#include "RateTransposer.h"
|
||||
#include "STTypes.h"
|
||||
|
||||
namespace soundtouch
|
||||
{
|
||||
|
||||
/// Linear transposer class that uses integer arithmetic
|
||||
class InterpolateLinearInteger : public TransposerBase
|
||||
{
|
||||
protected:
|
||||
int iFract;
|
||||
int iRate;
|
||||
|
||||
virtual int transposeMono(SAMPLETYPE *dest,
|
||||
const SAMPLETYPE *src,
|
||||
int &srcSamples) override;
|
||||
virtual int transposeStereo(SAMPLETYPE *dest,
|
||||
const SAMPLETYPE *src,
|
||||
int &srcSamples) override;
|
||||
virtual int transposeMulti(SAMPLETYPE *dest, const SAMPLETYPE *src, int &srcSamples) override;
|
||||
public:
|
||||
InterpolateLinearInteger();
|
||||
|
||||
/// Sets new target rate. Normal rate = 1.0, smaller values represent slower
|
||||
/// rate, larger faster rates.
|
||||
virtual void setRate(double newRate) override;
|
||||
|
||||
virtual void resetRegisters() override;
|
||||
|
||||
virtual int getLatency() const override
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
/// Linear transposer class that uses floating point arithmetic
|
||||
class InterpolateLinearFloat : public TransposerBase
|
||||
{
|
||||
protected:
|
||||
double fract;
|
||||
|
||||
virtual int transposeMono(SAMPLETYPE *dest,
|
||||
const SAMPLETYPE *src,
|
||||
int &srcSamples);
|
||||
virtual int transposeStereo(SAMPLETYPE *dest,
|
||||
const SAMPLETYPE *src,
|
||||
int &srcSamples);
|
||||
virtual int transposeMulti(SAMPLETYPE *dest, const SAMPLETYPE *src, int &srcSamples);
|
||||
|
||||
public:
|
||||
InterpolateLinearFloat();
|
||||
|
||||
virtual void resetRegisters();
|
||||
|
||||
int getLatency() const
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -1,185 +1,181 @@
|
|||
////////////////////////////////////////////////////////////////////////////////
|
||||
///
|
||||
/// Sample interpolation routine using 8-tap band-limited Shannon interpolation
|
||||
/// with kaiser window.
|
||||
///
|
||||
/// Notice. This algorithm is remarkably much heavier than linear or cubic
|
||||
/// interpolation, and not remarkably better than cubic algorithm. Thus mostly
|
||||
/// for experimental purposes
|
||||
///
|
||||
/// Author : Copyright (c) Olli Parviainen
|
||||
/// Author e-mail : oparviai 'at' iki.fi
|
||||
/// SoundTouch WWW: http://www.surina.net/soundtouch
|
||||
///
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// $Id: InterpolateShannon.cpp 195 2014-04-06 15:57:21Z oparviai $
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// License :
|
||||
//
|
||||
// SoundTouch audio processing library
|
||||
// Copyright (c) Olli Parviainen
|
||||
//
|
||||
// This library is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 2.1 of the License, or (at your option) any later version.
|
||||
//
|
||||
// This library is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
// Lesser General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License along with this library; if not, write to the Free Software
|
||||
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#include <math.h>
|
||||
#include "InterpolateShannon.h"
|
||||
#include "STTypes.h"
|
||||
|
||||
using namespace soundtouch;
|
||||
|
||||
|
||||
/// Kaiser window with beta = 2.0
|
||||
/// Values scaled down by 5% to avoid overflows
|
||||
static const double _kaiser8[8] =
|
||||
{
|
||||
0.41778693317814,
|
||||
0.64888025049173,
|
||||
0.83508562409944,
|
||||
0.93887857733412,
|
||||
0.93887857733412,
|
||||
0.83508562409944,
|
||||
0.64888025049173,
|
||||
0.41778693317814
|
||||
};
|
||||
|
||||
|
||||
InterpolateShannon::InterpolateShannon()
|
||||
{
|
||||
fract = 0;
|
||||
}
|
||||
|
||||
|
||||
void InterpolateShannon::resetRegisters()
|
||||
{
|
||||
fract = 0;
|
||||
}
|
||||
|
||||
|
||||
#define PI 3.1415926536
|
||||
#define sinc(x) (sin(PI * (x)) / (PI * (x)))
|
||||
|
||||
/// Transpose mono audio. Returns number of produced output samples, and
|
||||
/// updates "srcSamples" to amount of consumed source samples
|
||||
int InterpolateShannon::transposeMono(SAMPLETYPE *pdest,
|
||||
const SAMPLETYPE *psrc,
|
||||
int &srcSamples)
|
||||
{
|
||||
int i;
|
||||
int srcSampleEnd = srcSamples - 8;
|
||||
int srcCount = 0;
|
||||
|
||||
i = 0;
|
||||
while (srcCount < srcSampleEnd)
|
||||
{
|
||||
double out;
|
||||
assert(fract < 1.0);
|
||||
|
||||
out = psrc[0] * sinc(-3.0 - fract) * _kaiser8[0];
|
||||
out += psrc[1] * sinc(-2.0 - fract) * _kaiser8[1];
|
||||
out += psrc[2] * sinc(-1.0 - fract) * _kaiser8[2];
|
||||
if (fract < 1e-6)
|
||||
{
|
||||
out += psrc[3] * _kaiser8[3]; // sinc(0) = 1
|
||||
}
|
||||
else
|
||||
{
|
||||
out += psrc[3] * sinc(- fract) * _kaiser8[3];
|
||||
}
|
||||
out += psrc[4] * sinc( 1.0 - fract) * _kaiser8[4];
|
||||
out += psrc[5] * sinc( 2.0 - fract) * _kaiser8[5];
|
||||
out += psrc[6] * sinc( 3.0 - fract) * _kaiser8[6];
|
||||
out += psrc[7] * sinc( 4.0 - fract) * _kaiser8[7];
|
||||
|
||||
pdest[i] = (SAMPLETYPE)out;
|
||||
i ++;
|
||||
|
||||
// update position fraction
|
||||
fract += rate;
|
||||
// update whole positions
|
||||
int whole = (int)fract;
|
||||
fract -= whole;
|
||||
psrc += whole;
|
||||
srcCount += whole;
|
||||
}
|
||||
srcSamples = srcCount;
|
||||
return i;
|
||||
}
|
||||
|
||||
|
||||
/// Transpose stereo audio. Returns number of produced output samples, and
|
||||
/// updates "srcSamples" to amount of consumed source samples
|
||||
int InterpolateShannon::transposeStereo(SAMPLETYPE *pdest,
|
||||
const SAMPLETYPE *psrc,
|
||||
int &srcSamples)
|
||||
{
|
||||
int i;
|
||||
int srcSampleEnd = srcSamples - 8;
|
||||
int srcCount = 0;
|
||||
|
||||
i = 0;
|
||||
while (srcCount < srcSampleEnd)
|
||||
{
|
||||
double out0, out1, w;
|
||||
assert(fract < 1.0);
|
||||
|
||||
w = sinc(-3.0 - fract) * _kaiser8[0];
|
||||
out0 = psrc[0] * w; out1 = psrc[1] * w;
|
||||
w = sinc(-2.0 - fract) * _kaiser8[1];
|
||||
out0 += psrc[2] * w; out1 += psrc[3] * w;
|
||||
w = sinc(-1.0 - fract) * _kaiser8[2];
|
||||
out0 += psrc[4] * w; out1 += psrc[5] * w;
|
||||
w = _kaiser8[3] * ((fract < 1e-5) ? 1.0 : sinc(- fract)); // sinc(0) = 1
|
||||
out0 += psrc[6] * w; out1 += psrc[7] * w;
|
||||
w = sinc( 1.0 - fract) * _kaiser8[4];
|
||||
out0 += psrc[8] * w; out1 += psrc[9] * w;
|
||||
w = sinc( 2.0 - fract) * _kaiser8[5];
|
||||
out0 += psrc[10] * w; out1 += psrc[11] * w;
|
||||
w = sinc( 3.0 - fract) * _kaiser8[6];
|
||||
out0 += psrc[12] * w; out1 += psrc[13] * w;
|
||||
w = sinc( 4.0 - fract) * _kaiser8[7];
|
||||
out0 += psrc[14] * w; out1 += psrc[15] * w;
|
||||
|
||||
pdest[2*i] = (SAMPLETYPE)out0;
|
||||
pdest[2*i+1] = (SAMPLETYPE)out1;
|
||||
i ++;
|
||||
|
||||
// update position fraction
|
||||
fract += rate;
|
||||
// update whole positions
|
||||
int whole = (int)fract;
|
||||
fract -= whole;
|
||||
psrc += 2*whole;
|
||||
srcCount += whole;
|
||||
}
|
||||
srcSamples = srcCount;
|
||||
return i;
|
||||
}
|
||||
|
||||
|
||||
/// Transpose stereo audio. Returns number of produced output samples, and
|
||||
/// updates "srcSamples" to amount of consumed source samples
|
||||
int InterpolateShannon::transposeMulti(SAMPLETYPE *pdest,
|
||||
const SAMPLETYPE *psrc,
|
||||
int &srcSamples)
|
||||
{
|
||||
// not implemented
|
||||
assert(false);
|
||||
return 0;
|
||||
}
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
///
|
||||
/// Sample interpolation routine using 8-tap band-limited Shannon interpolation
|
||||
/// with kaiser window.
|
||||
///
|
||||
/// Notice. This algorithm is remarkably much heavier than linear or cubic
|
||||
/// interpolation, and not remarkably better than cubic algorithm. Thus mostly
|
||||
/// for experimental purposes
|
||||
///
|
||||
/// Author : Copyright (c) Olli Parviainen
|
||||
/// Author e-mail : oparviai 'at' iki.fi
|
||||
/// SoundTouch WWW: http://www.surina.net/soundtouch
|
||||
///
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// License :
|
||||
//
|
||||
// SoundTouch audio processing library
|
||||
// Copyright (c) Olli Parviainen
|
||||
//
|
||||
// This library is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 2.1 of the License, or (at your option) any later version.
|
||||
//
|
||||
// This library is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
// Lesser General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License along with this library; if not, write to the Free Software
|
||||
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#include <math.h>
|
||||
#include "InterpolateShannon.h"
|
||||
#include "STTypes.h"
|
||||
|
||||
using namespace soundtouch;
|
||||
|
||||
|
||||
/// Kaiser window with beta = 2.0
|
||||
/// Values scaled down by 5% to avoid overflows
|
||||
static const double _kaiser8[8] =
|
||||
{
|
||||
0.41778693317814,
|
||||
0.64888025049173,
|
||||
0.83508562409944,
|
||||
0.93887857733412,
|
||||
0.93887857733412,
|
||||
0.83508562409944,
|
||||
0.64888025049173,
|
||||
0.41778693317814
|
||||
};
|
||||
|
||||
|
||||
InterpolateShannon::InterpolateShannon()
|
||||
{
|
||||
fract = 0;
|
||||
}
|
||||
|
||||
|
||||
void InterpolateShannon::resetRegisters()
|
||||
{
|
||||
fract = 0;
|
||||
}
|
||||
|
||||
|
||||
#define PI 3.1415926536
|
||||
#define sinc(x) (sin(PI * (x)) / (PI * (x)))
|
||||
|
||||
/// Transpose mono audio. Returns number of produced output samples, and
|
||||
/// updates "srcSamples" to amount of consumed source samples
|
||||
int InterpolateShannon::transposeMono(SAMPLETYPE *pdest,
|
||||
const SAMPLETYPE *psrc,
|
||||
int &srcSamples)
|
||||
{
|
||||
int i;
|
||||
int srcSampleEnd = srcSamples - 8;
|
||||
int srcCount = 0;
|
||||
|
||||
i = 0;
|
||||
while (srcCount < srcSampleEnd)
|
||||
{
|
||||
double out;
|
||||
assert(fract < 1.0);
|
||||
|
||||
out = psrc[0] * sinc(-3.0 - fract) * _kaiser8[0];
|
||||
out += psrc[1] * sinc(-2.0 - fract) * _kaiser8[1];
|
||||
out += psrc[2] * sinc(-1.0 - fract) * _kaiser8[2];
|
||||
if (fract < 1e-6)
|
||||
{
|
||||
out += psrc[3] * _kaiser8[3]; // sinc(0) = 1
|
||||
}
|
||||
else
|
||||
{
|
||||
out += psrc[3] * sinc(- fract) * _kaiser8[3];
|
||||
}
|
||||
out += psrc[4] * sinc( 1.0 - fract) * _kaiser8[4];
|
||||
out += psrc[5] * sinc( 2.0 - fract) * _kaiser8[5];
|
||||
out += psrc[6] * sinc( 3.0 - fract) * _kaiser8[6];
|
||||
out += psrc[7] * sinc( 4.0 - fract) * _kaiser8[7];
|
||||
|
||||
pdest[i] = (SAMPLETYPE)out;
|
||||
i ++;
|
||||
|
||||
// update position fraction
|
||||
fract += rate;
|
||||
// update whole positions
|
||||
int whole = (int)fract;
|
||||
fract -= whole;
|
||||
psrc += whole;
|
||||
srcCount += whole;
|
||||
}
|
||||
srcSamples = srcCount;
|
||||
return i;
|
||||
}
|
||||
|
||||
|
||||
/// Transpose stereo audio. Returns number of produced output samples, and
|
||||
/// updates "srcSamples" to amount of consumed source samples
|
||||
int InterpolateShannon::transposeStereo(SAMPLETYPE *pdest,
|
||||
const SAMPLETYPE *psrc,
|
||||
int &srcSamples)
|
||||
{
|
||||
int i;
|
||||
int srcSampleEnd = srcSamples - 8;
|
||||
int srcCount = 0;
|
||||
|
||||
i = 0;
|
||||
while (srcCount < srcSampleEnd)
|
||||
{
|
||||
double out0, out1, w;
|
||||
assert(fract < 1.0);
|
||||
|
||||
w = sinc(-3.0 - fract) * _kaiser8[0];
|
||||
out0 = psrc[0] * w; out1 = psrc[1] * w;
|
||||
w = sinc(-2.0 - fract) * _kaiser8[1];
|
||||
out0 += psrc[2] * w; out1 += psrc[3] * w;
|
||||
w = sinc(-1.0 - fract) * _kaiser8[2];
|
||||
out0 += psrc[4] * w; out1 += psrc[5] * w;
|
||||
w = _kaiser8[3] * ((fract < 1e-5) ? 1.0 : sinc(- fract)); // sinc(0) = 1
|
||||
out0 += psrc[6] * w; out1 += psrc[7] * w;
|
||||
w = sinc( 1.0 - fract) * _kaiser8[4];
|
||||
out0 += psrc[8] * w; out1 += psrc[9] * w;
|
||||
w = sinc( 2.0 - fract) * _kaiser8[5];
|
||||
out0 += psrc[10] * w; out1 += psrc[11] * w;
|
||||
w = sinc( 3.0 - fract) * _kaiser8[6];
|
||||
out0 += psrc[12] * w; out1 += psrc[13] * w;
|
||||
w = sinc( 4.0 - fract) * _kaiser8[7];
|
||||
out0 += psrc[14] * w; out1 += psrc[15] * w;
|
||||
|
||||
pdest[2*i] = (SAMPLETYPE)out0;
|
||||
pdest[2*i+1] = (SAMPLETYPE)out1;
|
||||
i ++;
|
||||
|
||||
// update position fraction
|
||||
fract += rate;
|
||||
// update whole positions
|
||||
int whole = (int)fract;
|
||||
fract -= whole;
|
||||
psrc += 2*whole;
|
||||
srcCount += whole;
|
||||
}
|
||||
srcSamples = srcCount;
|
||||
return i;
|
||||
}
|
||||
|
||||
|
||||
/// Transpose stereo audio. Returns number of produced output samples, and
|
||||
/// updates "srcSamples" to amount of consumed source samples
|
||||
int InterpolateShannon::transposeMulti(SAMPLETYPE *,
|
||||
const SAMPLETYPE *,
|
||||
int &)
|
||||
{
|
||||
// not implemented
|
||||
assert(false);
|
||||
return 0;
|
||||
}
|
||||
|
|
|
@ -1,72 +1,74 @@
|
|||
////////////////////////////////////////////////////////////////////////////////
|
||||
///
|
||||
/// Sample interpolation routine using 8-tap band-limited Shannon interpolation
|
||||
/// with kaiser window.
|
||||
///
|
||||
/// Notice. This algorithm is remarkably much heavier than linear or cubic
|
||||
/// interpolation, and not remarkably better than cubic algorithm. Thus mostly
|
||||
/// for experimental purposes
|
||||
///
|
||||
/// Author : Copyright (c) Olli Parviainen
|
||||
/// Author e-mail : oparviai 'at' iki.fi
|
||||
/// SoundTouch WWW: http://www.surina.net/soundtouch
|
||||
///
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// $Id: InterpolateShannon.h 225 2015-07-26 14:45:48Z oparviai $
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// License :
|
||||
//
|
||||
// SoundTouch audio processing library
|
||||
// Copyright (c) Olli Parviainen
|
||||
//
|
||||
// This library is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 2.1 of the License, or (at your option) any later version.
|
||||
//
|
||||
// This library is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
// Lesser General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License along with this library; if not, write to the Free Software
|
||||
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#ifndef _InterpolateShannon_H_
|
||||
#define _InterpolateShannon_H_
|
||||
|
||||
#include "RateTransposer.h"
|
||||
#include "STTypes.h"
|
||||
|
||||
namespace soundtouch
|
||||
{
|
||||
|
||||
class InterpolateShannon : public TransposerBase
|
||||
{
|
||||
protected:
|
||||
void resetRegisters();
|
||||
int transposeMono(SAMPLETYPE *dest,
|
||||
const SAMPLETYPE *src,
|
||||
int &srcSamples);
|
||||
int transposeStereo(SAMPLETYPE *dest,
|
||||
const SAMPLETYPE *src,
|
||||
int &srcSamples);
|
||||
int transposeMulti(SAMPLETYPE *dest,
|
||||
const SAMPLETYPE *src,
|
||||
int &srcSamples);
|
||||
|
||||
double fract;
|
||||
|
||||
public:
|
||||
InterpolateShannon();
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
///
|
||||
/// Sample interpolation routine using 8-tap band-limited Shannon interpolation
|
||||
/// with kaiser window.
|
||||
///
|
||||
/// Notice. This algorithm is remarkably much heavier than linear or cubic
|
||||
/// interpolation, and not remarkably better than cubic algorithm. Thus mostly
|
||||
/// for experimental purposes
|
||||
///
|
||||
/// Author : Copyright (c) Olli Parviainen
|
||||
/// Author e-mail : oparviai 'at' iki.fi
|
||||
/// SoundTouch WWW: http://www.surina.net/soundtouch
|
||||
///
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// License :
|
||||
//
|
||||
// SoundTouch audio processing library
|
||||
// Copyright (c) Olli Parviainen
|
||||
//
|
||||
// This library is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 2.1 of the License, or (at your option) any later version.
|
||||
//
|
||||
// This library is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
// Lesser General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License along with this library; if not, write to the Free Software
|
||||
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#ifndef _InterpolateShannon_H_
|
||||
#define _InterpolateShannon_H_
|
||||
|
||||
#include "RateTransposer.h"
|
||||
#include "STTypes.h"
|
||||
|
||||
namespace soundtouch
|
||||
{
|
||||
|
||||
class InterpolateShannon : public TransposerBase
|
||||
{
|
||||
protected:
|
||||
int transposeMono(SAMPLETYPE *dest,
|
||||
const SAMPLETYPE *src,
|
||||
int &srcSamples) override;
|
||||
int transposeStereo(SAMPLETYPE *dest,
|
||||
const SAMPLETYPE *src,
|
||||
int &srcSamples) override;
|
||||
int transposeMulti(SAMPLETYPE *dest,
|
||||
const SAMPLETYPE *src,
|
||||
int &srcSamples) override;
|
||||
|
||||
double fract;
|
||||
|
||||
public:
|
||||
InterpolateShannon();
|
||||
|
||||
void resetRegisters() override;
|
||||
|
||||
virtual int getLatency() const override
|
||||
{
|
||||
return 3;
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -11,13 +11,6 @@
|
|||
///
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Last changed : $Date: 2015-05-18 18:22:02 +0300 (Mon, 18 May 2015) $
|
||||
// File revision : $Revision: 4 $
|
||||
//
|
||||
// $Id: PeakFinder.cpp 213 2015-05-18 15:22:02Z oparviai $
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// License :
|
||||
//
|
||||
// SoundTouch audio processing library
|
||||
|
@ -149,7 +142,7 @@ int PeakFinder::findCrossingLevel(const float *data, float level, int peakpos, i
|
|||
peaklevel = data[peakpos];
|
||||
assert(peaklevel >= level);
|
||||
pos = peakpos;
|
||||
while ((pos >= minPos) && (pos < maxPos))
|
||||
while ((pos >= minPos) && (pos + direction < maxPos))
|
||||
{
|
||||
if (data[pos + direction] < level) return pos; // crossing found
|
||||
pos += direction;
|
||||
|
@ -178,7 +171,6 @@ double PeakFinder::calcMassCenter(const float *data, int firstPos, int lastPos)
|
|||
}
|
||||
|
||||
|
||||
|
||||
/// get exact center of peak near given position by calculating local mass of center
|
||||
double PeakFinder::getPeakCenter(const float *data, int peakpos) const
|
||||
{
|
||||
|
@ -218,7 +210,6 @@ double PeakFinder::getPeakCenter(const float *data, int peakpos) const
|
|||
}
|
||||
|
||||
|
||||
|
||||
double PeakFinder::detectPeak(const float *data, int aminPos, int amaxPos)
|
||||
{
|
||||
|
||||
|
@ -249,12 +240,12 @@ double PeakFinder::detectPeak(const float *data, int aminPos, int amaxPos)
|
|||
// - sometimes the highest peak can be Nth harmonic of the true base peak yet
|
||||
// just a slightly higher than the true base
|
||||
|
||||
for (i = 3; i < 10; i ++)
|
||||
for (i = 1; i < 3; i ++)
|
||||
{
|
||||
double peaktmp, harmonic;
|
||||
int i1,i2;
|
||||
|
||||
harmonic = (double)i * 0.5;
|
||||
harmonic = (double)pow(2.0, i);
|
||||
peakpos = (int)(highPeak / harmonic + 0.5f);
|
||||
if (peakpos < minPos) break;
|
||||
peakpos = findTop(data, peakpos); // seek true local maximum index
|
||||
|
|
|
@ -9,13 +9,6 @@
|
|||
///
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Last changed : $Date: 2011-12-30 22:33:46 +0200 (Fri, 30 Dec 2011) $
|
||||
// File revision : $Revision: 4 $
|
||||
//
|
||||
// $Id: PeakFinder.h 132 2011-12-30 20:33:46Z oparviai $
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// License :
|
||||
//
|
||||
// SoundTouch audio processing library
|
||||
|
@ -51,8 +44,8 @@ protected:
|
|||
|
||||
/// Calculates the mass center between given vector items.
|
||||
double calcMassCenter(const float *data, ///< Data vector.
|
||||
int firstPos, ///< Index of first vector item beloging to the peak.
|
||||
int lastPos ///< Index of last vector item beloging to the peak.
|
||||
int firstPos, ///< Index of first vector item belonging to the peak.
|
||||
int lastPos ///< Index of last vector item belonging to the peak.
|
||||
) const;
|
||||
|
||||
/// Finds the data vector index where the monotoniously decreasing signal crosses the
|
||||
|
|
|
@ -10,13 +10,6 @@
|
|||
///
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Last changed : $Date: 2015-07-26 17:45:48 +0300 (Sun, 26 Jul 2015) $
|
||||
// File revision : $Revision: 4 $
|
||||
//
|
||||
// $Id: RateTransposer.cpp 225 2015-07-26 14:45:48Z oparviai $
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// License :
|
||||
//
|
||||
// SoundTouch audio processing library
|
||||
|
@ -57,15 +50,21 @@ TransposerBase::ALGORITHM TransposerBase::algorithm = TransposerBase::CUBIC;
|
|||
// Constructor
|
||||
RateTransposer::RateTransposer() : FIFOProcessor(&outputBuffer)
|
||||
{
|
||||
bUseAAFilter = true;
|
||||
bUseAAFilter =
|
||||
#ifndef SOUNDTOUCH_PREVENT_CLICK_AT_RATE_CROSSOVER
|
||||
true;
|
||||
#else
|
||||
// Disable Anti-alias filter if desirable to avoid click at rate change zero value crossover
|
||||
false;
|
||||
#endif
|
||||
|
||||
// Instantiates the anti-alias filter
|
||||
pAAFilter = new AAFilter(64);
|
||||
pTransposer = TransposerBase::newInstance();
|
||||
clear();
|
||||
}
|
||||
|
||||
|
||||
|
||||
RateTransposer::~RateTransposer()
|
||||
{
|
||||
delete pAAFilter;
|
||||
|
@ -73,11 +72,14 @@ RateTransposer::~RateTransposer()
|
|||
}
|
||||
|
||||
|
||||
|
||||
/// Enables/disables the anti-alias filter. Zero to disable, nonzero to enable
|
||||
void RateTransposer::enableAAFilter(bool newMode)
|
||||
{
|
||||
#ifndef SOUNDTOUCH_PREVENT_CLICK_AT_RATE_CROSSOVER
|
||||
// Disable Anti-alias filter if desirable to avoid click at rate change zero value crossover
|
||||
bUseAAFilter = newMode;
|
||||
clear();
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
|
@ -94,7 +96,6 @@ AAFilter *RateTransposer::getAAFilter()
|
|||
}
|
||||
|
||||
|
||||
|
||||
// Sets new target iRate. Normal iRate = 1.0, smaller values represent slower
|
||||
// iRate, larger faster iRates.
|
||||
void RateTransposer::setRate(double newRate)
|
||||
|
@ -130,8 +131,6 @@ void RateTransposer::putSamples(const SAMPLETYPE *samples, uint nSamples)
|
|||
// the 'set_returnBuffer_size' function.
|
||||
void RateTransposer::processSamples(const SAMPLETYPE *src, uint nSamples)
|
||||
{
|
||||
uint count;
|
||||
|
||||
if (nSamples == 0) return;
|
||||
|
||||
// Store samples to input buffer
|
||||
|
@ -141,7 +140,7 @@ void RateTransposer::processSamples(const SAMPLETYPE *src, uint nSamples)
|
|||
// the filter
|
||||
if (bUseAAFilter == false)
|
||||
{
|
||||
count = pTransposer->transpose(outputBuffer, inputBuffer);
|
||||
(void)pTransposer->transpose(outputBuffer, inputBuffer);
|
||||
return;
|
||||
}
|
||||
|
||||
|
@ -177,11 +176,10 @@ void RateTransposer::processSamples(const SAMPLETYPE *src, uint nSamples)
|
|||
// Sets the number of channels, 1 = mono, 2 = stereo
|
||||
void RateTransposer::setChannels(int nChannels)
|
||||
{
|
||||
assert(nChannels > 0);
|
||||
if (!verifyNumberOfChannels(nChannels) ||
|
||||
(pTransposer->numChannels == nChannels)) return;
|
||||
|
||||
if (pTransposer->numChannels == nChannels) return;
|
||||
pTransposer->setChannels(nChannels);
|
||||
|
||||
inputBuffer.setChannels(nChannels);
|
||||
midBuffer.setChannels(nChannels);
|
||||
outputBuffer.setChannels(nChannels);
|
||||
|
@ -194,6 +192,11 @@ void RateTransposer::clear()
|
|||
outputBuffer.clear();
|
||||
midBuffer.clear();
|
||||
inputBuffer.clear();
|
||||
pTransposer->resetRegisters();
|
||||
|
||||
// prefill buffer to avoid losing first samples at beginning of stream
|
||||
int prefill = getLatency();
|
||||
inputBuffer.addSilent(prefill);
|
||||
}
|
||||
|
||||
|
||||
|
@ -208,6 +211,14 @@ int RateTransposer::isEmpty() const
|
|||
}
|
||||
|
||||
|
||||
/// Return approximate initial input-output latency
|
||||
int RateTransposer::getLatency() const
|
||||
{
|
||||
return pTransposer->getLatency() +
|
||||
((bUseAAFilter) ? (pAAFilter->getLength() / 2) : 0);
|
||||
}
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// TransposerBase - Base class for interpolation
|
||||
|
@ -280,7 +291,7 @@ void TransposerBase::setRate(double newRate)
|
|||
TransposerBase *TransposerBase::newInstance()
|
||||
{
|
||||
#ifdef SOUNDTOUCH_INTEGER_SAMPLES
|
||||
// Notice: For integer arithmetics support only linear algorithm (due to simplest calculus)
|
||||
// Notice: For integer arithmetic support only linear algorithm (due to simplest calculus)
|
||||
return ::new InterpolateLinearInteger;
|
||||
#else
|
||||
switch (algorithm)
|
||||
|
@ -296,7 +307,7 @@ TransposerBase *TransposerBase::newInstance()
|
|||
|
||||
default:
|
||||
assert(false);
|
||||
return NULL;
|
||||
return nullptr;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
|
|
@ -14,13 +14,6 @@
|
|||
///
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Last changed : $Date: 2015-07-26 17:45:48 +0300 (Sun, 26 Jul 2015) $
|
||||
// File revision : $Revision: 4 $
|
||||
//
|
||||
// $Id: RateTransposer.h 225 2015-07-26 14:45:48Z oparviai $
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// License :
|
||||
//
|
||||
// SoundTouch audio processing library
|
||||
|
@ -66,8 +59,6 @@ public:
|
|||
};
|
||||
|
||||
protected:
|
||||
virtual void resetRegisters() = 0;
|
||||
|
||||
virtual int transposeMono(SAMPLETYPE *dest,
|
||||
const SAMPLETYPE *src,
|
||||
int &srcSamples) = 0;
|
||||
|
@ -90,6 +81,9 @@ public:
|
|||
virtual int transpose(FIFOSampleBuffer &dest, FIFOSampleBuffer &src);
|
||||
virtual void setRate(double newRate);
|
||||
virtual void setChannels(int channels);
|
||||
virtual int getLatency() const = 0;
|
||||
|
||||
virtual void resetRegisters() = 0;
|
||||
|
||||
// static factory function
|
||||
static TransposerBase *newInstance();
|
||||
|
@ -130,23 +124,11 @@ protected:
|
|||
|
||||
public:
|
||||
RateTransposer();
|
||||
virtual ~RateTransposer();
|
||||
|
||||
/// Operator 'new' is overloaded so that it automatically creates a suitable instance
|
||||
/// depending on if we're to use integer or floating point arithmetics.
|
||||
// static void *operator new(size_t s);
|
||||
|
||||
/// Use this function instead of "new" operator to create a new instance of this class.
|
||||
/// This function automatically chooses a correct implementation, depending on if
|
||||
/// integer ot floating point arithmetics are to be used.
|
||||
// static RateTransposer *newInstance();
|
||||
virtual ~RateTransposer() override;
|
||||
|
||||
/// Returns the output buffer object
|
||||
FIFOSamplePipe *getOutput() { return &outputBuffer; };
|
||||
|
||||
/// Returns the store buffer object
|
||||
// FIFOSamplePipe *getStore() { return &storeBuffer; };
|
||||
|
||||
/// Return anti-alias filter object
|
||||
AAFilter *getAAFilter();
|
||||
|
||||
|
@ -165,13 +147,16 @@ public:
|
|||
|
||||
/// Adds 'numSamples' pcs of samples from the 'samples' memory position into
|
||||
/// the input of the object.
|
||||
void putSamples(const SAMPLETYPE *samples, uint numSamples);
|
||||
void putSamples(const SAMPLETYPE *samples, uint numSamples) override;
|
||||
|
||||
/// Clears all the samples in the object
|
||||
void clear();
|
||||
void clear() override;
|
||||
|
||||
/// Returns nonzero if there aren't any samples available for outputting.
|
||||
int isEmpty() const;
|
||||
int isEmpty() const override;
|
||||
|
||||
/// Return approximate initial input-output latency
|
||||
int getLatency() const;
|
||||
};
|
||||
|
||||
}
|
||||
|
|
|
@ -8,13 +8,6 @@
|
|||
///
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Last changed : $Date: 2015-05-18 18:25:07 +0300 (Mon, 18 May 2015) $
|
||||
// File revision : $Revision: 3 $
|
||||
//
|
||||
// $Id: STTypes.h 215 2015-05-18 15:25:07Z oparviai $
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// License :
|
||||
//
|
||||
// SoundTouch audio processing library
|
||||
|
@ -39,33 +32,37 @@
|
|||
#ifndef STTypes_H
|
||||
#define STTypes_H
|
||||
|
||||
typedef unsigned int uint;
|
||||
typedef unsigned long ulong;
|
||||
|
||||
// Patch for MinGW: on Win64 long is 32-bit
|
||||
#ifdef _WIN64
|
||||
typedef unsigned long long ulongptr;
|
||||
#else
|
||||
typedef ulong ulongptr;
|
||||
#endif
|
||||
|
||||
|
||||
// Helper macro for aligning pointer up to next 16-byte boundary
|
||||
#define SOUNDTOUCH_ALIGN_POINTER_16(x) ( ( (ulongptr)(x) + 15 ) & ~(ulongptr)15 )
|
||||
|
||||
|
||||
#if (defined(__GNUC__) && !defined(ANDROID))
|
||||
// In GCC, include soundtouch_config.h made by config scritps.
|
||||
// Skip this in Android compilation that uses GCC but without configure scripts.
|
||||
//#include "soundtouch_config.h"
|
||||
#include "soundtouch_config.h"
|
||||
#endif
|
||||
|
||||
|
||||
namespace soundtouch
|
||||
{
|
||||
typedef unsigned int uint;
|
||||
typedef unsigned long ulong;
|
||||
|
||||
// Patch for MinGW: on Win64 long is 32-bit
|
||||
#ifdef _WIN64
|
||||
typedef unsigned long long ulongptr;
|
||||
#else
|
||||
typedef ulong ulongptr;
|
||||
#endif
|
||||
|
||||
|
||||
// Helper macro for aligning pointer up to next 16-byte boundary
|
||||
#define SOUNDTOUCH_ALIGN_POINTER_16(x) ( ( (ulongptr)(x) + 15 ) & ~(ulongptr)15 )
|
||||
/// Max allowed number of channels
|
||||
#define SOUNDTOUCH_MAX_CHANNELS 16
|
||||
|
||||
/// Activate these undef's to overrule the possible sampletype
|
||||
/// setting inherited from some other header file:
|
||||
#undef SOUNDTOUCH_INTEGER_SAMPLES
|
||||
#undef SOUNDTOUCH_FLOAT_SAMPLES
|
||||
//#undef SOUNDTOUCH_INTEGER_SAMPLES
|
||||
//#undef SOUNDTOUCH_FLOAT_SAMPLES
|
||||
|
||||
/// If following flag is defined, always uses multichannel processing
|
||||
/// routines also for mono and stero sound. This is for routine testing
|
||||
|
@ -74,7 +71,7 @@ namespace soundtouch
|
|||
/// runtime performance so recommendation is to keep this off.
|
||||
// #define USE_MULTICH_ALWAYS
|
||||
|
||||
#if (defined(__SOFTFP__))
|
||||
#if (defined(__SOFTFP__) && defined(ANDROID))
|
||||
// For Android compilation: Force use of Integer samples in case that
|
||||
// compilation uses soft-floating point emulation - soft-fp is way too slow
|
||||
#undef SOUNDTOUCH_FLOAT_SAMPLES
|
||||
|
@ -97,8 +94,8 @@ namespace soundtouch
|
|||
/// However, if you still prefer to select the sample format here
|
||||
/// also in GNU environment, then please #undef the INTEGER_SAMPLE
|
||||
/// and FLOAT_SAMPLE defines first as in comments above.
|
||||
#define SOUNDTOUCH_INTEGER_SAMPLES 1 //< 16bit integer samples
|
||||
//#define SOUNDTOUCH_FLOAT_SAMPLES 1 //< 32bit float samples
|
||||
//#define SOUNDTOUCH_INTEGER_SAMPLES 1 //< 16bit integer samples
|
||||
#define SOUNDTOUCH_FLOAT_SAMPLES 1 //< 32bit float samples
|
||||
|
||||
#endif
|
||||
|
||||
|
@ -109,7 +106,7 @@ namespace soundtouch
|
|||
/// routines compiled for whatever reason, you may disable these optimizations
|
||||
/// to make the library compile.
|
||||
|
||||
//#define SOUNDTOUCH_ALLOW_X86_OPTIMIZATIONS 1
|
||||
#define SOUNDTOUCH_ALLOW_X86_OPTIMIZATIONS 1
|
||||
|
||||
/// In GNU environment, allow the user to override this setting by
|
||||
/// giving the following switch to the configure script:
|
||||
|
@ -124,10 +121,10 @@ namespace soundtouch
|
|||
|
||||
#endif
|
||||
|
||||
// If defined, allows the SIMD-optimized routines to take minor shortcuts
|
||||
// for improved performance. Undefine to require faithfully similar SIMD
|
||||
// calculations as in normal C implementation.
|
||||
#define SOUNDTOUCH_ALLOW_NONEXACT_SIMD_OPTIMIZATION 1
|
||||
// If defined, allows the SIMD-optimized routines to skip unevenly aligned
|
||||
// memory offsets that can cause performance penalty in some SIMD implementations.
|
||||
// Causes slight compromise in sound quality.
|
||||
// #define SOUNDTOUCH_ALLOW_NONEXACT_SIMD_OPTIMIZATION 1
|
||||
|
||||
|
||||
#ifdef SOUNDTOUCH_INTEGER_SAMPLES
|
||||
|
@ -142,16 +139,19 @@ namespace soundtouch
|
|||
#endif // SOUNDTOUCH_FLOAT_SAMPLES
|
||||
|
||||
#ifdef SOUNDTOUCH_ALLOW_X86_OPTIMIZATIONS
|
||||
// Allow MMX optimizations
|
||||
#define SOUNDTOUCH_ALLOW_MMX 1
|
||||
// Allow MMX optimizations (not available in X64 mode)
|
||||
#if (!_M_X64)
|
||||
#define SOUNDTOUCH_ALLOW_MMX 1
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#else
|
||||
|
||||
// floating point samples
|
||||
typedef float SAMPLETYPE;
|
||||
// data type for sample accumulation: Use double to utilize full precision.
|
||||
typedef double LONG_SAMPLETYPE;
|
||||
// data type for sample accumulation: Use float also here to enable
|
||||
// efficient autovectorization
|
||||
typedef float LONG_SAMPLETYPE;
|
||||
|
||||
#ifdef SOUNDTOUCH_ALLOW_X86_OPTIMIZATIONS
|
||||
// Allow SSE optimizations
|
||||
|
@ -160,10 +160,16 @@ namespace soundtouch
|
|||
|
||||
#endif // SOUNDTOUCH_INTEGER_SAMPLES
|
||||
|
||||
};
|
||||
#if ((SOUNDTOUCH_ALLOW_SSE) || (__SSE__) || (SOUNDTOUCH_USE_NEON))
|
||||
#if SOUNDTOUCH_ALLOW_NONEXACT_SIMD_OPTIMIZATION
|
||||
#define ST_SIMD_AVOID_UNALIGNED
|
||||
#endif
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
// define ST_NO_EXCEPTION_HANDLING switch to disable throwing std exceptions:
|
||||
#define ST_NO_EXCEPTION_HANDLING 1
|
||||
// #define ST_NO_EXCEPTION_HANDLING 1
|
||||
#ifdef ST_NO_EXCEPTION_HANDLING
|
||||
// Exceptions disabled. Throw asserts instead if enabled.
|
||||
#include <assert.h>
|
||||
|
|
|
@ -41,13 +41,6 @@
|
|||
///
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Last changed : $Date: 2015-07-26 17:45:48 +0300 (Sun, 26 Jul 2015) $
|
||||
// File revision : $Revision: 4 $
|
||||
//
|
||||
// $Id: SoundTouch.cpp 225 2015-07-26 14:45:48Z oparviai $
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// License :
|
||||
//
|
||||
// SoundTouch audio processing library
|
||||
|
@ -110,15 +103,14 @@ SoundTouch::SoundTouch()
|
|||
|
||||
calcEffectiveRateAndTempo();
|
||||
|
||||
samplesExpectedOut = 0;
|
||||
samplesOutput = 0;
|
||||
samplesExpectedOut = 0;
|
||||
samplesOutput = 0;
|
||||
|
||||
channels = 0;
|
||||
bSrateSet = false;
|
||||
}
|
||||
|
||||
|
||||
|
||||
SoundTouch::~SoundTouch()
|
||||
{
|
||||
delete pRateTransposer;
|
||||
|
@ -126,7 +118,6 @@ SoundTouch::~SoundTouch()
|
|||
}
|
||||
|
||||
|
||||
|
||||
/// Get SoundTouch library version string
|
||||
const char *SoundTouch::getVersionString()
|
||||
{
|
||||
|
@ -146,18 +137,14 @@ uint SoundTouch::getVersionId()
|
|||
// Sets the number of channels, 1 = mono, 2 = stereo
|
||||
void SoundTouch::setChannels(uint numChannels)
|
||||
{
|
||||
/*if (numChannels != 1 && numChannels != 2)
|
||||
{
|
||||
//ST_THROW_RT_ERROR("Illegal number of channels");
|
||||
return;
|
||||
}*/
|
||||
if (!verifyNumberOfChannels(numChannels)) return;
|
||||
|
||||
channels = numChannels;
|
||||
pRateTransposer->setChannels((int)numChannels);
|
||||
pTDStretch->setChannels((int)numChannels);
|
||||
}
|
||||
|
||||
|
||||
|
||||
// Sets new rate control value. Normal rate = 1.0, smaller values
|
||||
// represent slower rate, larger faster rates.
|
||||
void SoundTouch::setRate(double newRate)
|
||||
|
@ -167,7 +154,6 @@ void SoundTouch::setRate(double newRate)
|
|||
}
|
||||
|
||||
|
||||
|
||||
// Sets new rate control value as a difference in percents compared
|
||||
// to the original rate (-50 .. +100 %)
|
||||
void SoundTouch::setRateChange(double newRate)
|
||||
|
@ -177,7 +163,6 @@ void SoundTouch::setRateChange(double newRate)
|
|||
}
|
||||
|
||||
|
||||
|
||||
// Sets new tempo control value. Normal tempo = 1.0, smaller values
|
||||
// represent slower tempo, larger faster tempo.
|
||||
void SoundTouch::setTempo(double newTempo)
|
||||
|
@ -187,7 +172,6 @@ void SoundTouch::setTempo(double newTempo)
|
|||
}
|
||||
|
||||
|
||||
|
||||
// Sets new tempo control value as a difference in percents compared
|
||||
// to the original tempo (-50 .. +100 %)
|
||||
void SoundTouch::setTempoChange(double newTempo)
|
||||
|
@ -197,7 +181,6 @@ void SoundTouch::setTempoChange(double newTempo)
|
|||
}
|
||||
|
||||
|
||||
|
||||
// Sets new pitch control value. Original pitch = 1.0, smaller values
|
||||
// represent lower pitches, larger values higher pitch.
|
||||
void SoundTouch::setPitch(double newPitch)
|
||||
|
@ -207,7 +190,6 @@ void SoundTouch::setPitch(double newPitch)
|
|||
}
|
||||
|
||||
|
||||
|
||||
// Sets pitch change in octaves compared to the original pitch
|
||||
// (-1.00 .. +1.00)
|
||||
void SoundTouch::setPitchOctaves(double newPitch)
|
||||
|
@ -217,7 +199,6 @@ void SoundTouch::setPitchOctaves(double newPitch)
|
|||
}
|
||||
|
||||
|
||||
|
||||
// Sets pitch change in semi-tones compared to the original pitch
|
||||
// (-12 .. +12)
|
||||
void SoundTouch::setPitchSemiTones(int newPitch)
|
||||
|
@ -226,7 +207,6 @@ void SoundTouch::setPitchSemiTones(int newPitch)
|
|||
}
|
||||
|
||||
|
||||
|
||||
void SoundTouch::setPitchSemiTones(double newPitch)
|
||||
{
|
||||
setPitchOctaves(newPitch / 12.0);
|
||||
|
@ -240,11 +220,11 @@ void SoundTouch::calcEffectiveRateAndTempo()
|
|||
double oldTempo = tempo;
|
||||
double oldRate = rate;
|
||||
|
||||
tempo = virtualTempo / virtualPitch;
|
||||
rate = virtualPitch * virtualRate;
|
||||
tempo = virtualTempo / virtualPitch;
|
||||
rate = virtualPitch * virtualRate;
|
||||
|
||||
if (!TEST_FLOAT_EQUAL(rate,oldRate)) pRateTransposer->setRate(rate);
|
||||
if (!TEST_FLOAT_EQUAL(tempo, oldTempo)) pTDStretch->setTempo(tempo);
|
||||
if (!TEST_FLOAT_EQUAL(tempo, oldTempo)) pTDStretch->setTempo(tempo);
|
||||
|
||||
#ifndef SOUNDTOUCH_PREVENT_CLICK_AT_RATE_CROSSOVER
|
||||
if (rate <= 1.0f)
|
||||
|
@ -286,9 +266,9 @@ void SoundTouch::calcEffectiveRateAndTempo()
|
|||
// Sets sample rate.
|
||||
void SoundTouch::setSampleRate(uint srate)
|
||||
{
|
||||
bSrateSet = true;
|
||||
// set sample rate, leave other tempo changer parameters as they are.
|
||||
pTDStretch->setParameters((int)srate);
|
||||
bSrateSet = true;
|
||||
}
|
||||
|
||||
|
||||
|
@ -305,25 +285,9 @@ void SoundTouch::putSamples(const SAMPLETYPE *samples, uint nSamples)
|
|||
ST_THROW_RT_ERROR("SoundTouch : Number of channels not defined");
|
||||
}
|
||||
|
||||
// Transpose the rate of the new samples if necessary
|
||||
/* Bypass the nominal setting - can introduce a click in sound when tempo/pitch control crosses the nominal value...
|
||||
if (rate == 1.0f)
|
||||
{
|
||||
// The rate value is same as the original, simply evaluate the tempo changer.
|
||||
assert(output == pTDStretch);
|
||||
if (pRateTransposer->isEmpty() == 0)
|
||||
{
|
||||
// yet flush the last samples in the pitch transposer buffer
|
||||
// (may happen if 'rate' changes from a non-zero value to zero)
|
||||
pTDStretch->moveSamples(*pRateTransposer);
|
||||
}
|
||||
pTDStretch->putSamples(samples, nSamples);
|
||||
}
|
||||
*/
|
||||
|
||||
// accumulate how many samples are expected out from processing, given the current
|
||||
// processing setting
|
||||
samplesExpectedOut += (double)nSamples / ((double)rate * (double)tempo);
|
||||
// accumulate how many samples are expected out from processing, given the current
|
||||
// processing setting
|
||||
samplesExpectedOut += (double)nSamples / ((double)rate * (double)tempo);
|
||||
|
||||
#ifndef SOUNDTOUCH_PREVENT_CLICK_AT_RATE_CROSSOVER
|
||||
if (rate <= 1.0f)
|
||||
|
@ -354,28 +318,28 @@ void SoundTouch::putSamples(const SAMPLETYPE *samples, uint nSamples)
|
|||
void SoundTouch::flush()
|
||||
{
|
||||
int i;
|
||||
int numStillExpected;
|
||||
int numStillExpected;
|
||||
SAMPLETYPE *buff = new SAMPLETYPE[128 * channels];
|
||||
|
||||
// how many samples are still expected to output
|
||||
numStillExpected = (int)((long)(samplesExpectedOut + 0.5) - samplesOutput);
|
||||
// how many samples are still expected to output
|
||||
numStillExpected = (int)((long)(samplesExpectedOut + 0.5) - samplesOutput);
|
||||
if (numStillExpected < 0) numStillExpected = 0;
|
||||
|
||||
memset(buff, 0, 128 * channels * sizeof(SAMPLETYPE));
|
||||
// "Push" the last active samples out from the processing pipeline by
|
||||
// feeding blank samples into the processing pipeline until new,
|
||||
// processed samples appear in the output (not however, more than
|
||||
// 24ksamples in any case)
|
||||
for (i = 0; (numStillExpected > (int)numSamples()) && (i < 200); i ++)
|
||||
{
|
||||
putSamples(buff, 128);
|
||||
}
|
||||
for (i = 0; (numStillExpected > (int)numSamples()) && (i < 200); i ++)
|
||||
{
|
||||
putSamples(buff, 128);
|
||||
}
|
||||
|
||||
adjustAmountOfSamples(numStillExpected);
|
||||
adjustAmountOfSamples(numStillExpected);
|
||||
|
||||
delete[] buff;
|
||||
|
||||
// Clear input buffers
|
||||
// pRateTransposer->clearInput();
|
||||
pTDStretch->clearInput();
|
||||
// yet leave the output intouched as that's where the
|
||||
// flushed samples are!
|
||||
|
@ -446,27 +410,67 @@ int SoundTouch::getSetting(int settingId) const
|
|||
return pRateTransposer->getAAFilter()->getLength();
|
||||
|
||||
case SETTING_USE_QUICKSEEK :
|
||||
return (uint) pTDStretch->isQuickSeekEnabled();
|
||||
return (uint)pTDStretch->isQuickSeekEnabled();
|
||||
|
||||
case SETTING_SEQUENCE_MS:
|
||||
pTDStretch->getParameters(NULL, &temp, NULL, NULL);
|
||||
pTDStretch->getParameters(nullptr, &temp, nullptr, nullptr);
|
||||
return temp;
|
||||
|
||||
case SETTING_SEEKWINDOW_MS:
|
||||
pTDStretch->getParameters(NULL, NULL, &temp, NULL);
|
||||
pTDStretch->getParameters(nullptr, nullptr, &temp, nullptr);
|
||||
return temp;
|
||||
|
||||
case SETTING_OVERLAP_MS:
|
||||
pTDStretch->getParameters(NULL, NULL, NULL, &temp);
|
||||
pTDStretch->getParameters(nullptr, nullptr, nullptr, &temp);
|
||||
return temp;
|
||||
|
||||
case SETTING_NOMINAL_INPUT_SEQUENCE :
|
||||
return pTDStretch->getInputSampleReq();
|
||||
case SETTING_NOMINAL_INPUT_SEQUENCE :
|
||||
{
|
||||
int size = pTDStretch->getInputSampleReq();
|
||||
|
||||
case SETTING_NOMINAL_OUTPUT_SEQUENCE :
|
||||
return pTDStretch->getOutputBatchSize();
|
||||
#ifndef SOUNDTOUCH_PREVENT_CLICK_AT_RATE_CROSSOVER
|
||||
if (rate <= 1.0)
|
||||
{
|
||||
// transposing done before timestretch, which impacts latency
|
||||
return (int)(size * rate + 0.5);
|
||||
}
|
||||
#endif
|
||||
return size;
|
||||
}
|
||||
|
||||
default :
|
||||
case SETTING_NOMINAL_OUTPUT_SEQUENCE :
|
||||
{
|
||||
int size = pTDStretch->getOutputBatchSize();
|
||||
|
||||
if (rate > 1.0)
|
||||
{
|
||||
// transposing done after timestretch, which impacts latency
|
||||
return (int)(size / rate + 0.5);
|
||||
}
|
||||
return size;
|
||||
}
|
||||
|
||||
case SETTING_INITIAL_LATENCY:
|
||||
{
|
||||
double latency = pTDStretch->getLatency();
|
||||
int latency_tr = pRateTransposer->getLatency();
|
||||
|
||||
#ifndef SOUNDTOUCH_PREVENT_CLICK_AT_RATE_CROSSOVER
|
||||
if (rate <= 1.0)
|
||||
{
|
||||
// transposing done before timestretch, which impacts latency
|
||||
latency = (latency + latency_tr) * rate;
|
||||
}
|
||||
else
|
||||
#endif
|
||||
{
|
||||
latency += (double)latency_tr / rate;
|
||||
}
|
||||
|
||||
return (int)(latency + 0.5);
|
||||
}
|
||||
|
||||
default :
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
@ -476,13 +480,13 @@ int SoundTouch::getSetting(int settingId) const
|
|||
// buffers.
|
||||
void SoundTouch::clear()
|
||||
{
|
||||
samplesExpectedOut = 0;
|
||||
samplesExpectedOut = 0;
|
||||
samplesOutput = 0;
|
||||
pRateTransposer->clear();
|
||||
pTDStretch->clear();
|
||||
}
|
||||
|
||||
|
||||
|
||||
/// Returns number of samples currently unprocessed.
|
||||
uint SoundTouch::numUnprocessedSamples() const
|
||||
{
|
||||
|
@ -499,7 +503,6 @@ uint SoundTouch::numUnprocessedSamples() const
|
|||
}
|
||||
|
||||
|
||||
|
||||
/// Output samples from beginning of the sample buffer. Copies requested samples to
|
||||
/// output buffer and removes them from the sample buffer. If there are less than
|
||||
/// 'numsample' samples in the buffer, returns all that available.
|
||||
|
@ -507,9 +510,9 @@ uint SoundTouch::numUnprocessedSamples() const
|
|||
/// \return Number of samples returned.
|
||||
uint SoundTouch::receiveSamples(SAMPLETYPE *output, uint maxSamples)
|
||||
{
|
||||
uint ret = FIFOProcessor::receiveSamples(output, maxSamples);
|
||||
samplesOutput += (long)ret;
|
||||
return ret;
|
||||
uint ret = FIFOProcessor::receiveSamples(output, maxSamples);
|
||||
samplesOutput += (long)ret;
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
|
@ -520,7 +523,16 @@ uint SoundTouch::receiveSamples(SAMPLETYPE *output, uint maxSamples)
|
|||
/// with 'ptrBegin' function.
|
||||
uint SoundTouch::receiveSamples(uint maxSamples)
|
||||
{
|
||||
uint ret = FIFOProcessor::receiveSamples(maxSamples);
|
||||
samplesOutput += (long)ret;
|
||||
return ret;
|
||||
uint ret = FIFOProcessor::receiveSamples(maxSamples);
|
||||
samplesOutput += (long)ret;
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
/// Get ratio between input and output audio durations, useful for calculating
|
||||
/// processed output duration: if you'll process a stream of N samples, then
|
||||
/// you can expect to get out N * getInputOutputSampleRatio() samples.
|
||||
double SoundTouch::getInputOutputSampleRatio()
|
||||
{
|
||||
return 1.0 / (tempo * rate);
|
||||
}
|
||||
|
|
|
@ -1,27 +1,27 @@
|
|||
//////////////////////////////////////////////////////////////////////////////
|
||||
///
|
||||
/// SoundTouch - main class for tempo/pitch/rate adjusting routines.
|
||||
/// SoundTouch - main class for tempo/pitch/rate adjusting routines.
|
||||
///
|
||||
/// Notes:
|
||||
/// - Initialize the SoundTouch object instance by setting up the sound stream
|
||||
/// parameters with functions 'setSampleRate' and 'setChannels', then set
|
||||
/// - Initialize the SoundTouch object instance by setting up the sound stream
|
||||
/// parameters with functions 'setSampleRate' and 'setChannels', then set
|
||||
/// desired tempo/pitch/rate settings with the corresponding functions.
|
||||
///
|
||||
/// - The SoundTouch class behaves like a first-in-first-out pipeline: The
|
||||
/// - The SoundTouch class behaves like a first-in-first-out pipeline: The
|
||||
/// samples that are to be processed are fed into one of the pipe by calling
|
||||
/// function 'putSamples', while the ready processed samples can be read
|
||||
/// function 'putSamples', while the ready processed samples can be read
|
||||
/// from the other end of the pipeline with function 'receiveSamples'.
|
||||
///
|
||||
/// - The SoundTouch processing classes require certain sized 'batches' of
|
||||
/// samples in order to process the sound. For this reason the classes buffer
|
||||
/// incoming samples until there are enough of samples available for
|
||||
///
|
||||
/// - The SoundTouch processing classes require certain sized 'batches' of
|
||||
/// samples in order to process the sound. For this reason the classes buffer
|
||||
/// incoming samples until there are enough of samples available for
|
||||
/// processing, then they carry out the processing step and consequently
|
||||
/// make the processed samples available for outputting.
|
||||
///
|
||||
/// - For the above reason, the processing routines introduce a certain
|
||||
///
|
||||
/// - For the above reason, the processing routines introduce a certain
|
||||
/// 'latency' between the input and output, so that the samples input to
|
||||
/// SoundTouch may not be immediately available in the output, and neither
|
||||
/// the amount of outputtable samples may not immediately be in direct
|
||||
/// SoundTouch may not be immediately available in the output, and neither
|
||||
/// the amount of outputtable samples may not immediately be in direct
|
||||
/// relationship with the amount of previously input samples.
|
||||
///
|
||||
/// - The tempo/pitch/rate control parameters can be altered during processing.
|
||||
|
@ -30,8 +30,8 @@
|
|||
/// required.
|
||||
///
|
||||
/// - This class utilizes classes 'TDStretch' for tempo change (without modifying
|
||||
/// pitch) and 'RateTransposer' for changing the playback rate (that is, both
|
||||
/// tempo and pitch in the same ratio) of the sound. The third available control
|
||||
/// pitch) and 'RateTransposer' for changing the playback rate (that is, both
|
||||
/// tempo and pitch in the same ratio) of the sound. The third available control
|
||||
/// 'pitch' (change pitch but maintain tempo) is produced by a combination of
|
||||
/// combining the two other controls.
|
||||
///
|
||||
|
@ -41,13 +41,6 @@
|
|||
///
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Last changed : $Date: 2015-09-20 10:38:32 +0300 (Sun, 20 Sep 2015) $
|
||||
// File revision : $Revision: 4 $
|
||||
//
|
||||
// $Id: SoundTouch.h 230 2015-09-20 07:38:32Z oparviai $
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// License :
|
||||
//
|
||||
// SoundTouch audio processing library
|
||||
|
@ -79,10 +72,10 @@ namespace soundtouch
|
|||
{
|
||||
|
||||
/// Soundtouch library version string
|
||||
#define SOUNDTOUCH_VERSION "1.9.2"
|
||||
#define SOUNDTOUCH_VERSION "2.3.2"
|
||||
|
||||
/// SoundTouch library version id
|
||||
#define SOUNDTOUCH_VERSION_ID (10902)
|
||||
#define SOUNDTOUCH_VERSION_ID (20302)
|
||||
|
||||
//
|
||||
// Available setting IDs for the 'setSetting' & 'get_setting' functions:
|
||||
|
@ -98,48 +91,79 @@ namespace soundtouch
|
|||
/// quality compromising)
|
||||
#define SETTING_USE_QUICKSEEK 2
|
||||
|
||||
/// Time-stretch algorithm single processing sequence length in milliseconds. This determines
|
||||
/// to how long sequences the original sound is chopped in the time-stretch algorithm.
|
||||
/// Time-stretch algorithm single processing sequence length in milliseconds. This determines
|
||||
/// to how long sequences the original sound is chopped in the time-stretch algorithm.
|
||||
/// See "STTypes.h" or README for more information.
|
||||
#define SETTING_SEQUENCE_MS 3
|
||||
|
||||
/// Time-stretch algorithm seeking window length in milliseconds for algorithm that finds the
|
||||
/// best possible overlapping location. This determines from how wide window the algorithm
|
||||
/// may look for an optimal joining location when mixing the sound sequences back together.
|
||||
/// Time-stretch algorithm seeking window length in milliseconds for algorithm that finds the
|
||||
/// best possible overlapping location. This determines from how wide window the algorithm
|
||||
/// may look for an optimal joining location when mixing the sound sequences back together.
|
||||
/// See "STTypes.h" or README for more information.
|
||||
#define SETTING_SEEKWINDOW_MS 4
|
||||
|
||||
/// Time-stretch algorithm overlap length in milliseconds. When the chopped sound sequences
|
||||
/// are mixed back together, to form a continuous sound stream, this parameter defines over
|
||||
/// how long period the two consecutive sequences are let to overlap each other.
|
||||
/// Time-stretch algorithm overlap length in milliseconds. When the chopped sound sequences
|
||||
/// are mixed back together, to form a continuous sound stream, this parameter defines over
|
||||
/// how long period the two consecutive sequences are let to overlap each other.
|
||||
/// See "STTypes.h" or README for more information.
|
||||
#define SETTING_OVERLAP_MS 5
|
||||
|
||||
|
||||
/// Call "getSetting" with this ID to query nominal average processing sequence
|
||||
/// size in samples. This value tells approcimate value how many input samples
|
||||
/// SoundTouch needs to gather before it does DSP processing run for the sample batch.
|
||||
/// Call "getSetting" with this ID to query processing sequence size in samples.
|
||||
/// This value gives approximate value of how many input samples you'll need to
|
||||
/// feed into SoundTouch after initial buffering to get out a new batch of
|
||||
/// output samples.
|
||||
///
|
||||
/// Notices:
|
||||
/// This value does not include initial buffering at beginning of a new processing
|
||||
/// stream, use SETTING_INITIAL_LATENCY to get the initial buffering size.
|
||||
///
|
||||
/// Notices:
|
||||
/// - This is read-only parameter, i.e. setSetting ignores this parameter
|
||||
/// - Returned value is approximate average value, exact processing batch
|
||||
/// size may wary from time to time
|
||||
/// - This parameter value is not constant but may change depending on
|
||||
/// - This parameter value is not constant but change depending on
|
||||
/// tempo/pitch/rate/samplerate settings.
|
||||
#define SETTING_NOMINAL_INPUT_SEQUENCE 6
|
||||
#define SETTING_NOMINAL_INPUT_SEQUENCE 6
|
||||
|
||||
|
||||
/// Call "getSetting" with this ID to query nominal average processing output
|
||||
/// size in samples. This value tells approcimate value how many output samples
|
||||
/// Call "getSetting" with this ID to query nominal average processing output
|
||||
/// size in samples. This value tells approcimate value how many output samples
|
||||
/// SoundTouch outputs once it does DSP processing run for a batch of input samples.
|
||||
///
|
||||
/// Notices:
|
||||
///
|
||||
/// Notices:
|
||||
/// - This is read-only parameter, i.e. setSetting ignores this parameter
|
||||
/// - Returned value is approximate average value, exact processing batch
|
||||
/// size may wary from time to time
|
||||
/// - This parameter value is not constant but may change depending on
|
||||
/// - This parameter value is not constant but change depending on
|
||||
/// tempo/pitch/rate/samplerate settings.
|
||||
#define SETTING_NOMINAL_OUTPUT_SEQUENCE 7
|
||||
#define SETTING_NOMINAL_OUTPUT_SEQUENCE 7
|
||||
|
||||
|
||||
/// Call "getSetting" with this ID to query initial processing latency, i.e.
|
||||
/// approx. how many samples you'll need to enter to SoundTouch pipeline before
|
||||
/// you can expect to get first batch of ready output samples out.
|
||||
///
|
||||
/// After the first output batch, you can then expect to get approx.
|
||||
/// SETTING_NOMINAL_OUTPUT_SEQUENCE ready samples out for every
|
||||
/// SETTING_NOMINAL_INPUT_SEQUENCE samples that you enter into SoundTouch.
|
||||
///
|
||||
/// Example:
|
||||
/// processing with parameter -tempo=5
|
||||
/// => initial latency = 5509 samples
|
||||
/// input sequence = 4167 samples
|
||||
/// output sequence = 3969 samples
|
||||
///
|
||||
/// Accordingly, you can expect to feed in approx. 5509 samples at beginning of
|
||||
/// the stream, and then you'll get out the first 3969 samples. After that, for
|
||||
/// every approx. 4167 samples that you'll put in, you'll receive again approx.
|
||||
/// 3969 samples out.
|
||||
///
|
||||
/// This also means that average latency during stream processing is
|
||||
/// INITIAL_LATENCY-OUTPUT_SEQUENCE/2, in the above example case 5509-3969/2
|
||||
/// = 3524 samples
|
||||
///
|
||||
/// Notices:
|
||||
/// - This is read-only parameter, i.e. setSetting ignores this parameter
|
||||
/// - This parameter value is not constant but change depending on
|
||||
/// tempo/pitch/rate/samplerate settings.
|
||||
#define SETTING_INITIAL_LATENCY 8
|
||||
|
||||
|
||||
class SoundTouch : public FIFOProcessor
|
||||
{
|
||||
|
@ -169,7 +193,7 @@ private:
|
|||
/// Accumulator for how many samples in total have been read out from the processing so far
|
||||
long samplesOutput;
|
||||
|
||||
/// Calculates effective rate & tempo valuescfrom 'virtualRate', 'virtualTempo' and
|
||||
/// Calculates effective rate & tempo valuescfrom 'virtualRate', 'virtualTempo' and
|
||||
/// 'virtualPitch' parameters.
|
||||
void calcEffectiveRateAndTempo();
|
||||
|
||||
|
@ -185,7 +209,7 @@ protected :
|
|||
|
||||
public:
|
||||
SoundTouch();
|
||||
virtual ~SoundTouch();
|
||||
virtual ~SoundTouch() override;
|
||||
|
||||
/// Get SoundTouch library version string
|
||||
static const char *getVersionString();
|
||||
|
@ -213,7 +237,7 @@ public:
|
|||
/// represent lower pitches, larger values higher pitch.
|
||||
void setPitch(double newPitch);
|
||||
|
||||
/// Sets pitch change in octaves compared to the original pitch
|
||||
/// Sets pitch change in octaves compared to the original pitch
|
||||
/// (-1.00 .. +1.00)
|
||||
void setPitchOctaves(double newPitch);
|
||||
|
||||
|
@ -228,6 +252,24 @@ public:
|
|||
/// Sets sample rate.
|
||||
void setSampleRate(uint srate);
|
||||
|
||||
/// Get ratio between input and output audio durations, useful for calculating
|
||||
/// processed output duration: if you'll process a stream of N samples, then
|
||||
/// you can expect to get out N * getInputOutputSampleRatio() samples.
|
||||
///
|
||||
/// This ratio will give accurate target duration ratio for a full audio track,
|
||||
/// given that the the whole track is processed with same processing parameters.
|
||||
///
|
||||
/// If this ratio is applied to calculate intermediate offsets inside a processing
|
||||
/// stream, then this ratio is approximate and can deviate +- some tens of milliseconds
|
||||
/// from ideal offset, yet by end of the audio stream the duration ratio will become
|
||||
/// exact.
|
||||
///
|
||||
/// Example: if processing with parameters "-tempo=15 -pitch=-3", the function
|
||||
/// will return value 0.8695652... Now, if processing an audio stream whose duration
|
||||
/// is exactly one million audio samples, then you can expect the processed
|
||||
/// output duration be 0.869565 * 1000000 = 869565 samples.
|
||||
double getInputOutputSampleRatio();
|
||||
|
||||
/// Flushes the last samples from the processing pipeline to the output.
|
||||
/// Clears also the internal processing buffers.
|
||||
//
|
||||
|
@ -245,33 +287,33 @@ public:
|
|||
uint numSamples ///< Number of samples in buffer. Notice
|
||||
///< that in case of stereo-sound a single sample
|
||||
///< contains data for both channels.
|
||||
);
|
||||
) override;
|
||||
|
||||
/// Output samples from beginning of the sample buffer. Copies requested samples to
|
||||
/// output buffer and removes them from the sample buffer. If there are less than
|
||||
/// Output samples from beginning of the sample buffer. Copies requested samples to
|
||||
/// output buffer and removes them from the sample buffer. If there are less than
|
||||
/// 'numsample' samples in the buffer, returns all that available.
|
||||
///
|
||||
/// \return Number of samples returned.
|
||||
virtual uint receiveSamples(SAMPLETYPE *output, ///< Buffer where to copy output samples.
|
||||
uint maxSamples ///< How many samples to receive at max.
|
||||
);
|
||||
) override;
|
||||
|
||||
/// Adjusts book-keeping so that given number of samples are removed from beginning of the
|
||||
/// sample buffer without copying them anywhere.
|
||||
/// Adjusts book-keeping so that given number of samples are removed from beginning of the
|
||||
/// sample buffer without copying them anywhere.
|
||||
///
|
||||
/// Used to reduce the number of samples in the buffer when accessing the sample buffer directly
|
||||
/// with 'ptrBegin' function.
|
||||
virtual uint receiveSamples(uint maxSamples ///< Remove this many samples from the beginning of pipe.
|
||||
);
|
||||
) override;
|
||||
|
||||
/// Clears all the samples in the object's output and internal processing
|
||||
/// buffers.
|
||||
virtual void clear();
|
||||
virtual void clear() override;
|
||||
|
||||
/// Changes a setting controlling the processing system behaviour. See the
|
||||
/// 'SETTING_...' defines for available setting ID's.
|
||||
///
|
||||
/// \return 'true' if the setting was succesfully changed
|
||||
///
|
||||
/// \return 'true' if the setting was successfully changed
|
||||
bool setSetting(int settingId, ///< Setting ID number. see SETTING_... defines.
|
||||
int value ///< New setting value.
|
||||
);
|
||||
|
@ -286,12 +328,17 @@ public:
|
|||
/// Returns number of samples currently unprocessed.
|
||||
virtual uint numUnprocessedSamples() const;
|
||||
|
||||
/// Return number of channels
|
||||
uint numChannels() const
|
||||
{
|
||||
return channels;
|
||||
}
|
||||
|
||||
/// Other handy functions that are implemented in the ancestor classes (see
|
||||
/// classes 'FIFOProcessor' and 'FIFOSamplePipe')
|
||||
///
|
||||
/// - receiveSamples() : Use this function to receive 'ready' processed samples from SoundTouch.
|
||||
/// - numSamples() : Get number of 'ready' samples that can be received with
|
||||
/// - numSamples() : Get number of 'ready' samples that can be received with
|
||||
/// function 'receiveSamples()'
|
||||
/// - isEmpty() : Returns nonzero if there aren't any 'ready' samples.
|
||||
/// - clear() : Clears all samples from ready/processing buffers.
|
||||
|
|
|
@ -53,4 +53,4 @@
|
|||
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
|
||||
<ImportGroup Label="ExtensionTargets">
|
||||
</ImportGroup>
|
||||
</Project>
|
||||
</Project>
|
||||
|
|
|
@ -1,11 +1,17 @@
|
|||
////////////////////////////////////////////////////////////////////////////////
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
///
|
||||
/// Sampled sound tempo changer/time stretch algorithm. Changes the sound tempo
|
||||
/// while maintaining the original pitch by using a time domain WSOLA-like
|
||||
/// method with several performance-increasing tweaks.
|
||||
///
|
||||
/// Note : MMX optimized functions reside in a separate, platform-specific
|
||||
/// file, e.g. 'mmx_win.cpp' or 'mmx_gcc.cpp'
|
||||
/// Notes : MMX optimized functions reside in a separate, platform-specific
|
||||
/// file, e.g. 'mmx_win.cpp' or 'mmx_gcc.cpp'.
|
||||
///
|
||||
/// This source file contains OpenMP optimizations that allow speeding up the
|
||||
/// corss-correlation algorithm by executing it in several threads / CPU cores
|
||||
/// in parallel. See the following article link for more detailed discussion
|
||||
/// about SoundTouch OpenMP optimizations:
|
||||
/// http://www.softwarecoven.com/parallel-computing-in-embedded-mobile-devices
|
||||
///
|
||||
/// Author : Copyright (c) Olli Parviainen
|
||||
/// Author e-mail : oparviai 'at' iki.fi
|
||||
|
@ -13,13 +19,6 @@
|
|||
///
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Last changed : $Date: 2015-08-09 00:00:15 +0300 (Sun, 09 Aug 2015) $
|
||||
// File revision : $Revision: 1.12 $
|
||||
//
|
||||
// $Id: TDStretch.cpp 226 2015-08-08 21:00:15Z oparviai $
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// License :
|
||||
//
|
||||
// SoundTouch audio processing library
|
||||
|
@ -55,26 +54,6 @@ using namespace soundtouch;
|
|||
|
||||
#define max(x, y) (((x) > (y)) ? (x) : (y))
|
||||
|
||||
|
||||
/*****************************************************************************
|
||||
*
|
||||
* Constant definitions
|
||||
*
|
||||
*****************************************************************************/
|
||||
|
||||
// Table for the hierarchical mixing position seeking algorithm
|
||||
const short _scanOffsets[5][24]={
|
||||
{ 124, 186, 248, 310, 372, 434, 496, 558, 620, 682, 744, 806,
|
||||
868, 930, 992, 1054, 1116, 1178, 1240, 1302, 1364, 1426, 1488, 0},
|
||||
{-100, -75, -50, -25, 25, 50, 75, 100, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
||||
{ -20, -15, -10, -5, 5, 10, 15, 20, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
||||
{ -4, -3, -2, -1, 1, 2, 3, 4, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
||||
{ 121, 114, 97, 114, 98, 105, 108, 32, 104, 99, 117, 111,
|
||||
116, 100, 110, 117, 111, 115, 0, 0, 0, 0, 0, 0}};
|
||||
|
||||
/*****************************************************************************
|
||||
*
|
||||
* Implementation of the class 'TDStretch'
|
||||
|
@ -87,18 +66,13 @@ TDStretch::TDStretch() : FIFOProcessor(&outputBuffer)
|
|||
bQuickSeek = false;
|
||||
channels = 2;
|
||||
|
||||
pMidBuffer = NULL;
|
||||
pMidBufferUnaligned = NULL;
|
||||
pMidBuffer = nullptr;
|
||||
pMidBufferUnaligned = nullptr;
|
||||
overlapLength = 0;
|
||||
|
||||
bAutoSeqSetting = true;
|
||||
bAutoSeekSetting = true;
|
||||
|
||||
maxnorm = 0;
|
||||
maxnormf = 1e8;
|
||||
|
||||
skipFract = 0;
|
||||
|
||||
tempo = 1.0f;
|
||||
setParameters(44100, DEFAULT_SEQUENCE_MS, DEFAULT_SEEKWINDOW_MS, DEFAULT_OVERLAP_MS);
|
||||
setTempo(1.0f);
|
||||
|
@ -128,8 +102,13 @@ void TDStretch::setParameters(int aSampleRate, int aSequenceMS,
|
|||
int aSeekWindowMS, int aOverlapMS)
|
||||
{
|
||||
// accept only positive parameter values - if zero or negative, use old values instead
|
||||
if (aSampleRate > 0) this->sampleRate = aSampleRate;
|
||||
if (aOverlapMS > 0) this->overlapMs = aOverlapMS;
|
||||
if (aSampleRate > 0)
|
||||
{
|
||||
if (aSampleRate > 192000) ST_THROW_RT_ERROR("Error: Excessive samplerate");
|
||||
this->sampleRate = aSampleRate;
|
||||
}
|
||||
|
||||
if (aOverlapMS > 0) this->overlapMs = aOverlapMS;
|
||||
|
||||
if (aSequenceMS > 0)
|
||||
{
|
||||
|
@ -164,7 +143,7 @@ void TDStretch::setParameters(int aSampleRate, int aSequenceMS,
|
|||
|
||||
|
||||
/// Get routine control parameters, see setParameters() function.
|
||||
/// Any of the parameters to this function can be NULL, in such case corresponding parameter
|
||||
/// Any of the parameters to this function can be nullptr, in such case corresponding parameter
|
||||
/// value isn't returned.
|
||||
void TDStretch::getParameters(int *pSampleRate, int *pSequenceMs, int *pSeekWindowMs, int *pOverlapMs) const
|
||||
{
|
||||
|
@ -199,7 +178,7 @@ void TDStretch::overlapMono(SAMPLETYPE *pOutput, const SAMPLETYPE *pInput) const
|
|||
m1 = (SAMPLETYPE)0;
|
||||
m2 = (SAMPLETYPE)overlapLength;
|
||||
|
||||
for (i = 0; i < overlapLength ; i ++)
|
||||
for (i = 0; i < overlapLength ; i ++)
|
||||
{
|
||||
pOutput[i] = (pInput[i] * m1 + pMidBuffer[i] * m2 ) / overlapLength;
|
||||
m1 += 1;
|
||||
|
@ -219,6 +198,10 @@ void TDStretch::clearInput()
|
|||
{
|
||||
inputBuffer.clear();
|
||||
clearMidBuffer();
|
||||
isBeginning = true;
|
||||
maxnorm = 0;
|
||||
maxnormf = 1e8;
|
||||
skipFract = 0;
|
||||
}
|
||||
|
||||
|
||||
|
@ -297,21 +280,23 @@ int TDStretch::seekBestOverlapPositionFull(const SAMPLETYPE *refPos)
|
|||
int i;
|
||||
double norm;
|
||||
|
||||
bestCorr = FLT_MIN;
|
||||
bestCorr = -FLT_MAX;
|
||||
bestOffs = 0;
|
||||
|
||||
// Scans for the best correlation value by testing each possible position
|
||||
// over the permitted range.
|
||||
bestCorr = calcCrossCorr(refPos, pMidBuffer, norm);
|
||||
bestCorr = (bestCorr + 0.1) * 0.75;
|
||||
|
||||
#pragma omp parallel for
|
||||
for (i = 1; i < seekLength; i ++)
|
||||
for (i = 1; i < seekLength; i ++)
|
||||
{
|
||||
double corr;
|
||||
// Calculates correlation value for the mixing position corresponding to 'i'
|
||||
#ifdef _OPENMP
|
||||
#if defined(_OPENMP) || defined(ST_SIMD_AVOID_UNALIGNED)
|
||||
// in parallel OpenMP mode, can't use norm accumulator version as parallel executor won't
|
||||
// iterate the loop in sequential order
|
||||
// in SIMD mode, avoid accumulator version to allow avoiding unaligned positions
|
||||
corr = calcCrossCorr(refPos + channels * i, pMidBuffer, norm);
|
||||
#else
|
||||
// In non-parallel version call "calcCrossCorrAccumulate" that is otherwise same
|
||||
|
@ -354,7 +339,7 @@ int TDStretch::seekBestOverlapPositionFull(const SAMPLETYPE *refPos)
|
|||
// with improved precision
|
||||
//
|
||||
// Based on testing:
|
||||
// - This algorithm gives on average 99% as good match as the full algorith
|
||||
// - This algorithm gives on average 99% as good match as the full algorithm
|
||||
// - this quick seek algorithm finds the best match on ~90% of cases
|
||||
// - on those 10% of cases when this algorithm doesn't find best match,
|
||||
// it still finds on average ~90% match vs. the best possible match
|
||||
|
@ -373,12 +358,10 @@ int TDStretch::seekBestOverlapPositionQuick(const SAMPLETYPE *refPos)
|
|||
|
||||
// note: 'float' types used in this function in case that the platform would need to use software-fp
|
||||
|
||||
bestCorr = FLT_MIN;
|
||||
bestOffs = SCANWIND;
|
||||
bestCorr2 = FLT_MIN;
|
||||
bestOffs2 = 0;
|
||||
|
||||
int best = 0;
|
||||
bestCorr =
|
||||
bestCorr2 = -FLT_MAX;
|
||||
bestOffs =
|
||||
bestOffs2 = SCANWIND;
|
||||
|
||||
// Scans for the best correlation value by testing each possible position
|
||||
// over the permitted range. Look for two best matches on the first pass to
|
||||
|
@ -436,7 +419,6 @@ int TDStretch::seekBestOverlapPositionQuick(const SAMPLETYPE *refPos)
|
|||
{
|
||||
bestCorr = corr;
|
||||
bestOffs = i;
|
||||
best = 1;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -458,7 +440,6 @@ int TDStretch::seekBestOverlapPositionQuick(const SAMPLETYPE *refPos)
|
|||
{
|
||||
bestCorr = corr;
|
||||
bestOffs = i;
|
||||
best = 2;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -515,18 +496,18 @@ void TDStretch::clearCrossCorrState()
|
|||
void TDStretch::calcSeqParameters()
|
||||
{
|
||||
// Adjust tempo param according to tempo, so that variating processing sequence length is used
|
||||
// at varius tempo settings, between the given low...top limits
|
||||
// at various tempo settings, between the given low...top limits
|
||||
#define AUTOSEQ_TEMPO_LOW 0.5 // auto setting low tempo range (-50%)
|
||||
#define AUTOSEQ_TEMPO_TOP 2.0 // auto setting top tempo range (+100%)
|
||||
|
||||
// sequence-ms setting values at above low & top tempo
|
||||
#define AUTOSEQ_AT_MIN 125.0
|
||||
#define AUTOSEQ_AT_MAX 50.0
|
||||
#define AUTOSEQ_AT_MIN 90.0
|
||||
#define AUTOSEQ_AT_MAX 40.0
|
||||
#define AUTOSEQ_K ((AUTOSEQ_AT_MAX - AUTOSEQ_AT_MIN) / (AUTOSEQ_TEMPO_TOP - AUTOSEQ_TEMPO_LOW))
|
||||
#define AUTOSEQ_C (AUTOSEQ_AT_MIN - (AUTOSEQ_K) * (AUTOSEQ_TEMPO_LOW))
|
||||
|
||||
// seek-window-ms setting values at above low & top tempoq
|
||||
#define AUTOSEEK_AT_MIN 25.0
|
||||
#define AUTOSEEK_AT_MIN 20.0
|
||||
#define AUTOSEEK_AT_MAX 15.0
|
||||
#define AUTOSEEK_K ((AUTOSEEK_AT_MAX - AUTOSEEK_AT_MIN) / (AUTOSEQ_TEMPO_TOP - AUTOSEQ_TEMPO_LOW))
|
||||
#define AUTOSEEK_C (AUTOSEEK_AT_MIN - (AUTOSEEK_K) * (AUTOSEQ_TEMPO_LOW))
|
||||
|
@ -586,9 +567,8 @@ void TDStretch::setTempo(double newTempo)
|
|||
// Sets the number of channels, 1 = mono, 2 = stereo
|
||||
void TDStretch::setChannels(int numChannels)
|
||||
{
|
||||
assert(numChannels > 0);
|
||||
if (channels == numChannels) return;
|
||||
// assert(numChannels == 1 || numChannels == 2);
|
||||
if (!verifyNumberOfChannels(numChannels) ||
|
||||
(channels == numChannels)) return;
|
||||
|
||||
channels = numChannels;
|
||||
inputBuffer.setChannels(channels);
|
||||
|
@ -637,7 +617,8 @@ void TDStretch::processNominalTempo()
|
|||
// the result into 'outputBuffer'
|
||||
void TDStretch::processSamples()
|
||||
{
|
||||
int ovlSkip, offset;
|
||||
int ovlSkip;
|
||||
int offset = 0;
|
||||
int temp;
|
||||
|
||||
/* Removed this small optimization - can introduce a click to sound when tempo setting
|
||||
|
@ -654,35 +635,62 @@ void TDStretch::processSamples()
|
|||
// to form a processing frame.
|
||||
while ((int)inputBuffer.numSamples() >= sampleReq)
|
||||
{
|
||||
// If tempo differs from the normal ('SCALE'), scan for the best overlapping
|
||||
// position
|
||||
offset = seekBestOverlapPosition(inputBuffer.ptrBegin());
|
||||
if (isBeginning == false)
|
||||
{
|
||||
// apart from the very beginning of the track,
|
||||
// scan for the best overlapping position & do overlap-add
|
||||
offset = seekBestOverlapPosition(inputBuffer.ptrBegin());
|
||||
|
||||
// Mix the samples in the 'inputBuffer' at position of 'offset' with the
|
||||
// samples in 'midBuffer' using sliding overlapping
|
||||
// ... first partially overlap with the end of the previous sequence
|
||||
// (that's in 'midBuffer')
|
||||
overlap(outputBuffer.ptrEnd((uint)overlapLength), inputBuffer.ptrBegin(), (uint)offset);
|
||||
outputBuffer.putSamples((uint)overlapLength);
|
||||
// Mix the samples in the 'inputBuffer' at position of 'offset' with the
|
||||
// samples in 'midBuffer' using sliding overlapping
|
||||
// ... first partially overlap with the end of the previous sequence
|
||||
// (that's in 'midBuffer')
|
||||
overlap(outputBuffer.ptrEnd((uint)overlapLength), inputBuffer.ptrBegin(), (uint)offset);
|
||||
outputBuffer.putSamples((uint)overlapLength);
|
||||
offset += overlapLength;
|
||||
}
|
||||
else
|
||||
{
|
||||
// Adjust processing offset at beginning of track by not perform initial overlapping
|
||||
// and compensating that in the 'input buffer skip' calculation
|
||||
isBeginning = false;
|
||||
int skip = (int)(tempo * overlapLength + 0.5 * seekLength + 0.5);
|
||||
|
||||
#ifdef ST_SIMD_AVOID_UNALIGNED
|
||||
// in SIMD mode, round the skip amount to value corresponding to aligned memory address
|
||||
if (channels == 1)
|
||||
{
|
||||
skip &= -4;
|
||||
}
|
||||
else if (channels == 2)
|
||||
{
|
||||
skip &= -2;
|
||||
}
|
||||
#endif
|
||||
skipFract -= skip;
|
||||
if (skipFract <= -nominalSkip)
|
||||
{
|
||||
skipFract = -nominalSkip;
|
||||
}
|
||||
}
|
||||
|
||||
// ... then copy sequence samples from 'inputBuffer' to output:
|
||||
|
||||
// length of sequence
|
||||
temp = (seekWindowLength - 2 * overlapLength);
|
||||
|
||||
// crosscheck that we don't have buffer overflow...
|
||||
if ((int)inputBuffer.numSamples() < (offset + temp + overlapLength * 2))
|
||||
if ((int)inputBuffer.numSamples() < (offset + seekWindowLength - overlapLength))
|
||||
{
|
||||
continue; // just in case, shouldn't really happen
|
||||
}
|
||||
|
||||
outputBuffer.putSamples(inputBuffer.ptrBegin() + channels * (offset + overlapLength), (uint)temp);
|
||||
// length of sequence
|
||||
temp = (seekWindowLength - 2 * overlapLength);
|
||||
outputBuffer.putSamples(inputBuffer.ptrBegin() + channels * offset, (uint)temp);
|
||||
|
||||
// Copies the end of the current sequence from 'inputBuffer' to
|
||||
// 'midBuffer' for being mixed with the beginning of the next
|
||||
// processing sequence and so on
|
||||
assert((offset + temp + overlapLength * 2) <= (int)inputBuffer.numSamples());
|
||||
memcpy(pMidBuffer, inputBuffer.ptrBegin() + channels * (offset + temp + overlapLength),
|
||||
assert((offset + temp + overlapLength) <= (int)inputBuffer.numSamples());
|
||||
memcpy(pMidBuffer, inputBuffer.ptrBegin() + channels * (offset + temp),
|
||||
channels * sizeof(SAMPLETYPE) * overlapLength);
|
||||
|
||||
// Remove the processed samples from the input buffer. Update
|
||||
|
@ -732,7 +740,7 @@ void TDStretch::acceptNewOverlapLength(int newOverlapLength)
|
|||
|
||||
// Operator 'new' is overloaded so that it automatically creates a suitable instance
|
||||
// depending on if we've a MMX/SSE/etc-capable CPU available or not.
|
||||
void * TDStretch::operator new(size_t s)
|
||||
void * TDStretch::operator new(size_t)
|
||||
{
|
||||
// Notice! don't use "new TDStretch" directly, use "newInstance" to create a new instance instead!
|
||||
ST_THROW_RT_ERROR("Error in TDStretch::new: Don't use 'new TDStretch' directly, use 'newInstance' member instead!");
|
||||
|
@ -776,7 +784,7 @@ TDStretch * TDStretch::newInstance()
|
|||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Integer arithmetics specific algorithm implementations.
|
||||
// Integer arithmetic specific algorithm implementations.
|
||||
//
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
@ -790,7 +798,7 @@ void TDStretch::overlapStereo(short *poutput, const short *input) const
|
|||
short temp;
|
||||
int cnt2;
|
||||
|
||||
for (i = 0; i < overlapLength ; i ++)
|
||||
for (i = 0; i < overlapLength ; i ++)
|
||||
{
|
||||
temp = (short)(overlapLength - i);
|
||||
cnt2 = 2 * i;
|
||||
|
@ -802,21 +810,19 @@ void TDStretch::overlapStereo(short *poutput, const short *input) const
|
|||
|
||||
// Overlaps samples in 'midBuffer' with the samples in 'input'. The 'Multi'
|
||||
// version of the routine.
|
||||
void TDStretch::overlapMulti(SAMPLETYPE *poutput, const SAMPLETYPE *input) const
|
||||
void TDStretch::overlapMulti(short *poutput, const short *input) const
|
||||
{
|
||||
SAMPLETYPE m1=(SAMPLETYPE)0;
|
||||
SAMPLETYPE m2;
|
||||
int i=0;
|
||||
short m1;
|
||||
int i = 0;
|
||||
|
||||
for (m2 = (SAMPLETYPE)overlapLength; m2; m2 --)
|
||||
for (m1 = 0; m1 < overlapLength; m1 ++)
|
||||
{
|
||||
short m2 = (short)(overlapLength - m1);
|
||||
for (int c = 0; c < channels; c ++)
|
||||
{
|
||||
poutput[i] = (input[i] * m1 + pMidBuffer[i] * m2) / overlapLength;
|
||||
i++;
|
||||
}
|
||||
|
||||
m1++;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -861,25 +867,33 @@ double TDStretch::calcCrossCorr(const short *mixingPos, const short *compare, do
|
|||
unsigned long lnorm;
|
||||
int i;
|
||||
|
||||
#ifdef ST_SIMD_AVOID_UNALIGNED
|
||||
// in SIMD mode skip 'mixingPos' positions that aren't aligned to 16-byte boundary
|
||||
if (((ulongptr)mixingPos) & 15) return -1e50;
|
||||
#endif
|
||||
|
||||
// hint compiler autovectorization that loop length is divisible by 8
|
||||
int ilength = (channels * overlapLength) & -8;
|
||||
|
||||
corr = lnorm = 0;
|
||||
// Same routine for stereo and mono. For stereo, unroll loop for better
|
||||
// efficiency and gives slightly better resolution against rounding.
|
||||
// For mono it same routine, just unrolls loop by factor of 4
|
||||
for (i = 0; i < channels * overlapLength; i += 4)
|
||||
// Same routine for stereo and mono
|
||||
for (i = 0; i < ilength; i += 2)
|
||||
{
|
||||
corr += (mixingPos[i] * compare[i] +
|
||||
mixingPos[i + 1] * compare[i + 1]) >> overlapDividerBitsNorm; // notice: do intermediate division here to avoid integer overflow
|
||||
corr += (mixingPos[i + 2] * compare[i + 2] +
|
||||
mixingPos[i + 3] * compare[i + 3]) >> overlapDividerBitsNorm;
|
||||
mixingPos[i + 1] * compare[i + 1]) >> overlapDividerBitsNorm;
|
||||
lnorm += (mixingPos[i] * mixingPos[i] +
|
||||
mixingPos[i + 1] * mixingPos[i + 1]) >> overlapDividerBitsNorm; // notice: do intermediate division here to avoid integer overflow
|
||||
lnorm += (mixingPos[i + 2] * mixingPos[i + 2] +
|
||||
mixingPos[i + 3] * mixingPos[i + 3]) >> overlapDividerBitsNorm;
|
||||
mixingPos[i + 1] * mixingPos[i + 1]) >> overlapDividerBitsNorm;
|
||||
// do intermediate scalings to avoid integer overflow
|
||||
}
|
||||
|
||||
if (lnorm > maxnorm)
|
||||
{
|
||||
maxnorm = lnorm;
|
||||
// modify 'maxnorm' inside critical section to avoid multi-access conflict if in OpenMP mode
|
||||
#pragma omp critical
|
||||
if (lnorm > maxnorm)
|
||||
{
|
||||
maxnorm = lnorm;
|
||||
}
|
||||
}
|
||||
// Normalize result by dividing by sqrt(norm) - this step is easiest
|
||||
// done using floating point operation
|
||||
|
@ -892,9 +906,12 @@ double TDStretch::calcCrossCorr(const short *mixingPos, const short *compare, do
|
|||
double TDStretch::calcCrossCorrAccumulate(const short *mixingPos, const short *compare, double &norm)
|
||||
{
|
||||
long corr;
|
||||
unsigned long lnorm;
|
||||
long lnorm;
|
||||
int i;
|
||||
|
||||
// hint compiler autovectorization that loop length is divisible by 8
|
||||
int ilength = (channels * overlapLength) & -8;
|
||||
|
||||
// cancel first normalizer tap from previous round
|
||||
lnorm = 0;
|
||||
for (i = 1; i <= channels; i ++)
|
||||
|
@ -903,15 +920,11 @@ double TDStretch::calcCrossCorrAccumulate(const short *mixingPos, const short *c
|
|||
}
|
||||
|
||||
corr = 0;
|
||||
// Same routine for stereo and mono. For stereo, unroll loop for better
|
||||
// efficiency and gives slightly better resolution against rounding.
|
||||
// For mono it same routine, just unrolls loop by factor of 4
|
||||
for (i = 0; i < channels * overlapLength; i += 4)
|
||||
// Same routine for stereo and mono.
|
||||
for (i = 0; i < ilength; i += 2)
|
||||
{
|
||||
corr += (mixingPos[i] * compare[i] +
|
||||
mixingPos[i + 1] * compare[i + 1]) >> overlapDividerBitsNorm; // notice: do intermediate division here to avoid integer overflow
|
||||
corr += (mixingPos[i + 2] * compare[i + 2] +
|
||||
mixingPos[i + 3] * compare[i + 3]) >> overlapDividerBitsNorm;
|
||||
mixingPos[i + 1] * compare[i + 1]) >> overlapDividerBitsNorm;
|
||||
}
|
||||
|
||||
// update normalizer with last samples of this round
|
||||
|
@ -936,7 +949,7 @@ double TDStretch::calcCrossCorrAccumulate(const short *mixingPos, const short *c
|
|||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Floating point arithmetics specific algorithm implementations.
|
||||
// Floating point arithmetic specific algorithm implementations.
|
||||
//
|
||||
|
||||
#ifdef SOUNDTOUCH_FLOAT_SAMPLES
|
||||
|
@ -1012,27 +1025,24 @@ void TDStretch::calculateOverlapLength(int overlapInMsec)
|
|||
/// Calculate cross-correlation
|
||||
double TDStretch::calcCrossCorr(const float *mixingPos, const float *compare, double &anorm)
|
||||
{
|
||||
double corr;
|
||||
double norm;
|
||||
float corr;
|
||||
float norm;
|
||||
int i;
|
||||
|
||||
#ifdef ST_SIMD_AVOID_UNALIGNED
|
||||
// in SIMD mode skip 'mixingPos' positions that aren't aligned to 16-byte boundary
|
||||
if (((ulongptr)mixingPos) & 15) return -1e50;
|
||||
#endif
|
||||
|
||||
// hint compiler autovectorization that loop length is divisible by 8
|
||||
int ilength = (channels * overlapLength) & -8;
|
||||
|
||||
corr = norm = 0;
|
||||
// Same routine for stereo and mono. For Stereo, unroll by factor of 2.
|
||||
// For mono it's same routine yet unrollsd by factor of 4.
|
||||
for (i = 0; i < channels * overlapLength; i += 4)
|
||||
// Same routine for stereo and mono
|
||||
for (i = 0; i < ilength; i ++)
|
||||
{
|
||||
corr += mixingPos[i] * compare[i] +
|
||||
mixingPos[i + 1] * compare[i + 1];
|
||||
|
||||
norm += mixingPos[i] * mixingPos[i] +
|
||||
mixingPos[i + 1] * mixingPos[i + 1];
|
||||
|
||||
// unroll the loop for better CPU efficiency:
|
||||
corr += mixingPos[i + 2] * compare[i + 2] +
|
||||
mixingPos[i + 3] * compare[i + 3];
|
||||
|
||||
norm += mixingPos[i + 2] * mixingPos[i + 2] +
|
||||
mixingPos[i + 3] * mixingPos[i + 3];
|
||||
corr += mixingPos[i] * compare[i];
|
||||
norm += mixingPos[i] * mixingPos[i];
|
||||
}
|
||||
|
||||
anorm = norm;
|
||||
|
@ -1043,7 +1053,7 @@ double TDStretch::calcCrossCorr(const float *mixingPos, const float *compare, do
|
|||
/// Update cross-correlation by accumulating "norm" coefficient by previously calculated value
|
||||
double TDStretch::calcCrossCorrAccumulate(const float *mixingPos, const float *compare, double &norm)
|
||||
{
|
||||
double corr;
|
||||
float corr;
|
||||
int i;
|
||||
|
||||
corr = 0;
|
||||
|
@ -1054,14 +1064,13 @@ double TDStretch::calcCrossCorrAccumulate(const float *mixingPos, const float *c
|
|||
norm -= mixingPos[-i] * mixingPos[-i];
|
||||
}
|
||||
|
||||
// Same routine for stereo and mono. For Stereo, unroll by factor of 2.
|
||||
// For mono it's same routine yet unrollsd by factor of 4.
|
||||
for (i = 0; i < channels * overlapLength; i += 4)
|
||||
// hint compiler autovectorization that loop length is divisible by 8
|
||||
int ilength = (channels * overlapLength) & -8;
|
||||
|
||||
// Same routine for stereo and mono
|
||||
for (i = 0; i < ilength; i ++)
|
||||
{
|
||||
corr += mixingPos[i] * compare[i] +
|
||||
mixingPos[i + 1] * compare[i + 1] +
|
||||
mixingPos[i + 2] * compare[i + 2] +
|
||||
mixingPos[i + 3] * compare[i + 3];
|
||||
corr += mixingPos[i] * compare[i];
|
||||
}
|
||||
|
||||
// update normalizer with last samples of this round
|
||||
|
|
|
@ -13,13 +13,6 @@
|
|||
///
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Last changed : $Date: 2015-08-09 00:00:15 +0300 (Sun, 09 Aug 2015) $
|
||||
// File revision : $Revision: 4 $
|
||||
//
|
||||
// $Id: TDStretch.h 226 2015-08-08 21:00:15Z oparviai $
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// License :
|
||||
//
|
||||
// SoundTouch audio processing library
|
||||
|
@ -134,6 +127,7 @@ protected:
|
|||
bool bQuickSeek;
|
||||
bool bAutoSeqSetting;
|
||||
bool bAutoSeekSetting;
|
||||
bool isBeginning;
|
||||
|
||||
SAMPLETYPE *pMidBuffer;
|
||||
SAMPLETYPE *pMidBufferUnaligned;
|
||||
|
@ -163,7 +157,6 @@ protected:
|
|||
void calcSeqParameters();
|
||||
void adaptNormalizer();
|
||||
|
||||
|
||||
/// Changes the tempo of the given sound samples.
|
||||
/// Returns amount of samples returned in the "output" buffer.
|
||||
/// The maximum amount of samples that can be returned at a time is set by
|
||||
|
@ -172,7 +165,7 @@ protected:
|
|||
|
||||
public:
|
||||
TDStretch();
|
||||
virtual ~TDStretch();
|
||||
virtual ~TDStretch() override;
|
||||
|
||||
/// Operator 'new' is overloaded so that it automatically creates a suitable instance
|
||||
/// depending on if we've a MMX/SSE/etc-capable CPU available or not.
|
||||
|
@ -194,7 +187,7 @@ public:
|
|||
void setTempo(double newTempo);
|
||||
|
||||
/// Returns nonzero if there aren't any samples available for outputting.
|
||||
virtual void clear();
|
||||
virtual void clear() override;
|
||||
|
||||
/// Clears the input buffer
|
||||
void clearInput();
|
||||
|
@ -224,7 +217,7 @@ public:
|
|||
);
|
||||
|
||||
/// Get routine control parameters, see setParameters() function.
|
||||
/// Any of the parameters to this function can be NULL, in such case corresponding parameter
|
||||
/// Any of the parameters to this function can be nullptr, in such case corresponding parameter
|
||||
/// value isn't returned.
|
||||
void getParameters(int *pSampleRate, int *pSequenceMs, int *pSeekWindowMs, int *pOverlapMs) const;
|
||||
|
||||
|
@ -234,7 +227,7 @@ public:
|
|||
const SAMPLETYPE *samples, ///< Input sample data
|
||||
uint numSamples ///< Number of samples in 'samples' so that one sample
|
||||
///< contains both channels if stereo
|
||||
);
|
||||
) override;
|
||||
|
||||
/// return nominal input sample requirement for triggering a processing batch
|
||||
int getInputSampleReq() const
|
||||
|
@ -247,8 +240,13 @@ public:
|
|||
{
|
||||
return seekWindowLength - overlapLength;
|
||||
}
|
||||
};
|
||||
|
||||
/// return approximate initial input-output latency
|
||||
int getLatency() const
|
||||
{
|
||||
return sampleReq;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// Implementation-specific class declarations:
|
||||
|
@ -258,10 +256,10 @@ public:
|
|||
class TDStretchMMX : public TDStretch
|
||||
{
|
||||
protected:
|
||||
double calcCrossCorr(const short *mixingPos, const short *compare, double &norm);
|
||||
double calcCrossCorrAccumulate(const short *mixingPos, const short *compare, double &norm);
|
||||
virtual void overlapStereo(short *output, const short *input) const;
|
||||
virtual void clearCrossCorrState();
|
||||
double calcCrossCorr(const short *mixingPos, const short *compare, double &norm) override;
|
||||
double calcCrossCorrAccumulate(const short *mixingPos, const short *compare, double &norm) override;
|
||||
virtual void overlapStereo(short *output, const short *input) const override;
|
||||
virtual void clearCrossCorrState() override;
|
||||
};
|
||||
#endif /// SOUNDTOUCH_ALLOW_MMX
|
||||
|
||||
|
@ -271,8 +269,8 @@ public:
|
|||
class TDStretchSSE : public TDStretch
|
||||
{
|
||||
protected:
|
||||
double calcCrossCorr(const float *mixingPos, const float *compare, double &norm);
|
||||
double calcCrossCorrAccumulate(const float *mixingPos, const float *compare, double &norm);
|
||||
double calcCrossCorr(const float *mixingPos, const float *compare, double &norm) override;
|
||||
double calcCrossCorrAccumulate(const float *mixingPos, const float *compare, double &norm) override;
|
||||
};
|
||||
|
||||
#endif /// SOUNDTOUCH_ALLOW_SSE
|
||||
|
|
|
@ -12,13 +12,6 @@
|
|||
///
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Last changed : $Date: 2008-02-10 18:26:55 +0200 (Sun, 10 Feb 2008) $
|
||||
// File revision : $Revision: 4 $
|
||||
//
|
||||
// $Id: cpu_detect.h 11 2008-02-10 16:26:55Z oparviai $
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// License :
|
||||
//
|
||||
// SoundTouch audio processing library
|
||||
|
@ -51,8 +44,6 @@
|
|||
#define SUPPORT_SSE 0x0008
|
||||
#define SUPPORT_SSE2 0x0010
|
||||
|
||||
using namespace soundtouch;
|
||||
|
||||
/// Checks which instruction set extensions are supported by the CPU.
|
||||
///
|
||||
/// \return A bitmask of supported extensions, see SUPPORT_... defines.
|
||||
|
|
|
@ -11,13 +11,6 @@
|
|||
///
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Last changed : $Date: 2014-01-07 20:24:28 +0200 (Tue, 07 Jan 2014) $
|
||||
// File revision : $Revision: 4 $
|
||||
//
|
||||
// $Id: cpu_detect_x86.cpp 183 2014-01-07 18:24:28Z oparviai $
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// License :
|
||||
//
|
||||
// SoundTouch audio processing library
|
||||
|
@ -75,7 +68,6 @@ void disableExtensions(uint dwDisableMask)
|
|||
}
|
||||
|
||||
|
||||
|
||||
/// Checks which instruction set extensions are supported by the CPU.
|
||||
uint detectCPUextensions(void)
|
||||
{
|
||||
|
|
|
@ -20,13 +20,6 @@
|
|||
///
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Last changed : $Date: 2015-08-09 00:00:15 +0300 (Sun, 09 Aug 2015) $
|
||||
// File revision : $Revision: 4 $
|
||||
//
|
||||
// $Id: mmx_optimized.cpp 226 2015-08-08 21:00:15Z oparviai $
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// License :
|
||||
//
|
||||
// SoundTouch audio processing library
|
||||
|
@ -125,7 +118,12 @@ double TDStretchMMX::calcCrossCorr(const short *pV1, const short *pV2, double &d
|
|||
|
||||
if (norm > (long)maxnorm)
|
||||
{
|
||||
maxnorm = norm;
|
||||
// modify 'maxnorm' inside critical section to avoid multi-access conflict if in OpenMP mode
|
||||
#pragma omp critical
|
||||
if (norm > (long)maxnorm)
|
||||
{
|
||||
maxnorm = norm;
|
||||
}
|
||||
}
|
||||
|
||||
// Normalize result by dividing by sqrt(norm) - this step is easiest
|
||||
|
@ -219,7 +217,6 @@ void TDStretchMMX::clearCrossCorrState()
|
|||
}
|
||||
|
||||
|
||||
|
||||
// MMX-optimized version of the function overlapStereo
|
||||
void TDStretchMMX::overlapStereo(short *output, const short *input) const
|
||||
{
|
||||
|
@ -297,8 +294,8 @@ void TDStretchMMX::overlapStereo(short *output, const short *input) const
|
|||
|
||||
FIRFilterMMX::FIRFilterMMX() : FIRFilter()
|
||||
{
|
||||
filterCoeffsAlign = NULL;
|
||||
filterCoeffsUnalign = NULL;
|
||||
filterCoeffsAlign = nullptr;
|
||||
filterCoeffsUnalign = nullptr;
|
||||
}
|
||||
|
||||
|
||||
|
@ -335,7 +332,6 @@ void FIRFilterMMX::setCoefficients(const short *coeffs, uint newLength, uint uRe
|
|||
}
|
||||
|
||||
|
||||
|
||||
// mmx-optimized version of the filter routine for stereo sound
|
||||
uint FIRFilterMMX::evaluateFilterStereo(short *dest, const short *src, uint numSamples) const
|
||||
{
|
||||
|
@ -392,4 +388,9 @@ uint FIRFilterMMX::evaluateFilterStereo(short *dest, const short *src, uint numS
|
|||
return (numSamples & 0xfffffffe) - length;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
// workaround to not complain about empty module
|
||||
bool _dontcomplain_mmx_empty;
|
||||
|
||||
#endif // SOUNDTOUCH_ALLOW_MMX
|
||||
|
|
|
@ -23,13 +23,6 @@
|
|||
///
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Last changed : $Date: 2015-08-09 00:00:15 +0300 (Sun, 09 Aug 2015) $
|
||||
// File revision : $Revision: 4 $
|
||||
//
|
||||
// $Id: sse_optimized.cpp 226 2015-08-08 21:00:15Z oparviai $
|
||||
//
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// License :
|
||||
//
|
||||
// SoundTouch audio processing library
|
||||
|
@ -87,7 +80,7 @@ double TDStretchSSE::calcCrossCorr(const float *pV1, const float *pV2, double &a
|
|||
// Compile-time define SOUNDTOUCH_ALLOW_NONEXACT_SIMD_OPTIMIZATION is provided
|
||||
// for choosing if this little cheating is allowed.
|
||||
|
||||
#ifdef SOUNDTOUCH_ALLOW_NONEXACT_SIMD_OPTIMIZATION
|
||||
#ifdef ST_SIMD_AVOID_UNALIGNED
|
||||
// Little cheating allowed, return valid correlation only for
|
||||
// aligned locations, meaning every second round for stereo sound.
|
||||
|
||||
|
@ -202,16 +195,16 @@ double TDStretchSSE::calcCrossCorrAccumulate(const float *pV1, const float *pV2,
|
|||
|
||||
FIRFilterSSE::FIRFilterSSE() : FIRFilter()
|
||||
{
|
||||
filterCoeffsAlign = NULL;
|
||||
filterCoeffsUnalign = NULL;
|
||||
filterCoeffsAlign = nullptr;
|
||||
filterCoeffsUnalign = nullptr;
|
||||
}
|
||||
|
||||
|
||||
FIRFilterSSE::~FIRFilterSSE()
|
||||
{
|
||||
delete[] filterCoeffsUnalign;
|
||||
filterCoeffsAlign = NULL;
|
||||
filterCoeffsUnalign = NULL;
|
||||
filterCoeffsAlign = nullptr;
|
||||
filterCoeffsUnalign = nullptr;
|
||||
}
|
||||
|
||||
|
||||
|
@ -252,10 +245,10 @@ uint FIRFilterSSE::evaluateFilterStereo(float *dest, const float *source, uint n
|
|||
|
||||
if (count < 2) return 0;
|
||||
|
||||
assert(source != NULL);
|
||||
assert(dest != NULL);
|
||||
assert(source != nullptr);
|
||||
assert(dest != nullptr);
|
||||
assert((length % 8) == 0);
|
||||
assert(filterCoeffsAlign != NULL);
|
||||
assert(filterCoeffsAlign != nullptr);
|
||||
assert(((ulongptr)filterCoeffsAlign) % 16 == 0);
|
||||
|
||||
// filter is evaluated for two stereo samples with each iteration, thus use of 'j += 2'
|
||||
|
|
Loading…
Reference in New Issue