Merge pull request #6158 from Tomcc/master

Improved arbitrary mipmap detection (Mario Sunshine water fix)
This commit is contained in:
Anthony 2017-11-09 18:06:58 -08:00 committed by GitHub
commit 4dc425b9c9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 55 additions and 30 deletions

View File

@ -441,9 +441,14 @@ void TextureCacheBase::DumpTexture(TCacheEntry* entry, std::string basename, uns
if (!File::IsDirectory(szDir))
File::CreateDir(szDir);
if (is_arbitrary)
{
basename += "_arb";
}
if (level > 0)
{
basename += StringFromFormat(is_arbitrary ? "_arb_mip%i" : "_mip%i", level);
basename += StringFromFormat("_mip%i", level);
}
std::string filename = szDir + "/" + basename + ".png";
@ -500,25 +505,35 @@ public:
// This is the average per-pixel, per-channel difference in percent between what we
// expect a normal blurred mipmap to look like and what we actually received
constexpr auto THRESHOLD_PERCENT = 35.f;
// 4.5% was chosen because it's just below the lowest clearly-arbitrary texture
// I found in my tests, the background clouds in Mario Galaxy's Observatory lobby.
constexpr auto THRESHOLD_PERCENT = 4.5f;
auto* src = downsample_buffer;
auto* dst = downsample_buffer + levels[1].shape.row_length * levels[1].shape.height * 4;
float total_diff = 0.f;
for (std::size_t i = 0; i < levels.size() - 1; ++i)
{
const auto& level = levels[i];
const auto& mip = levels[i + 1];
// Manually downsample the current layer with a simple box blur
// Manually downsample the past downsample with a simple box blur
// This is not necessarily close to whatever the original artists used, however
// It should still be closer than a thing that's not a downscale at all
level.Downsample(downsample_buffer, mip);
Level::Downsample(i ? src : level.pixels, level.shape, dst, mip.shape);
// Find the average difference between pixels in this level but downsampled
// and the next level
auto diff = mip.AverageDiff(downsample_buffer);
if (diff > THRESHOLD_PERCENT)
return true;
auto diff = mip.AverageDiff(dst);
total_diff += diff;
std::swap(src, dst);
}
return false;
auto all_levels = total_diff / (levels.size() - 1);
return all_levels > THRESHOLD_PERCENT;
}
private:
@ -535,21 +550,26 @@ private:
return static_cast<u8>(std::max(1.055f * std::pow(linear, 0.416666667f) - 0.055f, 0.f) * 256.f);
}
struct Level
struct Shape
{
u32 width;
u32 height;
u32 row_length;
const u8* buffer;
};
PixelRGBAf Sample(u32 x, u32 y) const
struct Level
{
Shape shape;
const u8* pixels;
static PixelRGBAf Sample(const u8* src, const Shape& src_shape, u32 x, u32 y)
{
const auto* p = buffer + (x + y * row_length) * 4;
const auto* p = src + (x + y * src_shape.row_length) * 4;
return {SRGBToLinear(p[0]), SRGBToLinear(p[1]), SRGBToLinear(p[2]), SRGBToLinear(p[3])};
}
// Puts a downsampled image in dst. dst must be at least width*height*4
void Downsample(u8* dst, const Level& dst_shape) const
static void Downsample(const u8* src, const Shape& src_shape, u8* dst, const Shape& dst_shape)
{
for (u32 i = 0; i < dst_shape.height; ++i)
{
@ -557,17 +577,19 @@ private:
{
auto x = j * 2;
auto y = i * 2;
const std::array<PixelRGBAf, 4> samples = {Sample(x, y), Sample(x + 1, y),
Sample(x, y + 1), Sample(x + 1, y + 1)};
const std::array<PixelRGBAf, 4> samples = {
Sample(src, src_shape, x, y), Sample(src, src_shape, x + 1, y),
Sample(src, src_shape, x, y + 1), Sample(src, src_shape, x + 1, y + 1)};
auto* dst_pixel = dst + (j + i * dst_shape.row_length) * 4;
dst_pixel[0] =
LinearToSRGB((samples[0][0] + samples[0][1] + samples[0][2] + samples[0][3]) * 0.25f);
LinearToSRGB((samples[0][0] + samples[1][0] + samples[2][0] + samples[3][0]) * 0.25f);
dst_pixel[1] =
LinearToSRGB((samples[1][0] + samples[1][1] + samples[1][2] + samples[1][3]) * 0.25f);
LinearToSRGB((samples[0][1] + samples[1][1] + samples[2][1] + samples[3][1]) * 0.25f);
dst_pixel[2] =
LinearToSRGB((samples[2][0] + samples[2][1] + samples[2][2] + samples[2][3]) * 0.25f);
LinearToSRGB((samples[0][2] + samples[1][2] + samples[2][2] + samples[3][2]) * 0.25f);
dst_pixel[3] =
LinearToSRGB((samples[3][0] + samples[3][1] + samples[3][2] + samples[3][3]) * 0.25f);
LinearToSRGB((samples[0][3] + samples[1][3] + samples[2][3] + samples[3][3]) * 0.25f);
}
}
}
@ -575,24 +597,24 @@ private:
float AverageDiff(const u8* other) const
{
float average_diff = 0.f;
const auto* ptr1 = buffer;
const auto* ptr1 = pixels;
const auto* ptr2 = other;
for (u32 i = 0; i < height; ++i)
for (u32 i = 0; i < shape.height; ++i)
{
const auto* row1 = ptr1;
const auto* row2 = ptr2;
for (u32 j = 0; j < width; ++j, row1 += 4, row2 += 4)
for (u32 j = 0; j < shape.width; ++j, row1 += 4, row2 += 4)
{
average_diff += std::abs(row1[0] - row2[0]);
average_diff += std::abs(row1[1] - row2[1]);
average_diff += std::abs(row1[2] - row2[2]);
average_diff += std::abs(row1[3] - row2[3]);
average_diff += std::abs(static_cast<float>(row1[0]) - static_cast<float>(row2[0]));
average_diff += std::abs(static_cast<float>(row1[1]) - static_cast<float>(row2[1]));
average_diff += std::abs(static_cast<float>(row1[2]) - static_cast<float>(row2[2]));
average_diff += std::abs(static_cast<float>(row1[3]) - static_cast<float>(row2[3]));
}
ptr1 += row_length;
ptr2 += row_length;
ptr1 += shape.row_length;
ptr2 += shape.row_length;
}
return average_diff / (width * height * 4) / 2.56f;
return average_diff / (shape.width * shape.height * 4) / 2.56f;
}
};
std::vector<Level> levels;
@ -926,7 +948,10 @@ TextureCacheBase::TCacheEntry* TextureCacheBase::Load(const u32 stage)
// Allocate memory for all levels at once
size_t total_texture_size = decoded_texture_size;
size_t mip_downsample_buffer_size = decoded_texture_size / 4;
// For the downsample, we need 2 buffers; 1 is 1/4 of the original texture, the other 1/16
size_t mip_downsample_buffer_size = decoded_texture_size * 5 / 16;
size_t prev_level_size = decoded_texture_size;
for (u32 i = 1; i < tex_levels; ++i)
{