Merge pull request #9673 from phire/z16peeks
Implement EFB Peeks for compressed z16 formats
This commit is contained in:
commit
4b827f3ae9
|
@ -222,8 +222,11 @@ void ClearScreen(const MathUtil::Rectangle<int>& rc)
|
|||
void OnPixelFormatChange()
|
||||
{
|
||||
// TODO : Check for Z compression format change
|
||||
// When using 16bit Z, the game may enable a special compression format which we need to handle
|
||||
// If we don't, Z values will be completely screwed up, currently only Star Wars:RS2 uses that.
|
||||
// When using 16bit Z, the game may enable a special compression format which we might need to
|
||||
// handle. Only a few games like RS2 and RS3 even use z compression but it looks like they
|
||||
// always use ZFAR when using 16bit Z (on top of linear 24bit Z)
|
||||
|
||||
// Besides, we currently don't even emulate 16bit depth and force it to 24bit.
|
||||
|
||||
/*
|
||||
* When changing the EFB format, the pixel data won't get converted to the new format but stays
|
||||
|
|
|
@ -230,18 +230,24 @@ u32 Renderer::AccessEFB(EFBAccessType type, u32 x, u32 y, u32 poke_data)
|
|||
if (!g_ActiveConfig.backend_info.bSupportsReversedDepthRange)
|
||||
depth = 1.0f - depth;
|
||||
|
||||
u32 ret = 0;
|
||||
// Convert to 24bit depth
|
||||
u32 z24depth = std::clamp<u32>(static_cast<u32>(depth * 16777216.0f), 0, 0xFFFFFF);
|
||||
|
||||
if (bpmem.zcontrol.pixel_format == PixelFormat::RGB565_Z16)
|
||||
{
|
||||
// if Z is in 16 bit format you must return a 16 bit integer
|
||||
ret = std::clamp<u32>(static_cast<u32>(depth * 65536.0f), 0, 0xFFFF);
|
||||
}
|
||||
else
|
||||
{
|
||||
ret = std::clamp<u32>(static_cast<u32>(depth * 16777216.0f), 0, 0xFFFFFF);
|
||||
// When in RGB565_Z16 mode, EFB Z peeks return a 16bit value, which is presumably a
|
||||
// resolved sample from the MSAA buffer.
|
||||
// Dolphin doesn't currently emulate the 3 sample MSAA mode (and potentially never will)
|
||||
// it just transparently upgrades the framebuffer to 24bit depth and color and whatever
|
||||
// level of MSAA and higher Internal Resolution the user has configured.
|
||||
|
||||
// This is mostly transparent, unless the game does an EFB read.
|
||||
// But we can simply convert the 24bit depth on the fly to the 16bit depth the game expects.
|
||||
|
||||
return CompressZ16(z24depth, bpmem.zcontrol.zformat);
|
||||
}
|
||||
|
||||
return ret;
|
||||
return z24depth;
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -4,8 +4,13 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
#include <algorithm>
|
||||
|
||||
#include "Common/BitUtils.h"
|
||||
#include "Common/CommonTypes.h"
|
||||
|
||||
#include "VideoCommon/BPMemory.h"
|
||||
|
||||
// These are accurate (disregarding AA modes).
|
||||
constexpr u32 EFB_WIDTH = 640;
|
||||
constexpr u32 EFB_HEIGHT = 528;
|
||||
|
@ -59,3 +64,71 @@ inline u32 Z24ToZ16ToZ24(u32 src)
|
|||
{
|
||||
return (src & 0xFFFF00) | (src >> 16);
|
||||
}
|
||||
|
||||
inline u32 CompressZ16(u32 z24depth, DepthFormat format)
|
||||
{
|
||||
// Flipper offers a number of choices for 16bit Z formats that adjust
|
||||
// where the bulk of the precision lies.
|
||||
|
||||
if (format == DepthFormat::ZLINEAR)
|
||||
{
|
||||
// This is just a linear depth buffer with 16 bits of precision
|
||||
return z24depth >> 8;
|
||||
}
|
||||
|
||||
// ZNEAR/ZMID/ZFAR are custom floating point formats with 2/3/4 bits of exponent
|
||||
// The exponent is simply the number of leading ones that have been removed
|
||||
// The first zero bit is skipped and not stored. The mantissa contains the next 14/13/12 bits
|
||||
// If exponent is at the MAX (3, 7, or 12) then the next bit might still be a one, and can't
|
||||
// be skipped, so the mantissa simply contains the next 14/13/12 bits
|
||||
|
||||
u32 leading_ones = Common::CountLeadingZeros((~z24depth) << 8);
|
||||
bool next_bit_is_one = false; // AKA: Did we clamp leading_ones?
|
||||
u32 exp_bits;
|
||||
|
||||
switch (format)
|
||||
{
|
||||
case DepthFormat::ZNEAR:
|
||||
exp_bits = 2;
|
||||
if (leading_ones >= 3u)
|
||||
{
|
||||
leading_ones = 3u;
|
||||
next_bit_is_one = true;
|
||||
}
|
||||
break;
|
||||
case DepthFormat::ZMID:
|
||||
exp_bits = 3;
|
||||
if (leading_ones >= 7u)
|
||||
{
|
||||
leading_ones = 7u;
|
||||
next_bit_is_one = true;
|
||||
}
|
||||
break;
|
||||
case DepthFormat::ZFAR:
|
||||
exp_bits = 4;
|
||||
if (leading_ones >= 12u)
|
||||
{
|
||||
// The hardware implementation only uses values 0 to 12 in the exponent
|
||||
leading_ones = 12u;
|
||||
next_bit_is_one = true;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
return z24depth >> 8;
|
||||
}
|
||||
|
||||
u32 mantissa_bits = 16 - exp_bits;
|
||||
|
||||
// Calculate which bits we need to extract from z24depth for our mantissa
|
||||
u32 top = std::max<u32>(24 - leading_ones, mantissa_bits);
|
||||
if (!next_bit_is_one)
|
||||
{
|
||||
top -= 1; // We know the next bit is zero, so we don't need to include it.
|
||||
}
|
||||
u32 bottom = top - mantissa_bits;
|
||||
|
||||
u32 exponent = leading_ones << mantissa_bits; // Upper bits contain exponent
|
||||
u32 mantissa = Common::ExtractBits(z24depth, bottom, top - 1);
|
||||
|
||||
return exponent | mantissa;
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue