Common: Add a generic class for accessing bitfields in a fast and endianness-independent way.

The underlying storage type of a bitfield can be any intrinsic integer type,
but also any enumeration.

Custom storage types are supported if the following things are defined on the storage type:
- casting 0 to the storage type
- bit shift operators (in both directions)
- bitwise & operator
- bitwise ~ operator
- std::make_unsigned specialization
This commit is contained in:
Tony Wasserka 2014-03-10 15:59:32 +01:00
parent 6351f28ab4
commit 48a1790d81
3 changed files with 164 additions and 2 deletions

View File

@ -0,0 +1,160 @@
// Copyright 2014 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
// Copyright 2014 Tony Wasserka
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of the owner nor the names of its contributors may
// be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#pragma once
#include <limits>
#include <type_traits>
/*
* Abstract bitfield class
*
* Allows endianness-independent access to individual bitfields within some raw
* integer value. The assembly generated by this class is identical to the
* usage of raw bitfields, so it's a perfectly fine replacement.
*
* For BitField<X,Y,Z>, X is the distance of the bitfield to the LSB of the
* raw value, Y is the length in bits of the bitfield. Z is an integer type
* which determines the sign of the bitfield. Z must have the same size as the
* raw integer.
*
*
* General usage:
*
* Create a new union with the raw integer value as a member.
* Then for each bitfield you want to expose, add a BitField member
* in the union. The template parameters are the bit offset and the number
* of desired bits.
*
* Changes in the bitfield members will then get reflected in the raw integer
* value and vice-versa.
*
*
* Sample usage:
*
* union SomeRegister
* {
* u32 hex;
*
* BitField<0,7,u32> first_seven_bits; // unsigned
* BitField<7,8,32> next_eight_bits; // unsigned
* BitField<3,15,s32> some_signed_fields; // signed
* };
*
* This is equivalent to the little-endian specific code:
*
* union SomeRegister
* {
* u32 hex;
*
* struct
* {
* u32 first_seven_bits : 7;
* u32 next_eight_bits : 8;
* };
* struct
* {
* u32 : 3; // padding
* s32 some_signed_fields : 15;
* };
* };
*
*
* Caveats:
*
* BitField provides automatic casting from and to the storage type where
* appropriate. However, when using non-typesafe functions like printf, an
* explicit cast must be performed on the BitField object to make sure it gets
* passed correctly, e.g.:
* printf("Value: %d", (s32)some_register.some_signed_fields);
*
*/
template<std::size_t position, std::size_t bits, typename T>
struct BitField
{
private:
// This constructor might be considered ambiguous:
// Would it initialize the storage or just the bitfield?
// Hence, delete it. Use the assignment operator to set bitfield values!
BitField(T val) = delete;
public:
// Force default constructor to be created
// so that we can use this within unions
BitField() = default;
BitField& operator=(T val)
{
storage = (storage & ~GetMask()) | ((val << position) & GetMask());
return *this;
}
operator T() const
{
if (std::numeric_limits<T>::is_signed)
{
std::size_t shift = 8 * sizeof(T) - bits;
return (T)(((storage & GetMask()) << (shift - position)) >> shift);
}
else
{
return (T)((storage & GetMask()) >> position);
}
}
private:
// StorageType is T for non-enum types and the underlying type of T if
// T is an enumeration. Note that T is wrapped within an enable_if in the
// former case to workaround compile errors which arise when using
// std::underlying_type<T>::type directly.
typedef typename std::conditional<std::is_enum<T>::value,
std::underlying_type<T>,
std::enable_if<true,T>>::type::type StorageType;
// Unsigned version of StorageType
typedef typename std::make_unsigned<StorageType>::type StorageTypeU;
StorageType GetMask() const
{
return ((~(StorageTypeU)0) >> (8*sizeof(T) - bits)) << position;
}
StorageType storage;
static_assert(bits + position <= 8 * sizeof(T), "Bitfield out of range");
// And, you know, just in case people specify something stupid like bits=position=0x80000000
static_assert(position < 8 * sizeof(T), "Invalid position");
static_assert(bits <= 8 * sizeof(T), "Invalid number of bits");
static_assert(bits > 0, "Invalid number of bits");
};

View File

@ -46,6 +46,7 @@
<ClInclude Include="Atomic.h" />
<ClInclude Include="Atomic_GCC.h" />
<ClInclude Include="Atomic_Win32.h" />
<ClInclude Include="BitField.h" />
<ClInclude Include="BreakPoints.h" />
<ClInclude Include="CDUtils.h" />
<ClInclude Include="ChunkFile.h" />
@ -143,4 +144,4 @@
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
<ImportGroup Label="ExtensionTargets">
</ImportGroup>
</Project>
</Project>

View File

@ -12,6 +12,7 @@
<ClInclude Include="Atomic.h" />
<ClInclude Include="Atomic_GCC.h" />
<ClInclude Include="Atomic_Win32.h" />
<ClInclude Include="BitField.h" />
<ClInclude Include="BreakPoints.h" />
<ClInclude Include="CDUtils.h" />
<ClInclude Include="ChunkFile.h" />
@ -110,4 +111,4 @@
<ItemGroup>
<Text Include="CMakeLists.txt" />
</ItemGroup>
</Project>
</Project>