Gecko codes: Implemented CT6 CST1 code type (insert asm code in the game). This function may need many tests.

git-svn-id: https://dolphin-emu.googlecode.com/svn/trunk@6227 8ced0084-cf51-0410-be5f-012b33b47a6e
This commit is contained in:
nodchip 2010-09-26 06:31:45 +00:00
parent e011b4a6a6
commit 436a927566
3 changed files with 80 additions and 5 deletions

View File

@ -61,6 +61,9 @@ static Common::CriticalSection active_codes_lock;
static GeckoCode::Code *codes_start = NULL, *current_code = NULL; static GeckoCode::Code *codes_start = NULL, *current_code = NULL;
static const GeckoCode::Code *codes_end = NULL; static const GeckoCode::Code *codes_end = NULL;
// asm codes used for CT6 CST1
static std::map<u32, std::vector<u32> > inserted_asm_codes;
// Functions for each code type // Functions for each code type
bool RamWriteAndFill(); bool RamWriteAndFill();
bool RegularIf(); bool RegularIf();
@ -91,6 +94,8 @@ void SetActiveCodes(const std::vector<GeckoCode>& gcodes)
} }
active_codes_lock.Leave(); active_codes_lock.Leave();
inserted_asm_codes.clear();
} }
bool RunGeckoCode(GeckoCode& gecko_code) bool RunGeckoCode(GeckoCode& gecko_code)
@ -163,6 +168,10 @@ bool RunActiveCodes()
return true; return true;
} }
const std::map<u32, std::vector<u32> >& GetInsertedAsmCodes() {
return inserted_asm_codes;
}
// CT0: Direct ram write/fill // CT0: Direct ram write/fill
// COMPLETE, maybe // COMPLETE, maybe
bool RamWriteAndFill() bool RamWriteAndFill()
@ -817,9 +826,30 @@ bool AsmSwitchRange()
// CST1 : Insert ASM code in the game // CST1 : Insert ASM code in the game
case 0x1 : case 0x1 :
// TODO: {
return false; const int number_of_codes = code.data;
std::vector<u32>& asm_code = inserted_asm_codes[code.GetAddress()];
if (asm_code.empty()) {
for (int index = 0; index < number_of_codes; ++index) {
// Reserved for padding
if (current_code[index + 1].address != 0x60000000) {
asm_code.push_back(current_code[index + 1].address);
}
// Reserved for b instruction
if (current_code[index + 1].data != 0x00000000) {
asm_code.push_back(current_code[index + 1].data);
}
}
}
// Though the next code starts at current_code+number_of_codes+1,
// we add only number_of_codes. It is because the for statemet in
// RunGeckoCode() increments current_code.
current_code += number_of_codes;
break; break;
}
// CST3 : Create a branch // CST3 : Create a branch
case 0x3 : case 0x3 :

View File

@ -66,6 +66,7 @@ namespace Gecko
void SetActiveCodes(const std::vector<GeckoCode>& gcodes); void SetActiveCodes(const std::vector<GeckoCode>& gcodes);
bool RunActiveCodes(); bool RunActiveCodes();
const std::map<u32, std::vector<u32> >& GetInsertedAsmCodes();
} // namespace Gecko } // namespace Gecko

View File

@ -25,6 +25,7 @@
#include "SignatureDB.h" #include "SignatureDB.h"
#include "PPCAnalyst.h" #include "PPCAnalyst.h"
#include "../ConfigManager.h" #include "../ConfigManager.h"
#include "../GeckoCode.h"
// Analyzes PowerPC code in memory to find functions // Analyzes PowerPC code in memory to find functions
// After running, for each function we will know what functions it calls // After running, for each function we will know what functions it calls
@ -327,17 +328,60 @@ u32 Flatten(u32 address, int *realsize, BlockStats *st, BlockRegStats *gpa,
u32 returnAddress = 0; u32 returnAddress = 0;
// Used for Gecko CST1 code. (See GeckoCode/GeckoCode.h)
// We use std::queue but it is not so slow
// because cst1_instructions does not allocate memory so many times.
std::queue<UGeckoInstruction> cst1_instructions;
const std::map<u32, std::vector<u32> >& inserted_asm_codes =
Gecko::GetInsertedAsmCodes();
// Do analysis of the code, look for dependencies etc // Do analysis of the code, look for dependencies etc
int numSystemInstructions = 0; int numSystemInstructions = 0;
for (int i = 0; i < maxsize; i++) for (int i = 0; i < maxsize; i++)
{ {
UGeckoInstruction inst = Memory::Read_Opcode_JIT(address); UGeckoInstruction inst;
if (!cst1_instructions.empty())
{
// If the Gecko CST1 instruction queue is not empty,
// we comsume the first instruction.
inst = UGeckoInstruction(cst1_instructions.front());
cst1_instructions.pop();
address -= 4;
}
else
{
// If the address is the insertion point of Gecko CST1 code,
// we push the code into the instruction queue and
// consume the first instruction.
std::map<u32, std::vector<u32> >::const_iterator it =
inserted_asm_codes.find(address);
if (it != inserted_asm_codes.end())
{
const std::vector<u32>& codes = it->second;
for (std::vector<u32>::const_iterator it = codes.begin(),
itEnd = codes.end(); it != itEnd; ++it)
{
cst1_instructions.push(*it);
}
inst = UGeckoInstruction(cst1_instructions.front());
cst1_instructions.pop();
}
else
{
inst = Memory::Read_Opcode_JIT(address);
}
}
if (inst.hex != 0) if (inst.hex != 0)
{ {
num_inst++; num_inst++;
memset(&code[i], 0, sizeof(CodeOp)); memset(&code[i], 0, sizeof(CodeOp));
GekkoOPInfo *opinfo = GetOpInfo(inst); GekkoOPInfo *opinfo = GetOpInfo(inst);
code[i].opinfo = opinfo; code[i].opinfo = opinfo;
// FIXME: code[i].address may not be correct due to CST1 code.
code[i].address = address; code[i].address = address;
code[i].inst = inst; code[i].inst = inst;
code[i].branchTo = -1; code[i].branchTo = -1;