DiscIO: Use a struct for Wii hashes

This commit is contained in:
JosJuice 2020-01-30 21:29:11 +01:00
parent da9e0fb598
commit 432f342bc8
2 changed files with 36 additions and 25 deletions

View File

@ -476,36 +476,36 @@ bool VolumeWii::CheckBlockIntegrity(u64 block_index, const std::vector<u8>& encr
if (!aes_context) if (!aes_context)
return false; return false;
u8 cluster_metadata[BLOCK_HEADER_SIZE]; HashBlock hashes;
u8 iv[16] = {0}; u8 iv[16] = {0};
mbedtls_aes_crypt_cbc(aes_context, MBEDTLS_AES_DECRYPT, BLOCK_HEADER_SIZE, iv, mbedtls_aes_crypt_cbc(aes_context, MBEDTLS_AES_DECRYPT, sizeof(HashBlock), iv,
encrypted_data.data(), cluster_metadata); encrypted_data.data(), reinterpret_cast<u8*>(&hashes));
u8 cluster_data[BLOCK_DATA_SIZE]; u8 cluster_data[BLOCK_DATA_SIZE];
std::memcpy(iv, encrypted_data.data() + 0x3D0, 16); std::memcpy(iv, encrypted_data.data() + 0x3D0, 16);
mbedtls_aes_crypt_cbc(aes_context, MBEDTLS_AES_DECRYPT, BLOCK_DATA_SIZE, iv, mbedtls_aes_crypt_cbc(aes_context, MBEDTLS_AES_DECRYPT, sizeof(cluster_data), iv,
encrypted_data.data() + BLOCK_HEADER_SIZE, cluster_data); encrypted_data.data() + sizeof(HashBlock), cluster_data);
for (u32 hash_index = 0; hash_index < 31; ++hash_index) for (u32 hash_index = 0; hash_index < 31; ++hash_index)
{ {
u8 h0_hash[SHA1_SIZE]; u8 h0_hash[SHA1_SIZE];
mbedtls_sha1_ret(cluster_data + hash_index * 0x400, 0x400, h0_hash); mbedtls_sha1_ret(cluster_data + hash_index * 0x400, 0x400, h0_hash);
if (memcmp(h0_hash, cluster_metadata + hash_index * SHA1_SIZE, SHA1_SIZE)) if (memcmp(h0_hash, hashes.h0[hash_index], SHA1_SIZE))
return false; return false;
} }
u8 h1_hash[SHA1_SIZE]; u8 h1_hash[SHA1_SIZE];
mbedtls_sha1_ret(cluster_metadata, SHA1_SIZE * 31, h1_hash); mbedtls_sha1_ret(reinterpret_cast<u8*>(hashes.h0), sizeof(hashes.h0), h1_hash);
if (memcmp(h1_hash, cluster_metadata + 0x280 + (block_index % 8) * SHA1_SIZE, SHA1_SIZE)) if (memcmp(h1_hash, hashes.h1[block_index % 8], SHA1_SIZE))
return false; return false;
u8 h2_hash[SHA1_SIZE]; u8 h2_hash[SHA1_SIZE];
mbedtls_sha1_ret(cluster_metadata + 0x280, SHA1_SIZE * 8, h2_hash); mbedtls_sha1_ret(reinterpret_cast<u8*>(hashes.h1), sizeof(hashes.h1), h2_hash);
if (memcmp(h2_hash, cluster_metadata + 0x340 + (block_index / 8 % 8) * SHA1_SIZE, SHA1_SIZE)) if (memcmp(h2_hash, hashes.h2[block_index / 8 % 8], SHA1_SIZE))
return false; return false;
u8 h3_hash[SHA1_SIZE]; u8 h3_hash[SHA1_SIZE];
mbedtls_sha1_ret(cluster_metadata + 0x340, SHA1_SIZE * 8, h3_hash); mbedtls_sha1_ret(reinterpret_cast<u8*>(hashes.h2), sizeof(hashes.h2), h3_hash);
if (memcmp(h3_hash, partition_details.h3_table->data() + block_index / 64 * SHA1_SIZE, SHA1_SIZE)) if (memcmp(h3_hash, partition_details.h3_table->data() + block_index / 64 * SHA1_SIZE, SHA1_SIZE))
return false; return false;
@ -533,7 +533,7 @@ bool VolumeWii::EncryptGroup(u64 offset, u64 partition_data_offset,
std::array<u8, GROUP_TOTAL_SIZE>* out) std::array<u8, GROUP_TOTAL_SIZE>* out)
{ {
std::vector<std::array<u8, BLOCK_DATA_SIZE>> unencrypted_data(BLOCKS_PER_GROUP); std::vector<std::array<u8, BLOCK_DATA_SIZE>> unencrypted_data(BLOCKS_PER_GROUP);
std::vector<std::array<u8, BLOCK_HEADER_SIZE>> unencrypted_hashes(BLOCKS_PER_GROUP); std::vector<HashBlock> unencrypted_hashes(BLOCKS_PER_GROUP);
std::array<std::future<void>, BLOCKS_PER_GROUP> hash_futures; std::array<std::future<void>, BLOCKS_PER_GROUP> hash_futures;
bool error_occurred = false; bool error_occurred = false;
@ -566,15 +566,15 @@ bool VolumeWii::EncryptGroup(u64 offset, u64 partition_data_offset,
for (size_t j = 0; j < 31; ++j) for (size_t j = 0; j < 31; ++j)
{ {
mbedtls_sha1_ret(unencrypted_data[i].data() + j * 0x400, 0x400, mbedtls_sha1_ret(unencrypted_data[i].data() + j * 0x400, 0x400,
unencrypted_hashes[i].data() + j * SHA1_SIZE); unencrypted_hashes[i].h0[j]);
} }
// H0 padding // H0 padding
std::memset(unencrypted_hashes[i].data() + 0x26C, 0, 0x14); std::memset(unencrypted_hashes[i].padding_0, 0, sizeof(HashBlock::padding_0));
// H1 hash // H1 hash
mbedtls_sha1_ret(unencrypted_hashes[i].data(), 0x26C, mbedtls_sha1_ret(reinterpret_cast<u8*>(unencrypted_hashes[i].h0), sizeof(HashBlock::h0),
unencrypted_hashes[h1_base].data() + 0x280 + (i - h1_base) * SHA1_SIZE); unencrypted_hashes[h1_base].h1[i - h1_base]);
} }
if (i % 8 == 7) if (i % 8 == 7)
@ -585,18 +585,18 @@ bool VolumeWii::EncryptGroup(u64 offset, u64 partition_data_offset,
if (!error_occurred) if (!error_occurred)
{ {
// H1 padding // H1 padding
std::memset(unencrypted_hashes[h1_base].data() + 0x320, 0, 0x20); std::memset(unencrypted_hashes[h1_base].padding_1, 0, sizeof(HashBlock::padding_1));
// H1 copies // H1 copies
for (size_t j = 1; j < 8; ++j) for (size_t j = 1; j < 8; ++j)
{ {
std::memcpy(unencrypted_hashes[h1_base + j].data() + 0x280, std::memcpy(unencrypted_hashes[h1_base + j].h1, unencrypted_hashes[h1_base].h1,
unencrypted_hashes[h1_base].data() + 0x280, 0xC0); sizeof(HashBlock::h1));
} }
// H2 hash // H2 hash
mbedtls_sha1_ret(unencrypted_hashes[h1_base].data() + 0x280, 0xA0, mbedtls_sha1_ret(reinterpret_cast<u8*>(unencrypted_hashes[i].h1), sizeof(HashBlock::h1),
unencrypted_hashes[0].data() + 0x340 + h1_base / 8 * SHA1_SIZE); unencrypted_hashes[0].h2[h1_base / 8]);
} }
if (i == BLOCKS_PER_GROUP - 1) if (i == BLOCKS_PER_GROUP - 1)
@ -607,13 +607,13 @@ bool VolumeWii::EncryptGroup(u64 offset, u64 partition_data_offset,
if (!error_occurred) if (!error_occurred)
{ {
// H2 padding // H2 padding
std::memset(unencrypted_hashes[0].data() + 0x3E0, 0, 0x20); std::memset(unencrypted_hashes[0].padding_2, 0, sizeof(HashBlock::padding_2));
// H2 copies // H2 copies
for (size_t j = 1; j < BLOCKS_PER_GROUP; ++j) for (size_t j = 1; j < BLOCKS_PER_GROUP; ++j)
{ {
std::memcpy(unencrypted_hashes[j].data() + 0x340, std::memcpy(unencrypted_hashes[j].h2, unencrypted_hashes[0].h2,
unencrypted_hashes[0].data() + 0x340, 0xC0); sizeof(HashBlock::h2));
} }
} }
} }
@ -646,7 +646,7 @@ bool VolumeWii::EncryptGroup(u64 offset, u64 partition_data_offset,
u8 iv[16] = {}; u8 iv[16] = {};
mbedtls_aes_crypt_cbc(&aes_context, MBEDTLS_AES_ENCRYPT, BLOCK_HEADER_SIZE, iv, mbedtls_aes_crypt_cbc(&aes_context, MBEDTLS_AES_ENCRYPT, BLOCK_HEADER_SIZE, iv,
unencrypted_hashes[i].data(), out_ptr); reinterpret_cast<u8*>(&unencrypted_hashes[i]), out_ptr);
std::memcpy(iv, out_ptr + 0x3D0, sizeof(iv)); std::memcpy(iv, out_ptr + 0x3D0, sizeof(iv));
mbedtls_aes_crypt_cbc(&aes_context, MBEDTLS_AES_ENCRYPT, BLOCK_DATA_SIZE, iv, mbedtls_aes_crypt_cbc(&aes_context, MBEDTLS_AES_ENCRYPT, BLOCK_DATA_SIZE, iv,

View File

@ -46,6 +46,17 @@ public:
static constexpr u64 GROUP_DATA_SIZE = BLOCK_DATA_SIZE * BLOCKS_PER_GROUP; static constexpr u64 GROUP_DATA_SIZE = BLOCK_DATA_SIZE * BLOCKS_PER_GROUP;
static constexpr u64 GROUP_TOTAL_SIZE = GROUP_HEADER_SIZE + GROUP_DATA_SIZE; static constexpr u64 GROUP_TOTAL_SIZE = GROUP_HEADER_SIZE + GROUP_DATA_SIZE;
struct HashBlock
{
u8 h0[31][SHA1_SIZE];
u8 padding_0[20];
u8 h1[8][SHA1_SIZE];
u8 padding_1[32];
u8 h2[8][SHA1_SIZE];
u8 padding_2[32];
};
static_assert(sizeof(HashBlock) == BLOCK_HEADER_SIZE);
VolumeWii(std::unique_ptr<BlobReader> reader); VolumeWii(std::unique_ptr<BlobReader> reader);
~VolumeWii(); ~VolumeWii();
bool Read(u64 offset, u64 length, u8* buffer, const Partition& partition) const override; bool Read(u64 offset, u64 length, u8* buffer, const Partition& partition) const override;