Merge pull request #1258 from FioraAeterna/avoidfmulround

JIT: optimize single-precision ops based on knowledge of their inputs
This commit is contained in:
Ryan Houdek 2014-11-30 15:47:34 -06:00
commit 414e36d8c9
11 changed files with 205 additions and 67 deletions

View File

@ -50,10 +50,10 @@ struct CPUInfo
bool bMOVBE;
// This flag indicates that the hardware supports some mode
// in which denormal inputs _and_ outputs are automatically set to (signed) zero.
// TODO: ARM
bool bFlushToZero;
bool bLAHFSAHF64;
bool bLongMode;
bool bAtom;
// ARM specific CPUInfo
bool bSwp;

View File

@ -129,6 +129,12 @@ void CPUInfo::Detect()
if (max_std_fn >= 1)
{
__cpuid(cpu_id, 0x00000001);
int family = ((cpu_id[0] >> 8) & 0xf) + ((cpu_id[0] >> 20) & 0xff);
int model = ((cpu_id[0] >> 4) & 0xf) + ((cpu_id[0] >> 12) & 0xf0);
// Detect people unfortunate enough to be running Dolphin on an Atom
if (family == 6 && (model == 0x1C || model == 0x26 ||model == 0x27 || model == 0x35 || model == 0x36 ||
model == 0x37 || model == 0x4A || model == 0x4D || model == 0x5A || model == 0x5D))
bAtom = true;
logical_cpu_count = (cpu_id[1] >> 16) & 0xFF;
ht = (cpu_id[3] >> 28) & 1;

View File

@ -321,14 +321,14 @@ static GekkoOPTemplate table59[] =
static GekkoOPTemplate table63[] =
{
{264, Interpreter::fabsx, {"fabsx", OPTYPE_DOUBLEFP, FL_OUT_FLOAT_D | FL_IN_FLOAT_B | FL_RC_BIT_F | FL_USE_FPU, 1, 0, 0, 0}},
{264, Interpreter::fabsx, {"fabsx", OPTYPE_DOUBLEFP, FL_INOUT_FLOAT_D | FL_IN_FLOAT_B | FL_RC_BIT_F | FL_USE_FPU, 1, 0, 0, 0}},
{32, Interpreter::fcmpo, {"fcmpo", OPTYPE_DOUBLEFP, FL_IN_FLOAT_AB | FL_RC_BIT_F | FL_USE_FPU | FL_SET_FPRF, 1, 0, 0, 0}},
{0, Interpreter::fcmpu, {"fcmpu", OPTYPE_DOUBLEFP, FL_IN_FLOAT_AB | FL_RC_BIT_F | FL_USE_FPU | FL_SET_FPRF, 1, 0, 0, 0}},
{14, Interpreter::fctiwx, {"fctiwx", OPTYPE_DOUBLEFP, FL_OUT_FLOAT_D | FL_IN_FLOAT_B | FL_RC_BIT_F | FL_USE_FPU, 1, 0, 0, 0}},
{15, Interpreter::fctiwzx, {"fctiwzx", OPTYPE_DOUBLEFP, FL_OUT_FLOAT_D | FL_IN_FLOAT_B | FL_RC_BIT_F | FL_USE_FPU, 1, 0, 0, 0}},
{14, Interpreter::fctiwx, {"fctiwx", OPTYPE_DOUBLEFP, FL_INOUT_FLOAT_D | FL_IN_FLOAT_B | FL_RC_BIT_F | FL_USE_FPU, 1, 0, 0, 0}},
{15, Interpreter::fctiwzx, {"fctiwzx", OPTYPE_DOUBLEFP, FL_INOUT_FLOAT_D | FL_IN_FLOAT_B | FL_RC_BIT_F | FL_USE_FPU, 1, 0, 0, 0}},
{72, Interpreter::fmrx, {"fmrx", OPTYPE_DOUBLEFP, FL_OUT_FLOAT_D | FL_IN_FLOAT_B | FL_RC_BIT_F | FL_USE_FPU, 1, 0, 0, 0}},
{136, Interpreter::fnabsx, {"fnabsx", OPTYPE_DOUBLEFP, FL_OUT_FLOAT_D | FL_IN_FLOAT_B | FL_RC_BIT_F | FL_USE_FPU, 1, 0, 0, 0}},
{40, Interpreter::fnegx, {"fnegx", OPTYPE_DOUBLEFP, FL_OUT_FLOAT_D | FL_IN_FLOAT_B | FL_RC_BIT_F | FL_USE_FPU, 1, 0, 0, 0}},
{136, Interpreter::fnabsx, {"fnabsx", OPTYPE_DOUBLEFP, FL_INOUT_FLOAT_D | FL_IN_FLOAT_B | FL_RC_BIT_F | FL_USE_FPU, 1, 0, 0, 0}},
{40, Interpreter::fnegx, {"fnegx", OPTYPE_DOUBLEFP, FL_INOUT_FLOAT_D | FL_IN_FLOAT_B | FL_RC_BIT_F | FL_USE_FPU, 1, 0, 0, 0}},
{12, Interpreter::frspx, {"frspx", OPTYPE_DOUBLEFP, FL_OUT_FLOAT_D | FL_IN_FLOAT_B | FL_RC_BIT_F | FL_USE_FPU | FL_SET_FPRF, 1, 0, 0, 0}},
{64, Interpreter::mcrfs, {"mcrfs", OPTYPE_SYSTEMFP, FL_SET_CRn | FL_USE_FPU | FL_READ_FPRF, 1, 0, 0, 0}},

View File

@ -151,7 +151,7 @@ public:
void regimmop(int d, int a, bool binary, u32 value, Operation doop, void (Gen::XEmitter::*op)(int, const Gen::OpArg&, const Gen::OpArg&),
bool Rc = false, bool carry = false);
void fp_tri_op(int d, int a, int b, bool reversible, bool single, void (Gen::XEmitter::*avxOp)(Gen::X64Reg, Gen::X64Reg, Gen::OpArg),
void (Gen::XEmitter::*sseOp)(Gen::X64Reg, Gen::OpArg), UGeckoInstruction inst, bool roundRHS = false);
void (Gen::XEmitter::*sseOp)(Gen::X64Reg, Gen::OpArg), UGeckoInstruction inst, bool packed = false, bool roundRHS = false);
void FloatCompare(UGeckoInstruction inst, bool upper = false);
// OPCODES

View File

@ -11,11 +11,12 @@
using namespace Gen;
static const u64 GC_ALIGNED16(psSignBits[2]) = {0x8000000000000000ULL, 0x0000000000000000ULL};
static const u64 GC_ALIGNED16(psSignBits2[2]) = {0x8000000000000000ULL, 0x8000000000000000ULL};
static const u64 GC_ALIGNED16(psAbsMask[2]) = {0x7FFFFFFFFFFFFFFFULL, 0xFFFFFFFFFFFFFFFFULL};
static const double GC_ALIGNED16(half_qnan_and_s32_max[2]) = {0x7FFFFFFF, -0x80000};
void Jit64::fp_tri_op(int d, int a, int b, bool reversible, bool single, void (XEmitter::*avxOp)(X64Reg, X64Reg, OpArg),
void (XEmitter::*sseOp)(X64Reg, OpArg), UGeckoInstruction inst, bool roundRHS)
void (XEmitter::*sseOp)(X64Reg, OpArg), UGeckoInstruction inst, bool packed, bool roundRHS)
{
fpr.Lock(d, a, b);
fpr.BindToRegister(d, d == a || d == b || !single);
@ -34,13 +35,20 @@ void Jit64::fp_tri_op(int d, int a, int b, bool reversible, bool single, void (X
}
else
{
avx_op(avxOp, sseOp, fpr.RX(d), fpr.R(a), fpr.R(b), false, reversible);
avx_op(avxOp, sseOp, fpr.RX(d), fpr.R(a), fpr.R(b), packed, reversible);
}
if (single)
{
ForceSinglePrecisionS(fpr.RX(d));
if (packed)
{
ForceSinglePrecisionP(fpr.RX(d), fpr.RX(d));
}
else
{
ForceSinglePrecisionS(fpr.RX(d), fpr.RX(d));
MOVDDUP(fpr.RX(d), fpr.R(d));
}
}
SetFPRFIfNeeded(inst, fpr.RX(d));
fpr.UnlockAll();
}
@ -63,13 +71,32 @@ void Jit64::fp_arith(UGeckoInstruction inst)
JITDISABLE(bJITFloatingPointOff);
FALLBACK_IF(inst.Rc);
int a = inst.FA;
int b = inst.FB;
int c = inst.FC;
int d = inst.FD;
int arg2 = inst.SUBOP5 == 25 ? c : b;
bool single = inst.OPCD == 59;
bool round_input = single && !jit->js.op->fprIsSingle[inst.FC];
// If both the inputs are known to have identical top and bottom halves, we can skip the MOVDDUP at the end by
// using packed arithmetic instead.
bool packed = single && jit->js.op->fprIsDuplicated[a] && jit->js.op->fprIsDuplicated[arg2];
// Packed divides are slower than scalar divides on basically all x86, so this optimization isn't worth it in that case.
// Atoms (and a few really old CPUs) are also slower on packed operations than scalar ones.
if (inst.SUBOP5 == 18 || cpu_info.bAtom)
packed = false;
switch (inst.SUBOP5)
{
case 18: fp_tri_op(inst.FD, inst.FA, inst.FB, false, single, &XEmitter::VDIVSD, &XEmitter::DIVSD, inst); break; //div
case 20: fp_tri_op(inst.FD, inst.FA, inst.FB, false, single, &XEmitter::VSUBSD, &XEmitter::SUBSD, inst); break; //sub
case 21: fp_tri_op(inst.FD, inst.FA, inst.FB, true, single, &XEmitter::VADDSD, &XEmitter::ADDSD, inst); break; //add
case 25: fp_tri_op(inst.FD, inst.FA, inst.FC, true, single, &XEmitter::VMULSD, &XEmitter::MULSD, inst, single); break; //mul
case 18: fp_tri_op(d, a, b, false, single, packed ? &XEmitter::VDIVPD : &XEmitter::VDIVSD,
packed ? &XEmitter::DIVPD : &XEmitter::DIVSD, inst, packed); break;
case 20: fp_tri_op(d, a, b, false, single, packed ? &XEmitter::VSUBPD : &XEmitter::VSUBSD,
packed ? &XEmitter::SUBPD : &XEmitter::SUBSD, inst, packed); break;
case 21: fp_tri_op(d, a, b, true, single, packed ? &XEmitter::VADDPD : &XEmitter::VADDSD,
packed ? &XEmitter::ADDPD : &XEmitter::ADDSD, inst, packed); break;
case 25: fp_tri_op(d, a, c, true, single, packed ? &XEmitter::VMULPD : &XEmitter::VMULSD,
packed ? &XEmitter::MULPD : &XEmitter::MULSD, inst, packed, round_input); break;
default:
_assert_msg_(DYNA_REC, 0, "fp_arith WTF!!!");
}
@ -81,12 +108,15 @@ void Jit64::fmaddXX(UGeckoInstruction inst)
JITDISABLE(bJITFloatingPointOff);
FALLBACK_IF(inst.Rc);
bool single_precision = inst.OPCD == 59;
int a = inst.FA;
int b = inst.FB;
int c = inst.FC;
int d = inst.FD;
bool single = inst.OPCD == 59;
bool round_input = single && !jit->js.op->fprIsSingle[c];
bool packed = single && jit->js.op->fprIsDuplicated[a] && jit->js.op->fprIsDuplicated[b] && jit->js.op->fprIsDuplicated[c];
if (cpu_info.bAtom)
packed = false;
fpr.Lock(a, b, c, d);
@ -98,19 +128,25 @@ void Jit64::fmaddXX(UGeckoInstruction inst)
// instances on different computers giving identical results.
if (cpu_info.bFMA && !Core::g_want_determinism)
{
if (single_precision)
if (single && round_input)
Force25BitPrecision(XMM0, fpr.R(c), XMM1);
else
MOVSD(XMM0, fpr.R(c));
MOVAPD(XMM0, fpr.R(c));
// Statistics suggests b is a lot less likely to be unbound in practice, so
// if we have to pick one of a or b to bind, let's make it b.
fpr.BindToRegister(b, true, false);
switch (inst.SUBOP5)
{
case 28: //msub
if (packed)
VFMSUB132PD(XMM0, fpr.RX(b), fpr.R(a));
else
VFMSUB132SD(XMM0, fpr.RX(b), fpr.R(a));
break;
case 29: //madd
if (packed)
VFMADD132PD(XMM0, fpr.RX(b), fpr.R(a));
else
VFMADD132SD(XMM0, fpr.RX(b), fpr.R(a));
break;
// PowerPC and x86 define NMADD/NMSUB differently
@ -118,9 +154,15 @@ void Jit64::fmaddXX(UGeckoInstruction inst)
// PPC: D = -(A*C (+/-) B)
// so we have to swap them; the ADD/SUB here isn't a typo.
case 30: //nmsub
if (packed)
VFNMADD132PD(XMM0, fpr.RX(b), fpr.R(a));
else
VFNMADD132SD(XMM0, fpr.RX(b), fpr.R(a));
break;
case 31: //nmadd
if (packed)
VFNMSUB132PD(XMM0, fpr.RX(b), fpr.R(a));
else
VFNMSUB132SD(XMM0, fpr.RX(b), fpr.R(a));
break;
}
@ -128,36 +170,61 @@ void Jit64::fmaddXX(UGeckoInstruction inst)
else if (inst.SUBOP5 == 30) //nmsub
{
// nmsub is implemented a little differently ((b - a*c) instead of -(a*c - b)), so handle it separately
if (single_precision)
if (single && round_input)
Force25BitPrecision(XMM1, fpr.R(c), XMM0);
else
MOVSD(XMM1, fpr.R(c));
MOVAPD(XMM1, fpr.R(c));
MOVAPD(XMM0, fpr.R(b));
if (packed)
{
MULPD(XMM1, fpr.R(a));
SUBPD(XMM0, R(XMM1));
}
else
{
MULSD(XMM1, fpr.R(a));
MOVSD(XMM0, fpr.R(b));
SUBSD(XMM0, R(XMM1));
}
}
else
{
if (single_precision)
if (single && round_input)
Force25BitPrecision(XMM0, fpr.R(c), XMM1);
else
MOVSD(XMM0, fpr.R(c));
MULSD(XMM0, fpr.R(a));
MOVAPD(XMM0, fpr.R(c));
if (packed)
{
MULPD(XMM0, fpr.R(a));
if (inst.SUBOP5 == 28) //msub
SUBSD(XMM0, fpr.R(b));
SUBPD(XMM0, fpr.R(b));
else //(n)madd
ADDPD(XMM0, fpr.R(b));
}
else
{
MULSD(XMM0, fpr.R(a));
if (inst.SUBOP5 == 28)
SUBSD(XMM0, fpr.R(b));
else
ADDSD(XMM0, fpr.R(b));
}
if (inst.SUBOP5 == 31) //nmadd
PXOR(XMM0, M((void*)&psSignBits));
PXOR(XMM0, M((void*)&(packed ? psSignBits2 : psSignBits)));
}
fpr.BindToRegister(d, false);
//YES it is necessary to dupe the result :(
//TODO : analysis - does the top reg get used? If so, dupe, if not, don't.
if (single_precision)
fpr.BindToRegister(d, !single);
if (single)
{
ForceSinglePrecisionS(XMM0);
MOVDDUP(fpr.RX(d), R(XMM0));
if (packed)
{
ForceSinglePrecisionP(fpr.RX(d), XMM0);
}
else
{
ForceSinglePrecisionS(fpr.RX(d), XMM0);
MOVDDUP(fpr.RX(d), fpr.R(d));
}
}
else
{
@ -176,7 +243,7 @@ void Jit64::fsign(UGeckoInstruction inst)
int d = inst.FD;
int b = inst.FB;
fpr.Lock(b, d);
fpr.BindToRegister(d, true, true);
fpr.BindToRegister(d);
if (d != b)
MOVSD(fpr.RX(d), fpr.R(b));
@ -212,7 +279,7 @@ void Jit64::fselx(UGeckoInstruction inst)
int c = inst.FC;
fpr.Lock(a, b, c, d);
MOVSD(XMM1, fpr.R(a));
MOVAPD(XMM1, fpr.R(a));
PXOR(XMM0, R(XMM0));
// This condition is very tricky; there's only one right way to handle both the case of
// negative/positive zero and NaN properly.
@ -220,17 +287,17 @@ void Jit64::fselx(UGeckoInstruction inst)
CMPSD(XMM0, R(XMM1), NLE);
if (cpu_info.bSSE4_1)
{
MOVSD(XMM1, fpr.R(c));
MOVAPD(XMM1, fpr.R(c));
BLENDVPD(XMM1, fpr.R(b));
}
else
{
MOVSD(XMM1, R(XMM0));
MOVAPD(XMM1, R(XMM0));
PAND(XMM0, fpr.R(b));
PANDN(XMM1, fpr.R(c));
POR(XMM1, R(XMM0));
}
fpr.BindToRegister(d, true);
fpr.BindToRegister(d);
MOVSD(fpr.RX(d), R(XMM1));
fpr.UnlockAll();
}
@ -383,7 +450,7 @@ void Jit64::fctiwx(UGeckoInstruction inst)
int d = inst.RD;
int b = inst.RB;
fpr.Lock(d, b);
fpr.BindToRegister(d, d == b);
fpr.BindToRegister(d);
// Intel uses 0x80000000 as a generic error code while PowerPC uses clamping:
//
@ -426,7 +493,7 @@ void Jit64::frspx(UGeckoInstruction inst)
fpr.BindToRegister(d, d == b);
if (b != d)
MOVAPD(fpr.RX(d), fpr.R(b));
ForceSinglePrecisionS(fpr.RX(d));
ForceSinglePrecisionS(fpr.RX(d), fpr.RX(d));
MOVDDUP(fpr.RX(d), fpr.R(d));
SetFPRFIfNeeded(inst, fpr.RX(d));
fpr.UnlockAll();
@ -442,8 +509,8 @@ void Jit64::frsqrtex(UGeckoInstruction inst)
gpr.FlushLockX(RSCRATCH_EXTRA);
fpr.Lock(b, d);
fpr.BindToRegister(d, d == b);
MOVSD(XMM0, fpr.R(b));
fpr.BindToRegister(d);
MOVAPD(XMM0, fpr.R(b));
CALL((void *)asm_routines.frsqrte);
MOVSD(fpr.R(d), XMM0);
SetFPRFIfNeeded(inst, fpr.RX(d));
@ -461,8 +528,8 @@ void Jit64::fresx(UGeckoInstruction inst)
gpr.FlushLockX(RSCRATCH_EXTRA);
fpr.Lock(b, d);
fpr.BindToRegister(d, d == b);
MOVSD(XMM0, fpr.R(b));
fpr.BindToRegister(d);
MOVAPD(XMM0, fpr.R(b));
CALL((void *)asm_routines.fres);
MOVSD(fpr.R(d), XMM0);
SetFPRFIfNeeded(inst, fpr.RX(d));

View File

@ -107,9 +107,16 @@ void Jit64::stfXXX(UGeckoInstruction inst)
FALLBACK_IF(update && js.memcheck && a == b);
if (single)
{
if (jit->js.op->fprIsStoreSafe[s])
{
CVTSD2SS(XMM0, fpr.R(s));
}
else
{
fpr.BindToRegister(s, true, false);
ConvertDoubleToSingle(XMM0, fpr.RX(s));
}
MOVD_xmm(R(RSCRATCH), XMM0);
}
else

View File

@ -124,6 +124,7 @@ void Jit64::ps_arith(UGeckoInstruction inst)
JITDISABLE(bJITPairedOff);
FALLBACK_IF(inst.Rc);
bool round_input = !jit->js.op->fprIsSingle[inst.FC];
switch (inst.SUBOP5)
{
case 18: // div
@ -136,7 +137,7 @@ void Jit64::ps_arith(UGeckoInstruction inst)
tri_op(inst.FD, inst.FA, inst.FB, true, &XEmitter::VADDPD, &XEmitter::ADDPD, inst);
break;
case 25: // mul
tri_op(inst.FD, inst.FA, inst.FC, true, &XEmitter::VMULPD, &XEmitter::MULPD, inst, true);
tri_op(inst.FD, inst.FA, inst.FC, true, &XEmitter::VMULPD, &XEmitter::MULPD, inst, round_input);
break;
default:
_assert_msg_(DYNA_REC, 0, "ps_arith WTF!!!");
@ -187,6 +188,7 @@ void Jit64::ps_muls(UGeckoInstruction inst)
int d = inst.FD;
int a = inst.FA;
int c = inst.FC;
bool round_input = !jit->js.op->fprIsSingle[c];
fpr.Lock(a, c, d);
switch (inst.SUBOP5)
{
@ -199,6 +201,7 @@ void Jit64::ps_muls(UGeckoInstruction inst)
default:
PanicAlert("ps_muls WTF!!!");
}
if (round_input)
Force25BitPrecision(XMM0, R(XMM0), XMM1);
MULPD(XMM0, fpr.R(a));
fpr.BindToRegister(d, false);
@ -306,6 +309,7 @@ void Jit64::ps_maddXX(UGeckoInstruction inst)
int c = inst.FC;
int d = inst.FD;
bool fma = cpu_info.bFMA && !Core::g_want_determinism;
bool round_input = !jit->js.op->fprIsSingle[c];
fpr.Lock(a,b,c,d);
if (fma)
@ -314,16 +318,21 @@ void Jit64::ps_maddXX(UGeckoInstruction inst)
if (inst.SUBOP5 == 14)
{
MOVDDUP(XMM0, fpr.R(c));
if (round_input)
Force25BitPrecision(XMM0, R(XMM0), XMM1);
}
else if (inst.SUBOP5 == 15)
{
avx_op(&XEmitter::VSHUFPD, &XEmitter::SHUFPD, XMM0, fpr.R(c), fpr.R(c), 3);
if (round_input)
Force25BitPrecision(XMM0, R(XMM0), XMM1);
}
else
{
if (round_input)
Force25BitPrecision(XMM0, fpr.R(c), XMM1);
else
MOVAPD(XMM0, fpr.R(c));
}
if (fma)

View File

@ -667,13 +667,17 @@ void EmuCodeBlock::WriteToConstRamAddress(int accessSize, OpArg arg, u32 address
MOV(accessSize, MDisp(RMEM, address & 0x3FFFFFFF), R(reg));
}
void EmuCodeBlock::ForceSinglePrecisionS(X64Reg xmm)
void EmuCodeBlock::ForceSinglePrecisionS(X64Reg output, X64Reg input)
{
// Most games don't need these. Zelda requires it though - some platforms get stuck without them.
if (jit->jo.accurateSinglePrecision)
{
CVTSD2SS(xmm, R(xmm));
CVTSS2SD(xmm, R(xmm));
CVTSD2SS(input, R(input));
CVTSS2SD(output, R(input));
}
else if (output != input)
{
MOVAPD(output, R(input));
}
}

View File

@ -130,7 +130,7 @@ public:
void avx_op(void (Gen::XEmitter::*avxOp)(Gen::X64Reg, Gen::X64Reg, Gen::OpArg, u8), void (Gen::XEmitter::*sseOp)(Gen::X64Reg, Gen::OpArg, u8),
Gen::X64Reg regOp, Gen::OpArg arg1, Gen::OpArg arg2, u8 imm);
void ForceSinglePrecisionS(Gen::X64Reg xmm);
void ForceSinglePrecisionS(Gen::X64Reg output, Gen::X64Reg input);
void ForceSinglePrecisionP(Gen::X64Reg output, Gen::X64Reg input);
void Force25BitPrecision(Gen::X64Reg output, Gen::OpArg input, Gen::X64Reg tmp);

View File

@ -827,10 +827,48 @@ u32 PPCAnalyzer::Analyze(u32 address, CodeBlock *block, CodeBuffer *buffer, u32
// the same location later).
gprInUse |= code[i].regsOut;
if (code[i].fregOut >= 0)
{
fprInUse[code[i].fregOut] = true;
if (strncmp(code[i].opinfo->opname, "stfd", 4))
fprInXmm[code[i].fregOut] = true;
}
// Forward scan, for flags that need the other direction for calculation.
BitSet32 fprIsSingle, fprIsDuplicated, fprIsStoreSafe;
for (u32 i = 0; i < block->m_num_instructions; i++)
{
code[i].fprIsSingle = fprIsSingle;
code[i].fprIsDuplicated = fprIsDuplicated;
code[i].fprIsStoreSafe = fprIsStoreSafe;
if (code[i].fregOut >= 0)
{
fprIsSingle[code[i].fregOut] = false;
fprIsDuplicated[code[i].fregOut] = false;
fprIsStoreSafe[code[i].fregOut] = false;
// Single, duplicated, and doesn't need PPC_FP.
if (code[i].opinfo->type == OPTYPE_SINGLEFP)
{
fprIsSingle[code[i].fregOut] = true;
fprIsDuplicated[code[i].fregOut] = true;
fprIsStoreSafe[code[i].fregOut] = true;
}
// Single and duplicated, but might be a denormal (not safe to skip PPC_FP).
// TODO: if we go directly from a load to store, skip conversion entirely?
// TODO: if we go directly from a load to a float instruction, and the value isn't used
// for anything else, we can skip PPC_FP on a load too.
if (!strncmp(code[i].opinfo->opname, "lfs", 3))
{
fprIsSingle[code[i].fregOut] = true;
fprIsDuplicated[code[i].fregOut] = true;
}
// Paired are still floats, but the top/bottom halves may differ.
if (code[i].opinfo->type == OPTYPE_PS || code[i].opinfo->type == OPTYPE_LOADPS)
{
fprIsSingle[code[i].fregOut] = true;
fprIsStoreSafe[code[i].fregOut] = true;
}
// Careful: changing the float mode in a block breaks this optimization, since
// a previous float op might have had had FTZ off while the later store has FTZ
// on. So, discard all information we have.
if (!strncmp(code[i].opinfo->opname, "mtfs", 4))
fprIsStoreSafe = BitSet32(0);
}
}
return address;

View File

@ -51,6 +51,13 @@ struct CodeOp //16B
// we do double stores from GPRs, so we don't want to load a PowerPC floating point register into
// an XMM only to move it again to a GPR afterwards.
BitSet32 fprInXmm;
// whether an fpr is known to be an actual single-precision value at this point in the block.
BitSet32 fprIsSingle;
// whether an fpr is known to have identical top and bottom halves (e.g. due to a single instruction)
BitSet32 fprIsDuplicated;
// whether an fpr is the output of a single-precision arithmetic instruction, i.e. whether we can safely
// skip PPC_FP.
BitSet32 fprIsStoreSafe;
};
struct BlockStats