Video: Make the game resolution (within the window) snap to the XFB size if they are within a ~1 pixel treshold on one axis only.

This takes care of making the image clearer in some edge cases where the game was already running at near perfect
 4:3 with no stretching, and the VI aspect ratio didn't match the XFB by one pixel, making the image stretched and blurry.
-Video: Fix `FindClosestIntegerResolution() using the window aspect ratio and not the draw aspect ratio, causing it to prefer
 stretching over black bars in cases when it wasn't desirable.
This commit is contained in:
Filoppi 2023-12-18 01:00:47 +02:00
parent ccf2435047
commit 3f102ea8c2
3 changed files with 48 additions and 6 deletions

View File

@ -194,7 +194,7 @@ protected:
void DoLoadState(PointerWrap& p); void DoLoadState(PointerWrap& p);
void DoSaveState(PointerWrap& p); void DoSaveState(PointerWrap& p);
float m_efb_scale = 0.0f; float m_efb_scale = 1.0f;
PixelFormat m_prev_efb_format; PixelFormat m_prev_efb_format;
std::unique_ptr<AbstractTexture> m_efb_color_texture; std::unique_ptr<AbstractTexture> m_efb_color_texture;

View File

@ -69,6 +69,32 @@ static std::tuple<int, int> FindClosestIntegerResolution(float width, float heig
return std::make_tuple(int_width, int_height); return std::make_tuple(int_width, int_height);
} }
static void TryToSnapToXFBSize(int& width, int& height, int xfb_width, int xfb_height)
{
// Screen is blanking (e.g. game booting up), nothing to do here
if (xfb_width == 0 || xfb_height == 0)
return;
// If there's only 1 pixel of either horizontal or vertical resolution difference,
// make the output size match a multiple of the XFB native resolution,
// to achieve the highest quality (least scaling).
// The reason why the threshold is 1 pixel (per internal resolution multiplier) is because of
// minor inaccuracies of the VI aspect ratio (and because some resolutions are rounded
// while other are floored).
const unsigned int efb_scale = g_framebuffer_manager->GetEFBScale();
const unsigned int pixel_difference_width = std::abs(width - xfb_width);
const unsigned int pixel_difference_height = std::abs(height - xfb_height);
// We ignore this if there's an offset on both hor and ver size,
// as then we'd be changing the aspect ratio too much and would need to
// re-calculate a lot of stuff (like black bars).
if ((pixel_difference_width <= efb_scale && pixel_difference_height == 0) ||
(pixel_difference_height <= efb_scale && pixel_difference_width == 0))
{
width = xfb_width;
height = xfb_height;
}
}
Presenter::Presenter() Presenter::Presenter()
{ {
m_config_changed = m_config_changed =
@ -114,6 +140,7 @@ bool Presenter::FetchXFB(u32 xfb_addr, u32 fb_width, u32 fb_stride, u32 fb_heigh
{ {
// Game is blanking the screen // Game is blanking the screen
m_xfb_entry.reset(); m_xfb_entry.reset();
m_xfb_rect = MathUtil::Rectangle<int>();
m_last_xfb_id = std::numeric_limits<u64>::max(); m_last_xfb_id = std::numeric_limits<u64>::max();
} }
else else
@ -534,6 +561,7 @@ void Presenter::UpdateDrawRectangle()
// FIXME: this breaks at very low widget sizes // FIXME: this breaks at very low widget sizes
// Make ControllerInterface aware of the render window region actually being used // Make ControllerInterface aware of the render window region actually being used
// to adjust mouse cursor inputs. // to adjust mouse cursor inputs.
// This also fails to acknowledge "g_ActiveConfig.bCrop".
g_controller_interface.SetAspectRatioAdjustment(draw_aspect_ratio / win_aspect_ratio); g_controller_interface.SetAspectRatioAdjustment(draw_aspect_ratio / win_aspect_ratio);
float draw_width = draw_aspect_ratio; float draw_width = draw_aspect_ratio;
@ -576,10 +604,20 @@ void Presenter::UpdateDrawRectangle()
} }
else else
{ {
// Find the best integer resolution: the closest aspect ratio with the least black bars
const float updated_draw_aspect_ratio = draw_width / draw_height;
const auto int_draw_res = const auto int_draw_res =
FindClosestIntegerResolution(draw_width, draw_height, win_aspect_ratio); FindClosestIntegerResolution(draw_width, draw_height, updated_draw_aspect_ratio);
int_draw_width = std::get<0>(int_draw_res); int_draw_width = std::get<0>(int_draw_res);
int_draw_height = std::get<1>(int_draw_res); int_draw_height = std::get<1>(int_draw_res);
if (!g_ActiveConfig.bCrop)
{
TryToSnapToXFBSize(int_draw_width, int_draw_height, m_xfb_rect.GetWidth(),
m_xfb_rect.GetHeight());
// We can't draw something bigger than the window, it will crop
int_draw_width = std::min(int_draw_width, static_cast<int>(win_width));
int_draw_height = std::min(int_draw_height, static_cast<int>(win_height));
}
} }
m_target_rectangle.left = static_cast<int>(std::round(win_width / 2.0 - int_draw_width / 2.0)); m_target_rectangle.left = static_cast<int>(std::round(win_width / 2.0 - int_draw_width / 2.0));
@ -620,13 +658,14 @@ std::tuple<int, int> Presenter::CalculateOutputDimensions(int width, int height,
if (!allow_stretch && aspect_mode == AspectMode::Stretch) if (!allow_stretch && aspect_mode == AspectMode::Stretch)
aspect_mode = AspectMode::Auto; aspect_mode = AspectMode::Auto;
// Find the closest integer aspect ratio,
// this avoids a small black line from being drawn on one of the four edges
if (!g_ActiveConfig.bCrop && aspect_mode != AspectMode::Stretch) if (!g_ActiveConfig.bCrop && aspect_mode != AspectMode::Stretch)
{ {
// Find the closest integer resolution for the aspect ratio,
// this avoids a small black line from being drawn on one of the four edges
const float draw_aspect_ratio = CalculateDrawAspectRatio(allow_stretch); const float draw_aspect_ratio = CalculateDrawAspectRatio(allow_stretch);
const auto [int_width, int_height] = auto [int_width, int_height] =
FindClosestIntegerResolution(scaled_width, scaled_height, draw_aspect_ratio); FindClosestIntegerResolution(scaled_width, scaled_height, draw_aspect_ratio);
TryToSnapToXFBSize(int_width, int_height, m_xfb_rect.GetWidth(), m_xfb_rect.GetHeight());
width = int_width; width = int_width;
height = int_height; height = int_height;
} }

View File

@ -138,7 +138,8 @@ private:
u32 m_auto_resolution_scale = 1; u32 m_auto_resolution_scale = 1;
RcTcacheEntry m_xfb_entry; RcTcacheEntry m_xfb_entry;
MathUtil::Rectangle<int> m_xfb_rect; // Internal resolution multiplier scaled XFB size
MathUtil::Rectangle<int> m_xfb_rect{0, 0, MAX_XFB_WIDTH, MAX_XFB_HEIGHT};
// Tracking of XFB textures so we don't render duplicate frames. // Tracking of XFB textures so we don't render duplicate frames.
u64 m_last_xfb_id = std::numeric_limits<u64>::max(); u64 m_last_xfb_id = std::numeric_limits<u64>::max();
@ -156,8 +157,10 @@ private:
// XFB tracking // XFB tracking
u64 m_last_xfb_ticks = 0; u64 m_last_xfb_ticks = 0;
u32 m_last_xfb_addr = 0; u32 m_last_xfb_addr = 0;
// Native XFB width
u32 m_last_xfb_width = MAX_XFB_WIDTH; u32 m_last_xfb_width = MAX_XFB_WIDTH;
u32 m_last_xfb_stride = 0; u32 m_last_xfb_stride = 0;
// Native XFB height
u32 m_last_xfb_height = MAX_XFB_HEIGHT; u32 m_last_xfb_height = MAX_XFB_HEIGHT;
Common::EventHook m_config_changed; Common::EventHook m_config_changed;