Merge pull request #10807 from merryhime/LogicalImm
Arm64Emitter: Simplify LogicalImm logic
This commit is contained in:
commit
38cb76dea5
|
@ -509,8 +509,6 @@ struct LogicalImm
|
|||
|
||||
constexpr LogicalImm(u64 value, u32 width)
|
||||
{
|
||||
bool negate = false;
|
||||
|
||||
// Logical immediates are encoded using parameters n, imm_s and imm_r using
|
||||
// the following table:
|
||||
//
|
||||
|
@ -526,28 +524,6 @@ struct LogicalImm
|
|||
// A pattern is constructed of size bits, where the least significant S+1 bits
|
||||
// are set. The pattern is rotated right by R, and repeated across a 32 or
|
||||
// 64-bit value, depending on destination register width.
|
||||
//
|
||||
// Put another way: the basic format of a logical immediate is a single
|
||||
// contiguous stretch of 1 bits, repeated across the whole word at intervals
|
||||
// given by a power of 2. To identify them quickly, we first locate the
|
||||
// lowest stretch of 1 bits, then the next 1 bit above that; that combination
|
||||
// is different for every logical immediate, so it gives us all the
|
||||
// information we need to identify the only logical immediate that our input
|
||||
// could be, and then we simply check if that's the value we actually have.
|
||||
//
|
||||
// (The rotation parameter does give the possibility of the stretch of 1 bits
|
||||
// going 'round the end' of the word. To deal with that, we observe that in
|
||||
// any situation where that happens the bitwise NOT of the value is also a
|
||||
// valid logical immediate. So we simply invert the input whenever its low bit
|
||||
// is set, and then we know that the rotated case can't arise.)
|
||||
|
||||
if (value & 1)
|
||||
{
|
||||
// If the low bit is 1, negate the value, and set a flag to remember that we
|
||||
// did (so that we can adjust the return values appropriately).
|
||||
negate = true;
|
||||
value = ~value;
|
||||
}
|
||||
|
||||
constexpr int kWRegSizeInBits = 32;
|
||||
|
||||
|
@ -558,156 +534,42 @@ struct LogicalImm
|
|||
// as a logical immediate will also be the correct encoding of the 32-bit
|
||||
// value.
|
||||
|
||||
// The most-significant 32 bits may not be zero (ie. negate is true) so
|
||||
// shift the value left before duplicating it.
|
||||
value <<= kWRegSizeInBits;
|
||||
value |= value >> kWRegSizeInBits;
|
||||
}
|
||||
|
||||
// The basic analysis idea: imagine our input word looks like this.
|
||||
//
|
||||
// 0011111000111110001111100011111000111110001111100011111000111110
|
||||
// c b a
|
||||
// |<--d-->|
|
||||
//
|
||||
// We find the lowest set bit (as an actual power-of-2 value, not its index)
|
||||
// and call it a. Then we add a to our original number, which wipes out the
|
||||
// bottommost stretch of set bits and replaces it with a 1 carried into the
|
||||
// next zero bit. Then we look for the new lowest set bit, which is in
|
||||
// position b, and subtract it, so now our number is just like the original
|
||||
// but with the lowest stretch of set bits completely gone. Now we find the
|
||||
// lowest set bit again, which is position c in the diagram above. Then we'll
|
||||
// measure the distance d between bit positions a and c (using CLZ), and that
|
||||
// tells us that the only valid logical immediate that could possibly be equal
|
||||
// to this number is the one in which a stretch of bits running from a to just
|
||||
// below b is replicated every d bits.
|
||||
u64 a = Common::LargestPowerOf2Divisor(value);
|
||||
u64 value_plus_a = value + a;
|
||||
u64 b = Common::LargestPowerOf2Divisor(value_plus_a);
|
||||
u64 value_plus_a_minus_b = value_plus_a - b;
|
||||
u64 c = Common::LargestPowerOf2Divisor(value_plus_a_minus_b);
|
||||
|
||||
int d = 0, clz_a = 0, out_n = 0;
|
||||
u64 mask = 0;
|
||||
|
||||
if (c != 0)
|
||||
if (value == 0 || (~value) == 0)
|
||||
{
|
||||
// The general case, in which there is more than one stretch of set bits.
|
||||
// Compute the repeat distance d, and set up a bitmask covering the basic
|
||||
// unit of repetition (i.e. a word with the bottom d bits set). Also, in all
|
||||
// of these cases the N bit of the output will be zero.
|
||||
clz_a = Common::CountLeadingZeros(a);
|
||||
int clz_c = Common::CountLeadingZeros(c);
|
||||
d = clz_a - clz_c;
|
||||
mask = ((UINT64_C(1) << d) - 1);
|
||||
out_n = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
// Handle degenerate cases.
|
||||
//
|
||||
// If any of those 'find lowest set bit' operations didn't find a set bit at
|
||||
// all, then the word will have been zero thereafter, so in particular the
|
||||
// last lowest_set_bit operation will have returned zero. So we can test for
|
||||
// all the special case conditions in one go by seeing if c is zero.
|
||||
if (a == 0)
|
||||
{
|
||||
// The input was zero (or all 1 bits, which will come to here too after we
|
||||
// inverted it at the start of the function), which is invalid.
|
||||
return;
|
||||
}
|
||||
else
|
||||
{
|
||||
// Otherwise, if c was zero but a was not, then there's just one stretch
|
||||
// of set bits in our word, meaning that we have the trivial case of
|
||||
// d == 64 and only one 'repetition'. Set up all the same variables as in
|
||||
// the general case above, and set the N bit in the output.
|
||||
clz_a = Common::CountLeadingZeros(a);
|
||||
d = 64;
|
||||
mask = ~UINT64_C(0);
|
||||
out_n = 1;
|
||||
}
|
||||
}
|
||||
|
||||
// If the repeat period d is not a power of two, it can't be encoded.
|
||||
if (!MathUtil::IsPow2<u64>(d))
|
||||
valid = false;
|
||||
return;
|
||||
|
||||
// If the bit stretch (b - a) does not fit within the mask derived from the
|
||||
// repeat period, then fail.
|
||||
if (((b - a) & ~mask) != 0)
|
||||
return;
|
||||
|
||||
// The only possible option is b - a repeated every d bits. Now we're going to
|
||||
// actually construct the valid logical immediate derived from that
|
||||
// specification, and see if it equals our original input.
|
||||
//
|
||||
// To repeat a value every d bits, we multiply it by a number of the form
|
||||
// (1 + 2^d + 2^(2d) + ...), i.e. 0x0001000100010001 or similar. These can
|
||||
// be derived using a table lookup on CLZ(d).
|
||||
constexpr std::array<u64, 6> multipliers = {{
|
||||
0x0000000000000001UL,
|
||||
0x0000000100000001UL,
|
||||
0x0001000100010001UL,
|
||||
0x0101010101010101UL,
|
||||
0x1111111111111111UL,
|
||||
0x5555555555555555UL,
|
||||
}};
|
||||
|
||||
const int multiplier_idx = Common::CountLeadingZeros((u64)d) - 57;
|
||||
|
||||
// Ensure that the index to the multipliers array is within bounds.
|
||||
DEBUG_ASSERT((multiplier_idx >= 0) &&
|
||||
(static_cast<size_t>(multiplier_idx) < multipliers.size()));
|
||||
|
||||
const u64 multiplier = multipliers[multiplier_idx];
|
||||
const u64 candidate = (b - a) * multiplier;
|
||||
|
||||
// The candidate pattern doesn't match our input value, so fail.
|
||||
if (value != candidate)
|
||||
return;
|
||||
|
||||
// We have a match! This is a valid logical immediate, so now we have to
|
||||
// construct the bits and pieces of the instruction encoding that generates
|
||||
// it.
|
||||
n = out_n;
|
||||
|
||||
// Count the set bits in our basic stretch. The special case of clz(0) == -1
|
||||
// makes the answer come out right for stretches that reach the very top of
|
||||
// the word (e.g. numbers like 0xffffc00000000000).
|
||||
const int clz_b = (b == 0) ? -1 : Common::CountLeadingZeros(b);
|
||||
s = clz_a - clz_b;
|
||||
|
||||
// Decide how many bits to rotate right by, to put the low bit of that basic
|
||||
// stretch in position a.
|
||||
if (negate)
|
||||
{
|
||||
// If we inverted the input right at the start of this function, here's
|
||||
// where we compensate: the number of set bits becomes the number of clear
|
||||
// bits, and the rotation count is based on position b rather than position
|
||||
// a (since b is the location of the 'lowest' 1 bit after inversion).
|
||||
s = d - s;
|
||||
r = (clz_b + 1) & (d - 1);
|
||||
}
|
||||
else
|
||||
{
|
||||
r = (clz_a + 1) & (d - 1);
|
||||
}
|
||||
|
||||
// Now we're done, except for having to encode the S output in such a way that
|
||||
// Normalize value, rotating it such that the LSB is 1:
|
||||
// If LSB is already one, we mask away the trailing sequence of ones and
|
||||
// pick the next sequence of ones. This ensures we get a complete element
|
||||
// that has not been cut-in-half due to rotation across the word boundary.
|
||||
|
||||
const size_t rotation = Common::CountTrailingZeros(value & (value + 1));
|
||||
const u64 normalized = Common::RotateRight(value, rotation);
|
||||
|
||||
const size_t element_size = Common::CountTrailingZeros(normalized & (normalized + 1));
|
||||
const size_t ones = Common::CountTrailingZeros(~normalized);
|
||||
|
||||
// Check the value is repeating; also ensures element size is a power of two.
|
||||
|
||||
if (Common::RotateRight(value, element_size) != value)
|
||||
{
|
||||
valid = false;
|
||||
return;
|
||||
}
|
||||
|
||||
// Now we're done. We just have to encode the S output in such a way that
|
||||
// it gives both the number of set bits and the length of the repeated
|
||||
// segment. The s field is encoded like this:
|
||||
//
|
||||
// imms size S
|
||||
// ssssss 64 UInt(ssssss)
|
||||
// 0sssss 32 UInt(sssss)
|
||||
// 10ssss 16 UInt(ssss)
|
||||
// 110sss 8 UInt(sss)
|
||||
// 1110ss 4 UInt(ss)
|
||||
// 11110s 2 UInt(s)
|
||||
//
|
||||
// So we 'or' (-d << 1) with our computed s to form imms.
|
||||
s = ((-d << 1) | (s - 1)) & 0x3f;
|
||||
// segment.
|
||||
|
||||
r = static_cast<u8>((element_size - rotation) & (element_size - 1));
|
||||
s = (((~element_size + 1) << 1) | (ones - 1)) & 0x3f;
|
||||
n = (element_size >> 6) & 1;
|
||||
|
||||
valid = true;
|
||||
}
|
||||
|
|
|
@ -411,6 +411,56 @@ constexpr int CountLeadingZeros(uint32_t value)
|
|||
#endif
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
constexpr int CountTrailingZerosConst(T value)
|
||||
{
|
||||
int result = sizeof(T) * 8;
|
||||
while (value)
|
||||
{
|
||||
result--;
|
||||
value <<= 1;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
constexpr int CountTrailingZeros(uint64_t value)
|
||||
{
|
||||
#if defined(__GNUC__)
|
||||
return value ? __builtin_ctzll(value) : 64;
|
||||
#elif defined(_MSC_VER)
|
||||
if (std::is_constant_evaluated())
|
||||
{
|
||||
return CountTrailingZerosConst(value);
|
||||
}
|
||||
else
|
||||
{
|
||||
unsigned long index = 0;
|
||||
return _BitScanForward64(&index, value) ? index : 64;
|
||||
}
|
||||
#else
|
||||
return CountTrailingZerosConst(value);
|
||||
#endif
|
||||
}
|
||||
|
||||
constexpr int CountTrailingZeros(uint32_t value)
|
||||
{
|
||||
#if defined(__GNUC__)
|
||||
return value ? __builtin_ctz(value) : 32;
|
||||
#elif defined(_MSC_VER)
|
||||
if (std::is_constant_evaluated())
|
||||
{
|
||||
return CountTrailingZerosConst(value);
|
||||
}
|
||||
else
|
||||
{
|
||||
unsigned long index = 0;
|
||||
return _BitScanForward(&index, value) ? index : 32;
|
||||
}
|
||||
#else
|
||||
return CountLeadingZerosConst(value);
|
||||
#endif
|
||||
}
|
||||
|
||||
#undef CONSTEXPR_FROM_INTRINSIC
|
||||
|
||||
template <typename T>
|
||||
|
|
|
@ -79,6 +79,37 @@ TEST(JitArm64, MovI2R_Rand)
|
|||
}
|
||||
}
|
||||
|
||||
// Construct and test every 64-bit logical immediate
|
||||
TEST(JitArm64, MovI2R_LogImm)
|
||||
{
|
||||
TestMovI2R test;
|
||||
|
||||
for (unsigned size = 2; size <= 64; size *= 2)
|
||||
{
|
||||
for (unsigned length = 1; length < size; ++length)
|
||||
{
|
||||
u64 imm = ~u64{0} >> (64 - length);
|
||||
for (unsigned e = size; e < 64; e *= 2)
|
||||
{
|
||||
imm |= imm << e;
|
||||
}
|
||||
for (unsigned rotation = 0; rotation < size; ++rotation)
|
||||
{
|
||||
test.Check64(imm);
|
||||
EXPECT_EQ(static_cast<bool>(LogicalImm(imm, 64)), true);
|
||||
|
||||
if (size < 64)
|
||||
{
|
||||
test.Check32(imm);
|
||||
EXPECT_EQ(static_cast<bool>(LogicalImm(static_cast<u32>(imm), 32)), true);
|
||||
}
|
||||
|
||||
imm = (imm >> 63) | (imm << 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST(JitArm64, MovI2R_ADP)
|
||||
{
|
||||
TestMovI2R test;
|
||||
|
|
Loading…
Reference in New Issue