MMIO: Cleanup Mapping class by using templates instead of macros.

This commit is contained in:
Tony Wasserka 2014-07-12 14:35:47 +02:00
parent 96cfbd1bb0
commit 38c8a4efb2
5 changed files with 115 additions and 81 deletions

View File

@ -224,10 +224,8 @@ ReadHandlingMethod<T>* ReadToSmaller(Mapping* mmio, u32 high_part_addr, u32 low_
{ {
typedef typename SmallerAccessSize<T>::value ST; typedef typename SmallerAccessSize<T>::value ST;
ReadHandler<ST>* high_part; ReadHandler<ST>* high_part = &mmio->GetHandlerForRead<ST>(high_part_addr);
ReadHandler<ST>* low_part; ReadHandler<ST>* low_part = &mmio->GetHandlerForRead<ST>(low_part_addr);
mmio->GetHandlerForRead(high_part_addr, &high_part);
mmio->GetHandlerForRead(low_part_addr, &low_part);
// TODO(delroth): optimize // TODO(delroth): optimize
return ComplexRead<T>([=](u32 addr) { return ComplexRead<T>([=](u32 addr) {
@ -241,10 +239,8 @@ WriteHandlingMethod<T>* WriteToSmaller(Mapping* mmio, u32 high_part_addr, u32 lo
{ {
typedef typename SmallerAccessSize<T>::value ST; typedef typename SmallerAccessSize<T>::value ST;
WriteHandler<ST>* high_part; WriteHandler<ST>* high_part = &mmio->GetHandlerForWrite<ST>(high_part_addr);
WriteHandler<ST>* low_part; WriteHandler<ST>* low_part = &mmio->GetHandlerForWrite<ST>(low_part_addr);
mmio->GetHandlerForWrite(high_part_addr, &high_part);
mmio->GetHandlerForWrite(low_part_addr, &low_part);
// TODO(delroth): optimize // TODO(delroth): optimize
return ComplexWrite<T>([=](u32 addr, T val) { return ComplexWrite<T>([=](u32 addr, T val) {
@ -258,8 +254,7 @@ ReadHandlingMethod<T>* ReadToLarger(Mapping* mmio, u32 larger_addr, u32 shift)
{ {
typedef typename LargerAccessSize<T>::value LT; typedef typename LargerAccessSize<T>::value LT;
ReadHandler<LT>* large; ReadHandler<LT>* large = &mmio->GetHandlerForRead<LT>(larger_addr);
mmio->GetHandlerForRead(larger_addr, &large);
// TODO(delroth): optimize // TODO(delroth): optimize
return ComplexRead<T>([large, shift](u32 addr) { return ComplexRead<T>([large, shift](u32 addr) {

View File

@ -75,25 +75,24 @@ public:
// //
// Example usages can be found in just about any HW/ module in Dolphin's // Example usages can be found in just about any HW/ module in Dolphin's
// codebase. // codebase.
#define REGISTER_FUNCS(Size) \ template<typename Unit>
void RegisterRead(u32 addr, ReadHandlingMethod<u##Size>* read) \ void RegisterRead(u32 addr, ReadHandlingMethod<Unit>* read)
{ \ {
u32 id = UniqueID(addr) / sizeof (u##Size); \ GetHandlerForRead<Unit>(addr).ResetMethod(read);
m_Read##Size##Handlers[id].ResetMethod(read); \ }
} \
void RegisterWrite(u32 addr, WriteHandlingMethod<u##Size>* write) \ template<typename Unit>
{ \ void RegisterWrite(u32 addr, WriteHandlingMethod<Unit>* write)
u32 id = UniqueID(addr) / sizeof (u##Size); \ {
m_Write##Size##Handlers[id].ResetMethod(write); \ GetHandlerForWrite<Unit>(addr).ResetMethod(write);
} \ }
void Register(u32 addr, ReadHandlingMethod<u##Size>* read, \
WriteHandlingMethod<u##Size>* write) \ template<typename Unit>
{ \ void Register(u32 addr, ReadHandlingMethod<Unit>* read, WriteHandlingMethod<Unit>* write)
RegisterRead(addr, read); \ {
RegisterWrite(addr, write); \ RegisterRead(addr, read);
RegisterWrite(addr, write);
} }
REGISTER_FUNCS(8) REGISTER_FUNCS(16) REGISTER_FUNCS(32)
#undef REGISTER_FUNCS
// Direct read/write interface. // Direct read/write interface.
// //
@ -101,54 +100,34 @@ public:
// address. They are used by the Memory:: access functions, which are // address. They are used by the Memory:: access functions, which are
// called in interpreter mode, from Dolphin's own code, or from JIT'd code // called in interpreter mode, from Dolphin's own code, or from JIT'd code
// where the access address could not be predicted. // where the access address could not be predicted.
// template<typename Unit>
// Note that for reads we cannot simply return the read value because C++ Unit Read(u32 addr)
// allows overloading only with parameter types, not return types. {
#define READ_FUNC(Size) \ return GetHandlerForRead<Unit>(addr).Read(addr);
void Read(u32 addr, u##Size* val) \
{ \
u32 id = UniqueID(addr) / sizeof (u##Size); \
*val = m_Read##Size##Handlers[id].Read(addr); \
} }
READ_FUNC(8) READ_FUNC(16) READ_FUNC(32)
#undef READ_FUNC
#define WRITE_FUNC(Size) \ template<typename Unit>
void Write(u32 addr, u##Size val) \ void Write(u32 addr, Unit val)
{ \ {
u32 id = UniqueID(addr) / sizeof (u##Size); \ GetHandlerForWrite<Unit>(addr).Write(addr, val);
m_Write##Size##Handlers[id].Write(addr, val); \
} }
WRITE_FUNC(8) WRITE_FUNC(16) WRITE_FUNC(32)
#undef WRITE_FUNC
// Handlers access interface. // Handlers access interface.
// //
// Use when you care more about how to access the MMIO register for an // Use when you care more about how to access the MMIO register for an
// address than the current value of that register. For example, this is // address than the current value of that register. For example, this is
// what could be used to implement fast MMIO accesses in Dolphin's JIT. // what could be used to implement fast MMIO accesses in Dolphin's JIT.
// template<typename Unit>
// Two variants of each GetHandler function are provided: one that returns ReadHandler<Unit>& GetHandlerForRead(u32 addr)
// the handler directly and one that has a pointer parameter to return the {
// value. This second variant is needed because C++ doesn't do overloads return GetReadHandler<Unit>(UniqueID(addr) / sizeof(Unit));
// based on return type but only based on argument types.
#define GET_HANDLERS_FUNC(Type, Size) \
Type##Handler<u##Size>& GetHandlerFor##Type##Size(u32 addr) \
{ \
return m_##Type##Size##Handlers[UniqueID(addr) / sizeof (u##Size)]; \
} \
void GetHandlerFor##Type(u32 addr, Type##Handler<u##Size>** h) \
{ \
*h = &GetHandlerFor##Type##Size(addr); \
} }
GET_HANDLERS_FUNC(Read, 8) GET_HANDLERS_FUNC(Read, 16) GET_HANDLERS_FUNC(Read, 32)
GET_HANDLERS_FUNC(Write, 8) GET_HANDLERS_FUNC(Write, 16) GET_HANDLERS_FUNC(Write, 32)
#undef GET_HANDLERS_FUNC
// Dummy 64 bits variants of these functions. While 64 bits MMIO access is template<typename Unit>
// not supported, we need these in order to make the code compile. WriteHandler<Unit>& GetHandlerForWrite(u32 addr)
void Read(u32 addr, u64* val) { _dbg_assert_(MEMMAP, 0); } {
void Write(u32 addr, u64 val) { _dbg_assert_(MEMMAP, 0); } return GetWriteHandler<Unit>(UniqueID(addr) / sizeof(Unit));
}
private: private:
// These arrays contain the handlers for each MMIO access type: read/write // These arrays contain the handlers for each MMIO access type: read/write
@ -159,11 +138,71 @@ private:
// Each array contains NUM_MMIOS / sizeof (AccessType) because larger // Each array contains NUM_MMIOS / sizeof (AccessType) because larger
// access types mean less possible adresses (assuming aligned only // access types mean less possible adresses (assuming aligned only
// accesses). // accesses).
#define HANDLERS(Size) \ template<typename Unit>
std::array<ReadHandler<u##Size>, NUM_MMIOS / sizeof (u##Size)> m_Read##Size##Handlers; \ struct HandlerArray
std::array<WriteHandler<u##Size>, NUM_MMIOS / sizeof (u##Size)> m_Write##Size##Handlers; {
HANDLERS(8) HANDLERS(16) HANDLERS(32) using Read = std::array<ReadHandler<Unit>, NUM_MMIOS / sizeof(Unit)>;
#undef HANDLERS using Write = std::array<WriteHandler<Unit>, NUM_MMIOS / sizeof(Unit)>;
};
HandlerArray<u8>::Read m_read_handlers8;
HandlerArray<u16>::Read m_read_handlers16;
HandlerArray<u32>::Read m_read_handlers32;
HandlerArray<u8>::Write m_write_handlers8;
HandlerArray<u16>::Write m_write_handlers16;
HandlerArray<u32>::Write m_write_handlers32;
// Getter functions for the handler arrays.
//
// TODO:
// It would be desirable to clean these methods up using tuples, i.e. doing something like
//
// auto handlers = std::tie(m_read_handlers8, m_read_handlers16, m_read_handlers32);
// return std::get<Unit>(handlers)[index];
//
// However, we cannot use this currently because of a compiler bug in clang, presumably related
// to http://llvm.org/bugs/show_bug.cgi?id=18345, due to which the above code makes the compiler
// exceed the template recursion depth.
// As a workaround, we cast all handlers to the requested one's type. This cast will
// compile to a NOP for the returned member variable, but it's necessary to get this
// code to compile at all.
template<typename Unit>
ReadHandler<Unit>& GetReadHandler(size_t index)
{
static_assert(std::is_same<Unit, u8>::value || std::is_same<Unit, u16>::value || std::is_same<Unit, u32>::value, "Invalid unit used");
using ArrayType = typename HandlerArray<Unit>::Read;
ArrayType& handler = *(std::is_same<Unit,u8>::value ? (ArrayType*)&m_read_handlers8
: std::is_same<Unit,u16>::value ? (ArrayType*)&m_read_handlers16
: (ArrayType*)&m_read_handlers32);
return handler[index];
}
template<typename Unit>
WriteHandler<Unit>& GetWriteHandler(size_t index)
{
static_assert(std::is_same<Unit, u8>::value || std::is_same<Unit, u16>::value || std::is_same<Unit, u32>::value, "Invalid unit used");
using ArrayType = typename HandlerArray<Unit>::Write;
ArrayType& handler = *(std::is_same<Unit,u8>::value ? (ArrayType*)&m_write_handlers8
: std::is_same<Unit,u16>::value ? (ArrayType*)&m_write_handlers16
: (ArrayType*)&m_write_handlers32);
return handler[index];
}
}; };
// Dummy 64 bits variants of these functions. While 64 bits MMIO access is
// not supported, we need these in order to make the code compile.
template<>
inline u64 Mapping::Read<u64>(u32 addr)
{
_dbg_assert_(MEMMAP, 0);
return 0;
}
template<>
inline void Mapping::Write(u32 addr, u64 val)
{
_dbg_assert_(MEMMAP, 0);
}
} }

View File

@ -92,7 +92,7 @@ inline void ReadFromHardware(T &_var, const u32 em_address, const u32 effective_
if (em_address < 0xcc000000) if (em_address < 0xcc000000)
_var = EFB_Read(em_address); _var = EFB_Read(em_address);
else else
mmio_mapping->Read(em_address, &_var); _var = mmio_mapping->Read<T>(em_address);
} }
else if (((em_address & 0xF0000000) == 0x80000000) || else if (((em_address & 0xF0000000) == 0x80000000) ||
((em_address & 0xF0000000) == 0xC0000000) || ((em_address & 0xF0000000) == 0xC0000000) ||

View File

@ -253,21 +253,21 @@ void EmuCodeBlock::MMIOLoadToReg(MMIO::Mapping* mmio, Gen::X64Reg reg_value,
{ {
MMIOReadCodeGenerator<u8> gen(this, registers_in_use, reg_value, MMIOReadCodeGenerator<u8> gen(this, registers_in_use, reg_value,
address, sign_extend); address, sign_extend);
mmio->GetHandlerForRead8(address).Visit(gen); mmio->GetHandlerForRead<u8>(address).Visit(gen);
break; break;
} }
case 16: case 16:
{ {
MMIOReadCodeGenerator<u16> gen(this, registers_in_use, reg_value, MMIOReadCodeGenerator<u16> gen(this, registers_in_use, reg_value,
address, sign_extend); address, sign_extend);
mmio->GetHandlerForRead16(address).Visit(gen); mmio->GetHandlerForRead<u16>(address).Visit(gen);
break; break;
} }
case 32: case 32:
{ {
MMIOReadCodeGenerator<u32> gen(this, registers_in_use, reg_value, MMIOReadCodeGenerator<u32> gen(this, registers_in_use, reg_value,
address, sign_extend); address, sign_extend);
mmio->GetHandlerForRead32(address).Visit(gen); mmio->GetHandlerForRead<u32>(address).Visit(gen);
break; break;
} }
} }

View File

@ -54,9 +54,9 @@ TEST_F(MappingTest, ReadConstant)
m_mapping->Register(0xCC001234, MMIO::Constant<u16>(0x1234), MMIO::Nop<u16>()); m_mapping->Register(0xCC001234, MMIO::Constant<u16>(0x1234), MMIO::Nop<u16>());
m_mapping->Register(0xCC001234, MMIO::Constant<u32>(0xdeadbeef), MMIO::Nop<u32>()); m_mapping->Register(0xCC001234, MMIO::Constant<u32>(0xdeadbeef), MMIO::Nop<u32>());
u8 val8; m_mapping->Read(0xCC001234, &val8); u8 val8 = m_mapping->Read<u8>(0xCC001234);
u16 val16; m_mapping->Read(0xCC001234, &val16); u16 val16 = m_mapping->Read<u16>(0xCC001234);
u32 val32; m_mapping->Read(0xCC001234, &val32); u32 val32 = m_mapping->Read<u32>(0xCC001234);
EXPECT_EQ(0x42, val8); EXPECT_EQ(0x42, val8);
EXPECT_EQ(0x1234, val16); EXPECT_EQ(0x1234, val16);
@ -75,9 +75,9 @@ TEST_F(MappingTest, ReadWriteDirect)
for (u32 i = 0; i < 100; ++i) for (u32 i = 0; i < 100; ++i)
{ {
u8 val8; m_mapping->Read(0xCC001234, &val8); EXPECT_EQ(i, val8); u8 val8 = m_mapping->Read<u8>(0xCC001234); EXPECT_EQ(i, val8);
u16 val16; m_mapping->Read(0xCC001234, &val16); EXPECT_EQ(i, val16); u16 val16 = m_mapping->Read<u16>(0xCC001234); EXPECT_EQ(i, val16);
u32 val32; m_mapping->Read(0xCC001234, &val32); EXPECT_EQ(i, val32); u32 val32 = m_mapping->Read<u32>(0xCC001234); EXPECT_EQ(i, val32);
val8 += 1; m_mapping->Write(0xCC001234, val8); val8 += 1; m_mapping->Write(0xCC001234, val8);
val16 += 1; m_mapping->Write(0xCC001234, val16); val16 += 1; m_mapping->Write(0xCC001234, val16);
@ -102,7 +102,7 @@ TEST_F(MappingTest, ReadWriteComplex)
}) })
); );
u8 val; m_mapping->Read(0xCC001234, &val); EXPECT_EQ(0x12, val); u8 val = m_mapping->Read<u8>(0xCC001234); EXPECT_EQ(0x12, val);
m_mapping->Write(0xCC001234, (u8)0x34); m_mapping->Write(0xCC001234, (u8)0x34);
EXPECT_TRUE(read_called); EXPECT_TRUE(read_called);