Merge pull request #7905 from stenzek/vulkan-cleanup

Vulkan: Simplify command buffer fence tracking
This commit is contained in:
Connor McLaughlin 2019-03-29 21:56:28 +10:00 committed by GitHub
commit 377615b06f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
14 changed files with 208 additions and 430 deletions

View File

@ -99,7 +99,7 @@ void BoundingBox::Flush()
StagingBuffer::BufferMemoryBarrier( StagingBuffer::BufferMemoryBarrier(
g_command_buffer_mgr->GetCurrentCommandBuffer(), m_gpu_buffer, VK_ACCESS_TRANSFER_WRITE_BIT, g_command_buffer_mgr->GetCurrentCommandBuffer(), m_gpu_buffer, VK_ACCESS_TRANSFER_WRITE_BIT,
VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT, 0, BUFFER_SIZE, VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT, 0, BUFFER_SIZE,
VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT); VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT);
} }
// We're now up-to-date. // We're now up-to-date.
@ -223,7 +223,7 @@ void BoundingBox::Readback()
StagingBuffer::BufferMemoryBarrier( StagingBuffer::BufferMemoryBarrier(
g_command_buffer_mgr->GetCurrentCommandBuffer(), m_gpu_buffer, g_command_buffer_mgr->GetCurrentCommandBuffer(), m_gpu_buffer,
VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT, 0, VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT, 0,
BUFFER_SIZE, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT); BUFFER_SIZE, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT);
m_readback_buffer->PrepareForGPUWrite(g_command_buffer_mgr->GetCurrentCommandBuffer(), m_readback_buffer->PrepareForGPUWrite(g_command_buffer_mgr->GetCurrentCommandBuffer(),
VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_TRANSFER_WRITE_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT); VK_PIPELINE_STAGE_TRANSFER_BIT);
@ -237,7 +237,7 @@ void BoundingBox::Readback()
StagingBuffer::BufferMemoryBarrier( StagingBuffer::BufferMemoryBarrier(
g_command_buffer_mgr->GetCurrentCommandBuffer(), m_gpu_buffer, VK_ACCESS_TRANSFER_READ_BIT, g_command_buffer_mgr->GetCurrentCommandBuffer(), m_gpu_buffer, VK_ACCESS_TRANSFER_READ_BIT,
VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT, 0, BUFFER_SIZE, VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT, 0, BUFFER_SIZE,
VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT); VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT);
m_readback_buffer->FlushGPUCache(g_command_buffer_mgr->GetCurrentCommandBuffer(), m_readback_buffer->FlushGPUCache(g_command_buffer_mgr->GetCurrentCommandBuffer(),
VK_ACCESS_TRANSFER_WRITE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT); VK_ACCESS_TRANSFER_WRITE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT);

View File

@ -54,7 +54,6 @@ bool CommandBufferManager::CreateCommandBuffers()
{ {
resources.init_command_buffer_used = false; resources.init_command_buffer_used = false;
resources.semaphore_used = false; resources.semaphore_used = false;
resources.needs_fence_wait = false;
VkCommandPoolCreateInfo pool_info = {VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO, nullptr, 0, VkCommandPoolCreateInfo pool_info = {VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO, nullptr, 0,
g_vulkan_context->GetGraphicsQueueFamilyIndex()}; g_vulkan_context->GetGraphicsQueueFamilyIndex()};
@ -211,43 +210,61 @@ void CommandBufferManager::WaitForWorkerThreadIdle()
m_submit_semaphore.Post(); m_submit_semaphore.Post();
} }
void CommandBufferManager::WaitForGPUIdle() void CommandBufferManager::WaitForFenceCounter(u64 fence_counter)
{ {
WaitForWorkerThreadIdle(); if (m_completed_fence_counter >= fence_counter)
vkDeviceWaitIdle(g_vulkan_context->GetDevice());
}
void CommandBufferManager::WaitForFence(VkFence fence)
{
// Find the command buffer that this fence corresponds to.
u32 command_buffer_index = 0;
for (; command_buffer_index < static_cast<u32>(m_frame_resources.size()); command_buffer_index++)
{
if (m_frame_resources[command_buffer_index].fence == fence)
break;
}
ASSERT(command_buffer_index < m_frame_resources.size());
// Has this command buffer already been waited for?
if (!m_frame_resources[command_buffer_index].needs_fence_wait)
return; return;
// Find the first command buffer which covers this counter value.
u32 index = (m_current_frame + 1) % NUM_COMMAND_BUFFERS;
while (index != m_current_frame)
{
if (m_frame_resources[index].fence_counter >= fence_counter)
break;
index = (index + 1) % NUM_COMMAND_BUFFERS;
}
ASSERT(index != m_current_frame);
WaitForCommandBufferCompletion(index);
}
void CommandBufferManager::WaitForCommandBufferCompletion(u32 index)
{
// Ensure this command buffer has been submitted. // Ensure this command buffer has been submitted.
WaitForWorkerThreadIdle(); WaitForWorkerThreadIdle();
// Wait for this command buffer to be completed. // Wait for this command buffer to be completed.
VkResult res = VkResult res = vkWaitForFences(g_vulkan_context->GetDevice(), 1, &m_frame_resources[index].fence,
vkWaitForFences(g_vulkan_context->GetDevice(), 1, VK_TRUE, UINT64_MAX);
&m_frame_resources[command_buffer_index].fence, VK_TRUE, UINT64_MAX);
if (res != VK_SUCCESS) if (res != VK_SUCCESS)
LOG_VULKAN_ERROR(res, "vkWaitForFences failed: "); LOG_VULKAN_ERROR(res, "vkWaitForFences failed: ");
// Immediately fire callbacks and cleanups, since the commands has been completed. // Clean up any resources for command buffers between the last known completed buffer and this
m_frame_resources[command_buffer_index].needs_fence_wait = false; // now-completed command buffer. If we use >2 buffers, this may be more than one buffer.
OnCommandBufferExecuted(command_buffer_index); const u64 now_completed_counter = m_frame_resources[index].fence_counter;
u32 cleanup_index = (m_current_frame + 1) % NUM_COMMAND_BUFFERS;
while (cleanup_index != m_current_frame)
{
FrameResources& resources = m_frame_resources[cleanup_index];
if (resources.fence_counter > now_completed_counter)
break;
if (resources.fence_counter > m_completed_fence_counter)
{
for (auto& it : resources.cleanup_resources)
it();
resources.cleanup_resources.clear();
}
cleanup_index = (cleanup_index + 1) % NUM_COMMAND_BUFFERS;
}
m_completed_fence_counter = now_completed_counter;
} }
void CommandBufferManager::SubmitCommandBuffer(bool submit_on_worker_thread, void CommandBufferManager::SubmitCommandBuffer(bool submit_on_worker_thread,
bool wait_for_completion,
VkSwapchainKHR present_swap_chain, VkSwapchainKHR present_swap_chain,
uint32_t present_image_index) uint32_t present_image_index)
{ {
@ -263,16 +280,13 @@ void CommandBufferManager::SubmitCommandBuffer(bool submit_on_worker_thread,
} }
} }
// This command buffer now has commands, so can't be re-used without waiting.
resources.needs_fence_wait = true;
// Grab the semaphore before submitting command buffer either on-thread or off-thread. // Grab the semaphore before submitting command buffer either on-thread or off-thread.
// This prevents a race from occurring where a second command buffer is executed // This prevents a race from occurring where a second command buffer is executed
// before the worker thread has woken and executed the first one yet. // before the worker thread has woken and executed the first one yet.
m_submit_semaphore.Wait(); m_submit_semaphore.Wait();
// Submitting off-thread? // Submitting off-thread?
if (m_use_threaded_submission && submit_on_worker_thread) if (m_use_threaded_submission && submit_on_worker_thread && !wait_for_completion)
{ {
// Push to the pending submit queue. // Push to the pending submit queue.
{ {
@ -287,6 +301,8 @@ void CommandBufferManager::SubmitCommandBuffer(bool submit_on_worker_thread,
{ {
// Pass through to normal submission path. // Pass through to normal submission path.
SubmitCommandBuffer(m_current_frame, present_swap_chain, present_image_index); SubmitCommandBuffer(m_current_frame, present_swap_chain, present_image_index);
if (wait_for_completion)
WaitForCommandBufferCompletion(m_current_frame);
} }
// Switch to next cmdbuffer. // Switch to next cmdbuffer.
@ -365,39 +381,15 @@ void CommandBufferManager::SubmitCommandBuffer(u32 command_buffer_index,
m_submit_semaphore.Post(); m_submit_semaphore.Post();
} }
void CommandBufferManager::OnCommandBufferExecuted(u32 index)
{
FrameResources& resources = m_frame_resources[index];
// Fire fence tracking callbacks.
for (auto iter = m_fence_callbacks.begin(); iter != m_fence_callbacks.end();)
{
auto backup_iter = iter++;
backup_iter->second(resources.fence);
}
// Clean up all objects pending destruction on this command buffer
for (auto& it : resources.cleanup_resources)
it();
resources.cleanup_resources.clear();
}
void CommandBufferManager::BeginCommandBuffer() void CommandBufferManager::BeginCommandBuffer()
{ {
// Move to the next command buffer. // Move to the next command buffer.
m_current_frame = (m_current_frame + 1) % NUM_COMMAND_BUFFERS; const u32 next_buffer_index = (m_current_frame + 1) % NUM_COMMAND_BUFFERS;
FrameResources& resources = m_frame_resources[m_current_frame]; FrameResources& resources = m_frame_resources[next_buffer_index];
// Wait for the GPU to finish with all resources for this command buffer. // Wait for the GPU to finish with all resources for this command buffer.
if (resources.needs_fence_wait) if (resources.fence_counter > m_completed_fence_counter)
{ WaitForCommandBufferCompletion(next_buffer_index);
VkResult res =
vkWaitForFences(g_vulkan_context->GetDevice(), 1, &resources.fence, true, UINT64_MAX);
if (res != VK_SUCCESS)
LOG_VULKAN_ERROR(res, "vkWaitForFences failed: ");
OnCommandBufferExecuted(m_current_frame);
}
// Reset fence to unsignaled before starting. // Reset fence to unsignaled before starting.
VkResult res = vkResetFences(g_vulkan_context->GetDevice(), 1, &resources.fence); VkResult res = vkResetFences(g_vulkan_context->GetDevice(), 1, &resources.fence);
@ -427,6 +419,8 @@ void CommandBufferManager::BeginCommandBuffer()
// Reset upload command buffer state // Reset upload command buffer state
resources.init_command_buffer_used = false; resources.init_command_buffer_used = false;
resources.semaphore_used = false; resources.semaphore_used = false;
resources.fence_counter = m_next_fence_counter++;
m_current_frame = next_buffer_index;
} }
void CommandBufferManager::DeferBufferDestruction(VkBuffer object) void CommandBufferManager::DeferBufferDestruction(VkBuffer object)
@ -471,19 +465,5 @@ void CommandBufferManager::DeferImageViewDestruction(VkImageView object)
[object]() { vkDestroyImageView(g_vulkan_context->GetDevice(), object, nullptr); }); [object]() { vkDestroyImageView(g_vulkan_context->GetDevice(), object, nullptr); });
} }
void CommandBufferManager::AddFenceSignaledCallback(const void* key, FenceSignaledCallback callback)
{
// Shouldn't be adding twice.
ASSERT(m_fence_callbacks.find(key) == m_fence_callbacks.end());
m_fence_callbacks.emplace(key, std::move(callback));
}
void CommandBufferManager::RemoveFenceSignaledCallback(const void* key)
{
auto iter = m_fence_callbacks.find(key);
ASSERT(iter != m_fence_callbacks.end());
m_fence_callbacks.erase(iter);
}
std::unique_ptr<CommandBufferManager> g_command_buffer_mgr; std::unique_ptr<CommandBufferManager> g_command_buffer_mgr;
} // namespace Vulkan } // namespace Vulkan

View File

@ -51,9 +51,15 @@ public:
// Allocates a descriptors set from the pool reserved for the current frame. // Allocates a descriptors set from the pool reserved for the current frame.
VkDescriptorSet AllocateDescriptorSet(VkDescriptorSetLayout set_layout); VkDescriptorSet AllocateDescriptorSet(VkDescriptorSetLayout set_layout);
// Fence "counters" are used to track which commands have been completed by the GPU.
// If the last completed fence counter is greater or equal to N, it means that the work
// associated counter N has been completed by the GPU. The value of N to associate with
// commands can be retreived by calling GetCurrentFenceCounter().
u64 GetCompletedFenceCounter() const { return m_completed_fence_counter; }
// Gets the fence that will be signaled when the currently executing command buffer is // Gets the fence that will be signaled when the currently executing command buffer is
// queued and executed. Do not wait for this fence before the buffer is executed. // queued and executed. Do not wait for this fence before the buffer is executed.
VkFence GetCurrentCommandBufferFence() const { return m_frame_resources[m_current_frame].fence; } u64 GetCurrentFenceCounter() const { return m_frame_resources[m_current_frame].fence_counter; }
// Returns the semaphore for the current command buffer, which can be used to ensure the // Returns the semaphore for the current command buffer, which can be used to ensure the
// swap chain image is ready before the command buffer executes. // swap chain image is ready before the command buffer executes.
@ -66,15 +72,11 @@ public:
// Ensure that the worker thread has submitted any previous command buffers and is idle. // Ensure that the worker thread has submitted any previous command buffers and is idle.
void WaitForWorkerThreadIdle(); void WaitForWorkerThreadIdle();
// Ensure that the worker thread has both submitted all commands, and the GPU has caught up.
// Use with caution, huge performance penalty.
void WaitForGPUIdle();
// Wait for a fence to be completed. // Wait for a fence to be completed.
// Also invokes callbacks for completion. // Also invokes callbacks for completion.
void WaitForFence(VkFence fence); void WaitForFenceCounter(u64 fence_counter);
void SubmitCommandBuffer(bool submit_on_worker_thread, void SubmitCommandBuffer(bool submit_on_worker_thread, bool wait_for_completion,
VkSwapchainKHR present_swap_chain = VK_NULL_HANDLE, VkSwapchainKHR present_swap_chain = VK_NULL_HANDLE,
uint32_t present_image_index = 0xFFFFFFFF); uint32_t present_image_index = 0xFFFFFFFF);
@ -90,25 +92,17 @@ public:
void DeferImageDestruction(VkImage object); void DeferImageDestruction(VkImage object);
void DeferImageViewDestruction(VkImageView object); void DeferImageViewDestruction(VkImageView object);
// Instruct the manager to fire the specified callback when a fence is flagged to be signaled.
// This happens when command buffers are executed, and can be tested if signaled, which means
// that all commands up to the point when the callback was fired have completed.
using FenceSignaledCallback = std::function<void(VkFence)>;
void AddFenceSignaledCallback(const void* key, FenceSignaledCallback callback);
void RemoveFenceSignaledCallback(const void* key);
private: private:
bool CreateCommandBuffers(); bool CreateCommandBuffers();
void DestroyCommandBuffers(); void DestroyCommandBuffers();
bool CreateSubmitThread(); bool CreateSubmitThread();
void WaitForCommandBufferCompletion(u32 command_buffer_index);
void SubmitCommandBuffer(u32 command_buffer_index, VkSwapchainKHR present_swap_chain, void SubmitCommandBuffer(u32 command_buffer_index, VkSwapchainKHR present_swap_chain,
u32 present_image_index); u32 present_image_index);
void BeginCommandBuffer(); void BeginCommandBuffer();
void OnCommandBufferExecuted(u32 index);
struct FrameResources struct FrameResources
{ {
// [0] - Init (upload) command buffer, [1] - draw command buffer // [0] - Init (upload) command buffer, [1] - draw command buffer
@ -117,19 +111,19 @@ private:
VkDescriptorPool descriptor_pool = VK_NULL_HANDLE; VkDescriptorPool descriptor_pool = VK_NULL_HANDLE;
VkFence fence = VK_NULL_HANDLE; VkFence fence = VK_NULL_HANDLE;
VkSemaphore semaphore = VK_NULL_HANDLE; VkSemaphore semaphore = VK_NULL_HANDLE;
u64 fence_counter = 0;
bool init_command_buffer_used = false; bool init_command_buffer_used = false;
bool semaphore_used = false; bool semaphore_used = false;
bool needs_fence_wait = false;
std::vector<std::function<void()>> cleanup_resources; std::vector<std::function<void()>> cleanup_resources;
}; };
u64 m_next_fence_counter = 1;
u64 m_completed_fence_counter = 0;
std::array<FrameResources, NUM_COMMAND_BUFFERS> m_frame_resources; std::array<FrameResources, NUM_COMMAND_BUFFERS> m_frame_resources;
u32 m_current_frame; u32 m_current_frame;
// callbacks when a fence point is set
std::map<const void*, FenceSignaledCallback> m_fence_callbacks;
// Threaded command buffer execution // Threaded command buffer execution
// Semaphore determines when a command buffer can be queued // Semaphore determines when a command buffer can be queued
Common::Semaphore m_submit_semaphore; Common::Semaphore m_submit_semaphore;

View File

@ -14,7 +14,6 @@
#include "VideoBackends/Vulkan/CommandBufferManager.h" #include "VideoBackends/Vulkan/CommandBufferManager.h"
#include "VideoBackends/Vulkan/Renderer.h" #include "VideoBackends/Vulkan/Renderer.h"
#include "VideoBackends/Vulkan/StagingBuffer.h"
#include "VideoBackends/Vulkan/StateTracker.h" #include "VideoBackends/Vulkan/StateTracker.h"
#include "VideoBackends/Vulkan/VulkanContext.h" #include "VideoBackends/Vulkan/VulkanContext.h"
@ -24,17 +23,10 @@ PerfQuery::PerfQuery() = default;
PerfQuery::~PerfQuery() PerfQuery::~PerfQuery()
{ {
g_command_buffer_mgr->RemoveFenceSignaledCallback(this);
if (m_query_pool != VK_NULL_HANDLE) if (m_query_pool != VK_NULL_HANDLE)
vkDestroyQueryPool(g_vulkan_context->GetDevice(), m_query_pool, nullptr); vkDestroyQueryPool(g_vulkan_context->GetDevice(), m_query_pool, nullptr);
} }
Vulkan::PerfQuery* PerfQuery::GetInstance()
{
return static_cast<PerfQuery*>(g_perf_query.get());
}
bool PerfQuery::Initialize() bool PerfQuery::Initialize()
{ {
if (!CreateQueryPool()) if (!CreateQueryPool())
@ -43,50 +35,30 @@ bool PerfQuery::Initialize()
return false; return false;
} }
if (!CreateReadbackBuffer())
{
PanicAlert("Failed to create readback buffer");
return false;
}
g_command_buffer_mgr->AddFenceSignaledCallback(
this, std::bind(&PerfQuery::OnFenceSignaled, this, std::placeholders::_1));
return true; return true;
} }
void PerfQuery::EnableQuery(PerfQueryGroup type) void PerfQuery::EnableQuery(PerfQueryGroup type)
{ {
// Have we used half of the query buffer already?
if (m_query_count > m_query_buffer.size() / 2)
NonBlockingPartialFlush();
// Block if there are no free slots. // Block if there are no free slots.
if (m_query_count == PERF_QUERY_BUFFER_SIZE) // Otherwise, try to keep half of them available.
{ if (m_query_count > m_query_buffer.size() / 2)
// ERROR_LOG(VIDEO, "Flushed query buffer early!"); PartialFlush(m_query_count == PERF_QUERY_BUFFER_SIZE);
BlockingPartialFlush();
}
if (type == PQG_ZCOMP_ZCOMPLOC || type == PQG_ZCOMP) if (type == PQG_ZCOMP_ZCOMPLOC || type == PQG_ZCOMP)
{ {
u32 index = (m_query_read_pos + m_query_count) % PERF_QUERY_BUFFER_SIZE; ActiveQuery& entry = m_query_buffer[m_query_next_pos];
ActiveQuery& entry = m_query_buffer[index]; DEBUG_ASSERT(!entry.has_value);
ASSERT(!entry.active && !entry.available); entry.has_value = true;
entry.active = true;
m_query_count++;
DEBUG_LOG(VIDEO, "start query %u", index);
// Use precise queries if supported, otherwise boolean (which will be incorrect). // Use precise queries if supported, otherwise boolean (which will be incorrect).
VkQueryControlFlags flags = 0; VkQueryControlFlags flags =
if (g_vulkan_context->SupportsPreciseOcclusionQueries()) g_vulkan_context->SupportsPreciseOcclusionQueries() ? VK_QUERY_CONTROL_PRECISE_BIT : 0;
flags = VK_QUERY_CONTROL_PRECISE_BIT;
// Ensure the query starts within a render pass. // Ensure the query starts within a render pass.
// TODO: Is this needed?
StateTracker::GetInstance()->BeginRenderPass(); StateTracker::GetInstance()->BeginRenderPass();
vkCmdBeginQuery(g_command_buffer_mgr->GetCurrentCommandBuffer(), m_query_pool, index, flags); vkCmdBeginQuery(g_command_buffer_mgr->GetCurrentCommandBuffer(), m_query_pool, m_query_next_pos,
flags);
} }
} }
@ -94,16 +66,17 @@ void PerfQuery::DisableQuery(PerfQueryGroup type)
{ {
if (type == PQG_ZCOMP_ZCOMPLOC || type == PQG_ZCOMP) if (type == PQG_ZCOMP_ZCOMPLOC || type == PQG_ZCOMP)
{ {
// DisableQuery should be called for each EnableQuery, so subtract one to get the previous one. vkCmdEndQuery(g_command_buffer_mgr->GetCurrentCommandBuffer(), m_query_pool, m_query_next_pos);
u32 index = (m_query_read_pos + m_query_count - 1) % PERF_QUERY_BUFFER_SIZE; m_query_next_pos = (m_query_next_pos + 1) % PERF_QUERY_BUFFER_SIZE;
vkCmdEndQuery(g_command_buffer_mgr->GetCurrentCommandBuffer(), m_query_pool, index); m_query_count++;
} }
} }
void PerfQuery::ResetQuery() void PerfQuery::ResetQuery()
{ {
m_query_count = 0; m_query_count = 0;
m_query_read_pos = 0; m_query_readback_pos = 0;
m_query_next_pos = 0;
std::fill_n(m_results, ArraySize(m_results), 0); std::fill_n(m_results, ArraySize(m_results), 0);
// Reset entire query pool, ensuring all queries are ready to write to. // Reset entire query pool, ensuring all queries are ready to write to.
@ -111,34 +84,20 @@ void PerfQuery::ResetQuery()
vkCmdResetQueryPool(g_command_buffer_mgr->GetCurrentCommandBuffer(), m_query_pool, 0, vkCmdResetQueryPool(g_command_buffer_mgr->GetCurrentCommandBuffer(), m_query_pool, 0,
PERF_QUERY_BUFFER_SIZE); PERF_QUERY_BUFFER_SIZE);
for (auto& entry : m_query_buffer) std::memset(m_query_buffer.data(), 0, sizeof(ActiveQuery) * m_query_buffer.size());
{
entry.pending_fence = VK_NULL_HANDLE;
entry.available = false;
entry.active = false;
}
} }
u32 PerfQuery::GetQueryResult(PerfQueryType type) u32 PerfQuery::GetQueryResult(PerfQueryType type)
{ {
u32 result = 0; u32 result = 0;
if (type == PQ_ZCOMP_INPUT_ZCOMPLOC || type == PQ_ZCOMP_OUTPUT_ZCOMPLOC) if (type == PQ_ZCOMP_INPUT_ZCOMPLOC || type == PQ_ZCOMP_OUTPUT_ZCOMPLOC)
{
result = m_results[PQG_ZCOMP_ZCOMPLOC]; result = m_results[PQG_ZCOMP_ZCOMPLOC];
}
else if (type == PQ_ZCOMP_INPUT || type == PQ_ZCOMP_OUTPUT) else if (type == PQ_ZCOMP_INPUT || type == PQ_ZCOMP_OUTPUT)
{
result = m_results[PQG_ZCOMP]; result = m_results[PQG_ZCOMP];
}
else if (type == PQ_BLEND_INPUT) else if (type == PQ_BLEND_INPUT)
{
result = m_results[PQG_ZCOMP] + m_results[PQG_ZCOMP_ZCOMPLOC]; result = m_results[PQG_ZCOMP] + m_results[PQG_ZCOMP_ZCOMPLOC];
}
else if (type == PQ_EFB_COPY_CLOCKS) else if (type == PQ_EFB_COPY_CLOCKS)
{
result = m_results[PQG_EFB_COPY_CLOCKS]; result = m_results[PQG_EFB_COPY_CLOCKS];
}
return result / 4; return result / 4;
} }
@ -146,7 +105,7 @@ u32 PerfQuery::GetQueryResult(PerfQueryType type)
void PerfQuery::FlushResults() void PerfQuery::FlushResults()
{ {
while (!IsFlushed()) while (!IsFlushed())
BlockingPartialFlush(); PartialFlush(true);
} }
bool PerfQuery::IsFlushed() const bool PerfQuery::IsFlushed() const
@ -175,194 +134,79 @@ bool PerfQuery::CreateQueryPool()
return true; return true;
} }
bool PerfQuery::CreateReadbackBuffer() void PerfQuery::ReadbackQueries()
{ {
m_readback_buffer = StagingBuffer::Create(STAGING_BUFFER_TYPE_READBACK, const u64 completed_fence_counter = g_command_buffer_mgr->GetCompletedFenceCounter();
PERF_QUERY_BUFFER_SIZE * sizeof(PerfQueryDataType),
VK_BUFFER_USAGE_TRANSFER_DST_BIT);
// Leave the buffer persistently mapped, we invalidate it when we need to read.
if (!m_readback_buffer || !m_readback_buffer->Map())
return false;
return true;
}
void PerfQuery::QueueCopyQueryResults(u32 start_index, u32 query_count)
{
DEBUG_LOG(VIDEO, "queue copy of queries %u-%u", start_index, start_index + query_count - 1);
// Transition buffer for GPU write
// TODO: Is this needed?
m_readback_buffer->PrepareForGPUWrite(g_command_buffer_mgr->GetCurrentCommandBuffer(),
VK_ACCESS_TRANSFER_WRITE_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT);
// Copy from queries -> buffer
vkCmdCopyQueryPoolResults(g_command_buffer_mgr->GetCurrentCommandBuffer(), m_query_pool,
start_index, query_count, m_readback_buffer->GetBuffer(),
start_index * sizeof(PerfQueryDataType), sizeof(PerfQueryDataType),
VK_QUERY_RESULT_WAIT_BIT);
// Prepare for host readback
m_readback_buffer->FlushGPUCache(g_command_buffer_mgr->GetCurrentCommandBuffer(),
VK_ACCESS_TRANSFER_WRITE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT);
// Reset queries so they're ready to use again
vkCmdResetQueryPool(g_command_buffer_mgr->GetCurrentCommandBuffer(), m_query_pool, start_index,
query_count);
// Flag all queries as available, but with a fence that has to be completed first
for (u32 i = 0; i < query_count; i++)
{
u32 index = start_index + i;
ActiveQuery& entry = m_query_buffer[index];
entry.pending_fence = g_command_buffer_mgr->GetCurrentCommandBufferFence();
entry.available = true;
entry.active = false;
}
}
void PerfQuery::FlushQueries()
{
// Flag all pending queries that aren't available as available after execution.
u32 copy_start_index = 0;
u32 copy_count = 0;
for (u32 i = 0; i < m_query_count; i++)
{
u32 index = (m_query_read_pos + i) % PERF_QUERY_BUFFER_SIZE;
ActiveQuery& entry = m_query_buffer[index];
// Skip already-copied queries (will happen if a flush hasn't occurred and
// a command buffer hasn't finished executing).
if (entry.available)
{
// These should be grouped together, and at the start.
ASSERT(copy_count == 0);
continue;
}
// If this wrapped around, we need to flush the entries before the end of the buffer.
ASSERT(entry.active);
if (index < copy_start_index)
{
QueueCopyQueryResults(copy_start_index, copy_count);
copy_start_index = index;
copy_count = 0;
}
else if (copy_count == 0)
{
copy_start_index = index;
}
copy_count++;
}
if (copy_count > 0)
QueueCopyQueryResults(copy_start_index, copy_count);
}
void PerfQuery::OnFenceSignaled(VkFence fence)
{
// Need to save these since ProcessResults will modify them. // Need to save these since ProcessResults will modify them.
u32 query_read_pos = m_query_read_pos; const u32 outstanding_queries = m_query_count;
u32 query_count = m_query_count; u32 readback_count = 0;
for (u32 i = 0; i < outstanding_queries; i++)
// Flush as many queries as are bound to this fence.
u32 flush_start_index = 0;
u32 flush_count = 0;
for (u32 i = 0; i < query_count; i++)
{ {
u32 index = (query_read_pos + i) % PERF_QUERY_BUFFER_SIZE; u32 index = (m_query_readback_pos + readback_count) % PERF_QUERY_BUFFER_SIZE;
if (m_query_buffer[index].pending_fence != fence) const ActiveQuery& entry = m_query_buffer[index];
{ if (entry.fence_counter > completed_fence_counter)
// These should be grouped together, at the end.
break; break;
}
// If this wrapped around, we need to flush the entries before the end of the buffer. // If this wrapped around, we need to flush the entries before the end of the buffer.
if (index < flush_start_index) if (index < m_query_readback_pos)
{ {
ProcessResults(flush_start_index, flush_count); ReadbackQueries(readback_count);
flush_start_index = index; DEBUG_ASSERT(m_query_readback_pos == 0);
flush_count = 0; readback_count = 0;
}
else if (flush_count == 0)
{
flush_start_index = index;
}
flush_count++;
} }
if (flush_count > 0) readback_count++;
ProcessResults(flush_start_index, flush_count);
} }
void PerfQuery::ProcessResults(u32 start_index, u32 query_count) if (readback_count > 0)
{ ReadbackQueries(readback_count);
// Invalidate CPU caches before reading back. }
m_readback_buffer->InvalidateCPUCache(start_index * sizeof(PerfQueryDataType),
query_count * sizeof(PerfQueryDataType));
void PerfQuery::ReadbackQueries(u32 query_count)
{
// Should be at maximum query_count queries pending. // Should be at maximum query_count queries pending.
ASSERT(query_count <= m_query_count); ASSERT(query_count <= m_query_count &&
DEBUG_LOG(VIDEO, "process queries %u-%u", start_index, start_index + query_count - 1); (m_query_readback_pos + query_count) <= PERF_QUERY_BUFFER_SIZE);
// Read back from the GPU.
VkResult res =
vkGetQueryPoolResults(g_vulkan_context->GetDevice(), m_query_pool, m_query_readback_pos,
query_count, query_count * sizeof(PerfQueryDataType),
m_query_result_buffer.data(), sizeof(PerfQueryDataType), 0);
if (res != VK_SUCCESS)
LOG_VULKAN_ERROR(res, "vkGetQueryPoolResults failed: ");
// Remove pending queries. // Remove pending queries.
for (u32 i = 0; i < query_count; i++) for (u32 i = 0; i < query_count; i++)
{ {
u32 index = (m_query_read_pos + i) % PERF_QUERY_BUFFER_SIZE; u32 index = (m_query_readback_pos + i) % PERF_QUERY_BUFFER_SIZE;
ActiveQuery& entry = m_query_buffer[index]; ActiveQuery& entry = m_query_buffer[index];
// Should have a fence associated with it (waiting for a result). // Should have a fence associated with it (waiting for a result).
ASSERT(entry.pending_fence != VK_NULL_HANDLE); DEBUG_ASSERT(entry.fence_counter != 0);
entry.pending_fence = VK_NULL_HANDLE; entry.fence_counter = 0;
entry.available = false; entry.has_value = false;
entry.active = false;
// Grab result from readback buffer, it will already have been invalidated.
u32 result;
m_readback_buffer->Read(index * sizeof(PerfQueryDataType), &result, sizeof(result), false);
DEBUG_LOG(VIDEO, " query result %u", result);
// NOTE: Reported pixel metrics should be referenced to native resolution // NOTE: Reported pixel metrics should be referenced to native resolution
m_results[entry.query_type] += m_results[entry.query_type] +=
static_cast<u32>(static_cast<u64>(result) * EFB_WIDTH / g_renderer->GetTargetWidth() * static_cast<u32>(static_cast<u64>(m_query_result_buffer[i]) * EFB_WIDTH /
EFB_HEIGHT / g_renderer->GetTargetHeight()); g_renderer->GetTargetWidth() * EFB_HEIGHT / g_renderer->GetTargetHeight());
} }
m_query_read_pos = (m_query_read_pos + query_count) % PERF_QUERY_BUFFER_SIZE; m_query_readback_pos = (m_query_readback_pos + query_count) % PERF_QUERY_BUFFER_SIZE;
m_query_count -= query_count; m_query_count -= query_count;
} }
void PerfQuery::NonBlockingPartialFlush() void PerfQuery::PartialFlush(bool blocking)
{ {
if (IsFlushed())
return;
// Submit a command buffer in the background if the front query is not bound to one. // Submit a command buffer in the background if the front query is not bound to one.
// Ideally this will complete before the buffer fills. if (blocking || m_query_buffer[m_query_readback_pos].fence_counter ==
if (m_query_buffer[m_query_read_pos].pending_fence == VK_NULL_HANDLE) g_command_buffer_mgr->GetCurrentFenceCounter())
Renderer::GetInstance()->ExecuteCommandBuffer(true, false); {
Renderer::GetInstance()->ExecuteCommandBuffer(true, blocking);
} }
void PerfQuery::BlockingPartialFlush() ReadbackQueries();
{
if (IsFlushed())
return;
// If the first pending query is needing command buffer execution, do that.
ActiveQuery& entry = m_query_buffer[m_query_read_pos];
if (entry.pending_fence == VK_NULL_HANDLE)
{
// This will callback OnCommandBufferQueued which will set the fence on the entry.
// We wait for completion, which will also call OnCommandBufferExecuted, and clear the fence.
Renderer::GetInstance()->ExecuteCommandBuffer(false, true);
}
else
{
// The command buffer has been submitted, but is awaiting completion.
// Wait for the fence to complete, which will call OnCommandBufferExecuted.
g_command_buffer_mgr->WaitForFence(entry.pending_fence);
}
} }
} // namespace Vulkan } // namespace Vulkan

View File

@ -13,18 +13,15 @@
namespace Vulkan namespace Vulkan
{ {
class StagingBuffer;
class PerfQuery : public PerfQueryBase class PerfQuery : public PerfQueryBase
{ {
public: public:
PerfQuery(); PerfQuery();
~PerfQuery(); ~PerfQuery();
static PerfQuery* GetInstance(); static PerfQuery* GetInstance() { return static_cast<PerfQuery*>(g_perf_query.get()); }
bool Initialize(); bool Initialize();
void FlushQueries();
void EnableQuery(PerfQueryGroup type) override; void EnableQuery(PerfQueryGroup type) override;
void DisableQuery(PerfQueryGroup type) override; void DisableQuery(PerfQueryGroup type) override;
@ -34,37 +31,30 @@ public:
bool IsFlushed() const override; bool IsFlushed() const override;
private: private:
struct ActiveQuery // u32 is used for the sample counts.
{ using PerfQueryDataType = u32;
PerfQueryType query_type;
VkFence pending_fence;
bool available;
bool active;
};
bool CreateQueryPool();
bool CreateReadbackBuffer();
void QueueCopyQueryResults(u32 start_index, u32 query_count);
void ProcessResults(u32 start_index, u32 query_count);
void OnCommandBufferQueued(VkCommandBuffer command_buffer, VkFence fence);
void OnFenceSignaled(VkFence fence);
void NonBlockingPartialFlush();
void BlockingPartialFlush();
// when testing in SMS: 64 was too small, 128 was ok // when testing in SMS: 64 was too small, 128 was ok
// TODO: This should be size_t, but the base class uses u32s // TODO: This should be size_t, but the base class uses u32s
using PerfQueryDataType = u32;
static const u32 PERF_QUERY_BUFFER_SIZE = 512; static const u32 PERF_QUERY_BUFFER_SIZE = 512;
std::array<ActiveQuery, PERF_QUERY_BUFFER_SIZE> m_query_buffer = {};
u32 m_query_read_pos = 0;
// TODO: Investigate using pipeline statistics to implement other query types struct ActiveQuery
{
u64 fence_counter;
PerfQueryType query_type;
bool has_value;
};
bool CreateQueryPool();
void ReadbackQueries();
void ReadbackQueries(u32 query_count);
void PartialFlush(bool blocking);
VkQueryPool m_query_pool = VK_NULL_HANDLE; VkQueryPool m_query_pool = VK_NULL_HANDLE;
u32 m_query_readback_pos = 0;
// Buffer containing query results. Each query is a u32. u32 m_query_next_pos = 0;
std::unique_ptr<StagingBuffer> m_readback_buffer; std::array<ActiveQuery, PERF_QUERY_BUFFER_SIZE> m_query_buffer = {};
std::array<PerfQueryDataType, PERF_QUERY_BUFFER_SIZE> m_query_result_buffer = {};
}; };
} // namespace Vulkan } // namespace Vulkan

View File

@ -304,7 +304,6 @@ void Renderer::PresentBackbuffer()
{ {
// End drawing to backbuffer // End drawing to backbuffer
StateTracker::GetInstance()->EndRenderPass(); StateTracker::GetInstance()->EndRenderPass();
PerfQuery::GetInstance()->FlushQueries();
// Transition the backbuffer to PRESENT_SRC to ensure all commands drawing // Transition the backbuffer to PRESENT_SRC to ensure all commands drawing
// to it have finished before present. // to it have finished before present.
@ -315,7 +314,7 @@ void Renderer::PresentBackbuffer()
// Because this final command buffer is rendering to the swap chain, we need to wait for // Because this final command buffer is rendering to the swap chain, we need to wait for
// the available semaphore to be signaled before executing the buffer. This final submission // the available semaphore to be signaled before executing the buffer. This final submission
// can happen off-thread in the background while we're preparing the next frame. // can happen off-thread in the background while we're preparing the next frame.
g_command_buffer_mgr->SubmitCommandBuffer(true, m_swap_chain->GetSwapChain(), g_command_buffer_mgr->SubmitCommandBuffer(true, false, m_swap_chain->GetSwapChain(),
m_swap_chain->GetCurrentImageIndex()); m_swap_chain->GetCurrentImageIndex());
// New cmdbuffer, so invalidate state. // New cmdbuffer, so invalidate state.
@ -325,13 +324,8 @@ void Renderer::PresentBackbuffer()
void Renderer::ExecuteCommandBuffer(bool submit_off_thread, bool wait_for_completion) void Renderer::ExecuteCommandBuffer(bool submit_off_thread, bool wait_for_completion)
{ {
StateTracker::GetInstance()->EndRenderPass(); StateTracker::GetInstance()->EndRenderPass();
PerfQuery::GetInstance()->FlushQueries();
// If we're waiting for completion, don't bother waking the worker thread. g_command_buffer_mgr->SubmitCommandBuffer(submit_off_thread, wait_for_completion);
const VkFence pending_fence = g_command_buffer_mgr->GetCurrentCommandBufferFence();
g_command_buffer_mgr->SubmitCommandBuffer(submit_off_thread && wait_for_completion);
if (wait_for_completion)
g_command_buffer_mgr->WaitForFence(pending_fence);
StateTracker::GetInstance()->InvalidateCachedState(); StateTracker::GetInstance()->InvalidateCachedState();
} }
@ -550,10 +544,6 @@ void Renderer::UnbindTexture(const AbstractTexture* texture)
void Renderer::ResetSamplerStates() void Renderer::ResetSamplerStates()
{ {
// Ensure none of the sampler objects are in use.
// This assumes that none of the samplers are in use on the command list currently being recorded.
g_command_buffer_mgr->WaitForGPUIdle();
// Invalidate all sampler states, next draw will re-initialize them. // Invalidate all sampler states, next draw will re-initialize them.
for (u32 i = 0; i < m_sampler_states.size(); i++) for (u32 i = 0; i < m_sampler_states.size(); i++)
{ {

View File

@ -62,11 +62,13 @@ bool StateTracker::Initialize()
VKTexture::Create(TextureConfig(1, 1, 1, 1, 1, AbstractTextureFormat::RGBA8, 0)); VKTexture::Create(TextureConfig(1, 1, 1, 1, 1, AbstractTextureFormat::RGBA8, 0));
if (!m_dummy_texture) if (!m_dummy_texture)
return false; return false;
m_dummy_texture->TransitionToLayout(g_command_buffer_mgr->GetCurrentInitCommandBuffer(),
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
// Initialize all samplers to point by default // Initialize all samplers to point by default
for (size_t i = 0; i < NUM_PIXEL_SHADER_SAMPLERS; i++) for (size_t i = 0; i < NUM_PIXEL_SHADER_SAMPLERS; i++)
{ {
m_bindings.samplers[i].imageLayout = VK_IMAGE_LAYOUT_UNDEFINED; m_bindings.samplers[i].imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
m_bindings.samplers[i].imageView = m_dummy_texture->GetView(); m_bindings.samplers[i].imageView = m_dummy_texture->GetView();
m_bindings.samplers[i].sampler = g_object_cache->GetPointSampler(); m_bindings.samplers[i].sampler = g_object_cache->GetPointSampler();
} }
@ -223,14 +225,14 @@ void StateTracker::UnbindTexture(VkImageView view)
if (it.imageView == view) if (it.imageView == view)
{ {
it.imageView = m_dummy_texture->GetView(); it.imageView = m_dummy_texture->GetView();
it.imageLayout = VK_IMAGE_LAYOUT_UNDEFINED; it.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
} }
} }
if (m_bindings.image_texture.imageView == view) if (m_bindings.image_texture.imageView == view)
{ {
m_bindings.image_texture.imageView = m_dummy_texture->GetView(); m_bindings.image_texture.imageView = m_dummy_texture->GetView();
m_bindings.image_texture.imageLayout = VK_IMAGE_LAYOUT_UNDEFINED; m_bindings.image_texture.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
} }
} }

View File

@ -19,14 +19,10 @@ namespace Vulkan
{ {
StreamBuffer::StreamBuffer(VkBufferUsageFlags usage, u32 size) : m_usage(usage), m_size(size) StreamBuffer::StreamBuffer(VkBufferUsageFlags usage, u32 size) : m_usage(usage), m_size(size)
{ {
g_command_buffer_mgr->AddFenceSignaledCallback(
this, std::bind(&StreamBuffer::OnFenceSignaled, this, std::placeholders::_1));
} }
StreamBuffer::~StreamBuffer() StreamBuffer::~StreamBuffer()
{ {
g_command_buffer_mgr->RemoveFenceSignaledCallback(this);
if (m_host_pointer) if (m_host_pointer)
vkUnmapMemory(g_vulkan_context->GetDevice(), m_memory); vkUnmapMemory(g_vulkan_context->GetDevice(), m_memory);
@ -189,8 +185,6 @@ bool StreamBuffer::ReserveMemory(u32 num_bytes, u32 alignment)
// Can we find a fence to wait on that will give us enough memory? // Can we find a fence to wait on that will give us enough memory?
if (WaitForClearSpace(required_bytes)) if (WaitForClearSpace(required_bytes))
{ {
ASSERT(m_current_offset == m_current_gpu_position ||
(m_current_offset + required_bytes) < m_current_gpu_position);
m_current_offset = Common::AlignUp(m_current_offset, alignment); m_current_offset = Common::AlignUp(m_current_offset, alignment);
m_last_allocation_size = num_bytes; m_last_allocation_size = num_bytes;
return true; return true;
@ -225,36 +219,40 @@ void StreamBuffer::UpdateCurrentFencePosition()
return; return;
// Has the offset changed since the last fence? // Has the offset changed since the last fence?
const VkFence fence = g_command_buffer_mgr->GetCurrentCommandBufferFence(); const u64 counter = g_command_buffer_mgr->GetCurrentFenceCounter();
if (!m_tracked_fences.empty() && m_tracked_fences.back().first == fence) if (!m_tracked_fences.empty() && m_tracked_fences.back().first == counter)
{ {
// Still haven't executed a command buffer, so just update the offset. // Still haven't executed a command buffer, so just update the offset.
m_tracked_fences.back().second = m_current_offset; m_tracked_fences.back().second = m_current_offset;
return; return;
} }
m_tracked_fences.emplace_back(fence, m_current_offset); // New buffer, so update the GPU position while we're at it.
UpdateGPUPosition();
m_tracked_fences.emplace_back(counter, m_current_offset);
} }
void StreamBuffer::OnFenceSignaled(VkFence fence) void StreamBuffer::UpdateGPUPosition()
{ {
// Locate the entry for this fence (if any, we may have been forced to wait already) auto start = m_tracked_fences.begin();
auto iter = std::find_if(m_tracked_fences.begin(), m_tracked_fences.end(), auto end = start;
[fence](const auto& it) { return it.first == fence; });
if (iter != m_tracked_fences.end()) const u64 completed_counter = g_command_buffer_mgr->GetCompletedFenceCounter();
while (end != m_tracked_fences.end() && completed_counter >= end->first)
{ {
// Update the GPU position, and remove any fences before this fence (since m_current_gpu_position = end->second;
// it is implied that they have been signaled as well, though the callback ++end;
// should have removed them already).
m_current_gpu_position = iter->second;
m_tracked_fences.erase(m_tracked_fences.begin(), ++iter);
} }
if (start != end)
m_tracked_fences.erase(start, end);
} }
bool StreamBuffer::WaitForClearSpace(u32 num_bytes) bool StreamBuffer::WaitForClearSpace(u32 num_bytes)
{ {
u32 new_offset = 0; u32 new_offset = 0;
u32 new_gpu_position = 0;
auto iter = m_tracked_fences.begin(); auto iter = m_tracked_fences.begin();
for (; iter != m_tracked_fences.end(); iter++) for (; iter != m_tracked_fences.end(); iter++)
{ {
@ -265,20 +263,32 @@ bool StreamBuffer::WaitForClearSpace(u32 num_bytes)
u32 gpu_position = iter->second; u32 gpu_position = iter->second;
if (m_current_offset == gpu_position) if (m_current_offset == gpu_position)
{ {
// Start at the start of the buffer again.
new_offset = 0; new_offset = 0;
new_gpu_position = 0;
break; break;
} }
// Assuming that we wait for this fence, are we allocating in front of the GPU? // Assuming that we wait for this fence, are we allocating in front of the GPU?
if (m_current_offset > gpu_position) if (m_current_offset > gpu_position)
{ {
// This would suggest the GPU has now followed us and wrapped around, so we have from
// m_current_position..m_size free, as well as and 0..gpu_position.
const u32 remaining_space_after_offset = m_size - m_current_offset;
if (remaining_space_after_offset >= num_bytes)
{
// Switch to allocating in front of the GPU, using the remainder of the buffer.
new_offset = m_current_offset;
new_gpu_position = gpu_position;
break;
}
// We can wrap around to the start, behind the GPU, if there is enough space. // We can wrap around to the start, behind the GPU, if there is enough space.
// We use > here because otherwise we'd end up lining up with the GPU, and then the // We use > here because otherwise we'd end up lining up with the GPU, and then the
// allocator would assume that the GPU has consumed what we just wrote. // allocator would assume that the GPU has consumed what we just wrote.
if (gpu_position > num_bytes) if (gpu_position > num_bytes)
{ {
new_offset = 0; new_offset = 0;
new_gpu_position = gpu_position;
break; break;
} }
} }
@ -292,6 +302,7 @@ bool StreamBuffer::WaitForClearSpace(u32 num_bytes)
{ {
// Leave the offset as-is, but update the GPU position. // Leave the offset as-is, but update the GPU position.
new_offset = m_current_offset; new_offset = m_current_offset;
new_gpu_position = gpu_position;
break; break;
} }
} }
@ -300,14 +311,17 @@ bool StreamBuffer::WaitForClearSpace(u32 num_bytes)
// Did any fences satisfy this condition? // Did any fences satisfy this condition?
// Has the command buffer been executed yet? If not, the caller should execute it. // Has the command buffer been executed yet? If not, the caller should execute it.
if (iter == m_tracked_fences.end() || if (iter == m_tracked_fences.end() ||
iter->first == g_command_buffer_mgr->GetCurrentCommandBufferFence()) iter->first == g_command_buffer_mgr->GetCurrentFenceCounter())
{ {
return false; return false;
} }
// Wait until this fence is signaled. This will fire the callback, updating the GPU position. // Wait until this fence is signaled. This will fire the callback, updating the GPU position.
g_command_buffer_mgr->WaitForFence(iter->first); g_command_buffer_mgr->WaitForFenceCounter(iter->first);
m_tracked_fences.erase(m_tracked_fences.begin(),
m_current_offset == iter->second ? m_tracked_fences.end() : ++iter);
m_current_offset = new_offset; m_current_offset = new_offset;
m_current_gpu_position = new_gpu_position;
return true; return true;
} }

View File

@ -34,7 +34,7 @@ public:
private: private:
bool AllocateBuffer(); bool AllocateBuffer();
void UpdateCurrentFencePosition(); void UpdateCurrentFencePosition();
void OnFenceSignaled(VkFence fence); void UpdateGPUPosition();
// Waits for as many fences as needed to allocate num_bytes bytes from the buffer. // Waits for as many fences as needed to allocate num_bytes bytes from the buffer.
bool WaitForClearSpace(u32 num_bytes); bool WaitForClearSpace(u32 num_bytes);
@ -50,7 +50,7 @@ private:
u8* m_host_pointer = nullptr; u8* m_host_pointer = nullptr;
// List of fences and the corresponding positions in the buffer // List of fences and the corresponding positions in the buffer
std::deque<std::pair<VkFence, u32>> m_tracked_fences; std::deque<std::pair<u64, u32>> m_tracked_fences;
bool m_coherent_mapping = false; bool m_coherent_mapping = false;
}; };

View File

@ -674,11 +674,7 @@ VKStagingTexture::VKStagingTexture(StagingTextureType type, const TextureConfig&
{ {
} }
VKStagingTexture::~VKStagingTexture() VKStagingTexture::~VKStagingTexture() = default;
{
if (m_needs_flush)
VKStagingTexture::Flush();
}
std::unique_ptr<VKStagingTexture> VKStagingTexture::Create(StagingTextureType type, std::unique_ptr<VKStagingTexture> VKStagingTexture::Create(StagingTextureType type,
const TextureConfig& config) const TextureConfig& config)
@ -739,14 +735,6 @@ void VKStagingTexture::CopyFromTexture(const AbstractTexture* src,
ASSERT(dst_rect.left >= 0 && static_cast<u32>(dst_rect.right) <= m_config.width && ASSERT(dst_rect.left >= 0 && static_cast<u32>(dst_rect.right) <= m_config.width &&
dst_rect.top >= 0 && static_cast<u32>(dst_rect.bottom) <= m_config.height); dst_rect.top >= 0 && static_cast<u32>(dst_rect.bottom) <= m_config.height);
if (m_needs_flush)
{
// Drop copy before reusing it.
g_command_buffer_mgr->RemoveFenceSignaledCallback(this);
m_flush_fence = VK_NULL_HANDLE;
m_needs_flush = false;
}
StateTracker::GetInstance()->EndRenderPass(); StateTracker::GetInstance()->EndRenderPass();
VkImageLayout old_layout = src_tex->GetLayout(); VkImageLayout old_layout = src_tex->GetLayout();
@ -773,16 +761,7 @@ void VKStagingTexture::CopyFromTexture(const AbstractTexture* src,
src_tex->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(), old_layout); src_tex->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(), old_layout);
m_needs_flush = true; m_needs_flush = true;
m_flush_fence = g_command_buffer_mgr->GetCurrentCommandBufferFence(); m_flush_fence_counter = g_command_buffer_mgr->GetCurrentFenceCounter();
g_command_buffer_mgr->AddFenceSignaledCallback(this, [this](VkFence fence) {
if (m_flush_fence != fence)
return;
m_flush_fence = VK_NULL_HANDLE;
m_needs_flush = false;
g_command_buffer_mgr->RemoveFenceSignaledCallback(this);
m_staging_buffer->InvalidateCPUCache();
});
} }
void VKStagingTexture::CopyToTexture(const MathUtil::Rectangle<int>& src_rect, AbstractTexture* dst, void VKStagingTexture::CopyToTexture(const MathUtil::Rectangle<int>& src_rect, AbstractTexture* dst,
@ -798,14 +777,6 @@ void VKStagingTexture::CopyToTexture(const MathUtil::Rectangle<int>& src_rect, A
ASSERT(dst_rect.left >= 0 && static_cast<u32>(dst_rect.right) <= dst_tex->GetWidth() && ASSERT(dst_rect.left >= 0 && static_cast<u32>(dst_rect.right) <= dst_tex->GetWidth() &&
dst_rect.top >= 0 && static_cast<u32>(dst_rect.bottom) <= dst_tex->GetHeight()); dst_rect.top >= 0 && static_cast<u32>(dst_rect.bottom) <= dst_tex->GetHeight());
if (m_needs_flush)
{
// Drop copy before reusing it.
g_command_buffer_mgr->RemoveFenceSignaledCallback(this);
m_flush_fence = VK_NULL_HANDLE;
m_needs_flush = false;
}
// Flush caches before copying. // Flush caches before copying.
m_staging_buffer->FlushCPUCache(); m_staging_buffer->FlushCPUCache();
StateTracker::GetInstance()->EndRenderPass(); StateTracker::GetInstance()->EndRenderPass();
@ -833,15 +804,7 @@ void VKStagingTexture::CopyToTexture(const MathUtil::Rectangle<int>& src_rect, A
dst_tex->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(), old_layout); dst_tex->TransitionToLayout(g_command_buffer_mgr->GetCurrentCommandBuffer(), old_layout);
m_needs_flush = true; m_needs_flush = true;
m_flush_fence = g_command_buffer_mgr->GetCurrentCommandBufferFence(); m_flush_fence_counter = g_command_buffer_mgr->GetCurrentFenceCounter();
g_command_buffer_mgr->AddFenceSignaledCallback(this, [this](VkFence fence) {
if (m_flush_fence != fence)
return;
m_flush_fence = VK_NULL_HANDLE;
m_needs_flush = false;
g_command_buffer_mgr->RemoveFenceSignaledCallback(this);
});
} }
bool VKStagingTexture::Map() bool VKStagingTexture::Map()
@ -860,25 +823,23 @@ void VKStagingTexture::Flush()
if (!m_needs_flush) if (!m_needs_flush)
return; return;
// Either of the below two calls will cause the callback to fire. // Is this copy in the current command buffer?
g_command_buffer_mgr->RemoveFenceSignaledCallback(this); if (g_command_buffer_mgr->GetCurrentFenceCounter() == m_flush_fence_counter)
if (m_flush_fence == g_command_buffer_mgr->GetCurrentCommandBufferFence())
{ {
// The readback is in the current command buffer, and we must execute it. // Execute the command buffer and wait for it to finish.
Renderer::GetInstance()->ExecuteCommandBuffer(false, true); Renderer::GetInstance()->ExecuteCommandBuffer(false, true);
} }
else else
{ {
// WaitForFence should fire the callback. // Wait for the GPU to finish with it.
g_command_buffer_mgr->WaitForFence(m_flush_fence); g_command_buffer_mgr->WaitForFenceCounter(m_flush_fence_counter);
} }
DEBUG_ASSERT(m_flush_fence == VK_NULL_HANDLE);
m_needs_flush = false;
// For readback textures, invalidate the CPU cache as there is new data there. // For readback textures, invalidate the CPU cache as there is new data there.
if (m_type == StagingTextureType::Readback || m_type == StagingTextureType::Mutable) if (m_type == StagingTextureType::Readback || m_type == StagingTextureType::Mutable)
m_staging_buffer->InvalidateCPUCache(); m_staging_buffer->InvalidateCPUCache();
m_needs_flush = false;
} }
VKFramebuffer::VKFramebuffer(VKTexture* color_attachment, VKTexture* depth_attachment, u32 width, VKFramebuffer::VKFramebuffer(VKTexture* color_attachment, VKTexture* depth_attachment, u32 width,

View File

@ -104,7 +104,7 @@ private:
std::unique_ptr<StagingBuffer> buffer); std::unique_ptr<StagingBuffer> buffer);
std::unique_ptr<StagingBuffer> m_staging_buffer; std::unique_ptr<StagingBuffer> m_staging_buffer;
VkFence m_flush_fence = VK_NULL_HANDLE; u64 m_flush_fence_counter = 0;
}; };
class VKFramebuffer final : public AbstractFramebuffer class VKFramebuffer final : public AbstractFramebuffer

View File

@ -60,11 +60,11 @@ VertexManager::~VertexManager()
bool VertexManager::Initialize() bool VertexManager::Initialize()
{ {
m_vertex_stream_buffer = m_vertex_stream_buffer =
StreamBuffer::Create(VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, VERTEX_STREAM_BUFFER_SIZE * 4); StreamBuffer::Create(VK_BUFFER_USAGE_VERTEX_BUFFER_BIT, VERTEX_STREAM_BUFFER_SIZE);
m_index_stream_buffer = m_index_stream_buffer =
StreamBuffer::Create(VK_BUFFER_USAGE_INDEX_BUFFER_BIT, INDEX_STREAM_BUFFER_SIZE * 4); StreamBuffer::Create(VK_BUFFER_USAGE_INDEX_BUFFER_BIT, INDEX_STREAM_BUFFER_SIZE);
m_uniform_stream_buffer = m_uniform_stream_buffer =
StreamBuffer::Create(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, UNIFORM_STREAM_BUFFER_SIZE * 4); StreamBuffer::Create(VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT, UNIFORM_STREAM_BUFFER_SIZE);
if (!m_vertex_stream_buffer || !m_index_stream_buffer || !m_uniform_stream_buffer) if (!m_vertex_stream_buffer || !m_index_stream_buffer || !m_uniform_stream_buffer)
{ {
PanicAlert("Failed to allocate streaming buffers"); PanicAlert("Failed to allocate streaming buffers");

View File

@ -251,8 +251,8 @@ bool VideoBackend::Initialize(const WindowSystemInfo& wsi)
void VideoBackend::Shutdown() void VideoBackend::Shutdown()
{ {
if (g_command_buffer_mgr) if (g_vulkan_context)
g_command_buffer_mgr->WaitForGPUIdle(); vkDeviceWaitIdle(g_vulkan_context->GetDevice());
if (g_shader_cache) if (g_shader_cache)
g_shader_cache->Shutdown(); g_shader_cache->Shutdown();

View File

@ -96,6 +96,9 @@ TextureCacheBase::TextureCacheBase()
TextureCacheBase::~TextureCacheBase() TextureCacheBase::~TextureCacheBase()
{ {
// Clear pending EFB copies first, so we don't try to flush them.
m_pending_efb_copies.clear();
HiresTexture::Shutdown(); HiresTexture::Shutdown();
Invalidate(); Invalidate();
Common::FreeAlignedMemory(temp); Common::FreeAlignedMemory(temp);