Interpreter: refactor the rsqrte code, and use it for ps_rsqrte.

This commit is contained in:
magumagu 2014-05-22 01:53:22 -07:00
parent 567724b2f8
commit 129e76e60d
3 changed files with 40 additions and 47 deletions

View File

@ -6,6 +6,7 @@
#include "Common/CPUDetect.h" #include "Common/CPUDetect.h"
#include "Common/MathUtil.h" #include "Common/MathUtil.h"
#include "Core/PowerPC/LUT_frsqrtex.h"
#include "Core/PowerPC/Interpreter/Interpreter.h" #include "Core/PowerPC/Interpreter/Interpreter.h"
using namespace MathUtil; using namespace MathUtil;
@ -329,3 +330,34 @@ inline double ApproximateReciprocal(double val)
vali |= (long long)(expected_base[i / 1024] - (expected_dec[i / 1024] * (i % 1024) + 1) / 2) << 29; vali |= (long long)(expected_base[i / 1024] - (expected_dec[i / 1024] * (i % 1024) + 1) / 2) << 29;
return valf; return valf;
} }
inline double ApproximateReciprocalSquareRoot(double val)
{
if (val < 0)
return PPC_NAN;
if (val == 0.0)
return INFINITY;
union
{
double valf;
u64 vali;
};
valf = val;
u32 fsa = vali >> 32;
u32 idx = (fsa >> 5) % (sizeof(frsqrtex_lut) / sizeof(frsqrtex_lut[0]));
s32 e = fsa >> (32 - 12);
e &= 2047;
e -= 1023;
s32 oe = -((e + 1) / 2);
oe -= ((e + 1) & 1);
u32 outb = frsqrtex_lut[idx] << 20;
u32 outa = ((oe + 1023) & 2047) << 20;
outa |= frsqrtex_lut[idx] >> 12;
vali = ((u64)outa << 32) + (u64)outb;
return valf;
}

View File

@ -18,7 +18,6 @@
#endif #endif
#include "Common/MathUtil.h" #include "Common/MathUtil.h"
#include "Core/PowerPC/LUT_frsqrtex.h"
#include "Core/PowerPC/Interpreter/Interpreter.h" #include "Core/PowerPC/Interpreter/Interpreter.h"
#include "Core/PowerPC/Interpreter/Interpreter_FPUtils.h" #include "Core/PowerPC/Interpreter/Interpreter_FPUtils.h"
@ -403,33 +402,12 @@ void Interpreter::frsqrtex(UGeckoInstruction _inst)
if (b < 0.0) if (b < 0.0)
{ {
SetFPException(FPSCR_VXSQRT); SetFPException(FPSCR_VXSQRT);
rPS0(_inst.FD) = PPC_NAN;
} }
else else if (b == 0.0)
{
if (b == 0.0)
{ {
SetFPException(FPSCR_ZX); SetFPException(FPSCR_ZX);
riPS0(_inst.FD) = 0x7ff0000000000000;
}
else
{
u32 fsa = Common::swap32(Common::swap64(riPS0(_inst.FB)));
u32 fsb = Common::swap32(Common::swap64(riPS0(_inst.FB)) >> 32);
u32 idx=(fsa >> 5) % (sizeof(frsqrtex_lut) / sizeof(frsqrtex_lut[0]));
s32 e = fsa >> (32-12);
e &= 2047;
e -= 1023;
s32 oe =- ((e + 1) / 2);
oe -= ((e + 1) & 1);
u32 outb = frsqrtex_lut[idx] << 20;
u32 outa = ((oe + 1023) & 2047) << 20;
outa |= frsqrtex_lut[idx] >> 12;
riPS0(_inst.FD) = ((u64)outa << 32) + (u64)outb;
}
} }
rPS0(_inst.FD) = ApproximateReciprocalSquareRoot(b);
UpdateFPRF(rPS0(_inst.FD)); UpdateFPRF(rPS0(_inst.FD));
if (_inst.Rc) Helper_UpdateCR1(); if (_inst.Rc) Helper_UpdateCR1();
} }

View File

@ -186,36 +186,19 @@ void Interpreter::ps_res(UGeckoInstruction _inst)
void Interpreter::ps_rsqrte(UGeckoInstruction _inst) void Interpreter::ps_rsqrte(UGeckoInstruction _inst)
{ {
// this code is based on the real hardware tests
if (rPS0(_inst.FB) == 0.0 || rPS1(_inst.FB) == 0.0) if (rPS0(_inst.FB) == 0.0 || rPS1(_inst.FB) == 0.0)
{ {
SetFPException(FPSCR_ZX); SetFPException(FPSCR_ZX);
} }
// PS0
if (rPS0(_inst.FB) < 0.0) if (rPS0(_inst.FB) < 0.0 || rPS1(_inst.FB) < 0.0)
{ {
SetFPException(FPSCR_VXSQRT); SetFPException(FPSCR_VXSQRT);
rPS0(_inst.FD) = PPC_NAN;
}
else
{
rPS0(_inst.FD) = 1.0 / sqrt(rPS0(_inst.FB));
u32 t = ConvertToSingle(riPS0(_inst.FD));
rPS0(_inst.FD) = *(float*)&t;
}
// PS1
if (rPS1(_inst.FB) < 0.0)
{
SetFPException(FPSCR_VXSQRT);
rPS1(_inst.FD) = PPC_NAN;
}
else
{
rPS1(_inst.FD) = 1.0 / sqrt(rPS1(_inst.FB));
u32 t = ConvertToSingle(riPS1(_inst.FD));
rPS1(_inst.FD) = *(float*)&t;
} }
rPS0(_inst.FD) = ApproximateReciprocalSquareRoot(rPS0(_inst.FB));
rPS1(_inst.FD) = ApproximateReciprocalSquareRoot(rPS1(_inst.FB));
UpdateFPRF(rPS0(_inst.FD)); UpdateFPRF(rPS0(_inst.FD));
if (_inst.Rc) Helper_UpdateCR1(); if (_inst.Rc) Helper_UpdateCR1();
} }