Merge pull request #897 from Sonicadvance1/AArch64-jit

Initial AArch64 JIT
This commit is contained in:
skidau 2014-09-09 12:34:58 +10:00
commit 0926f1d344
22 changed files with 3928 additions and 37 deletions

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,538 @@
// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#pragma once
#include "Common/ArmCommon.h"
#include "Common/CodeBlock.h"
#include "Common/Common.h"
namespace Arm64Gen
{
// X30 serves a dual purpose as a link register
// Encoded as <u3:type><u5:reg>
// Types:
// 000 - 32bit GPR
// 001 - 64bit GPR
// 010 - VFP single precision
// 100 - VFP double precision
// 110 - VFP quad precision
enum ARM64Reg
{
// 32bit registers
W0 = 0, W1, W2, W3, W4, W5, W6,
W7, W8, W9, W10, W11, W12, W13, W14,
W15, W16, W17, W18, W19, W20, W21, W22,
W23, W24, W25, W26, W27, W28, W29, W30,
WSP, // 32bit stack pointer
// 64bit registers
X0 = 0x20, X1, X2, X3, X4, X5, X6,
X7, X8, X9, X10, X11, X12, X13, X14,
X15, X16, X17, X18, X19, X20, X21, X22,
X23, X24, X25, X26, X27, X28, X29, X30,
SP, // 64bit stack pointer
// VFP single precision registers
S0 = 0x40, S1, S2, S3, S4, S5, S6,
S7, S8, S9, S10, S11, S12, S13,
S14, S15, S16, S17, S18, S19, S20,
S21, S22, S23, S24, S25, S26, S27,
S28, S29, S30, S31,
// VFP Double Precision registers
D0 = 0x80, D1, D2, D3, D4, D5, D6, D7,
D8, D9, D10, D11, D12, D13, D14, D15,
D16, D17, D18, D19, D20, D21, D22, D23,
D24, D25, D26, D27, D28, D29, D30, D31,
// ASIMD Quad-Word registers
Q0 = 0xC0, Q1, Q2, Q3, Q4, Q5, Q6, Q7,
Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15,
Q16, Q17, Q18, Q19, Q20, Q21, Q22, Q23,
Q24, Q25, Q26, Q27, Q28, Q29, Q30, Q31,
// For PRFM(prefetch memory) encoding
// This is encoded in the Rt register
// Data preload
PLDL1KEEP = 0, PLDL1STRM,
PLDL2KEEP, PLDL2STRM,
PLDL3KEEP, PLDL3STRM,
// Instruction preload
PLIL1KEEP = 8, PLIL1STRM,
PLIL2KEEP, PLIL2STRM,
PLIL3KEEP, PLIL3STRM,
// Prepare for store
PLTL1KEEP = 16, PLTL1STRM,
PLTL2KEEP, PLTL2STRM,
PLTL3KEEP, PLTL3STRM,
INVALID_REG = 0xFFFFFFFF
};
inline bool is64Bit(ARM64Reg reg) { return reg & 0x20; }
inline bool is128Bit(ARM64Reg reg) { return reg & 0xC0; }
inline bool isVector(ARM64Reg reg) { return (reg & 0xC0) != 0; }
inline ARM64Reg DecodeReg(ARM64Reg reg) { return (ARM64Reg)(reg & 0x1F); }
inline ARM64Reg EncodeRegTo64(ARM64Reg reg) { return (ARM64Reg)(reg | 0x20); }
enum OpType
{
TYPE_IMM = 0,
TYPE_REG,
TYPE_IMMSREG,
TYPE_RSR,
TYPE_MEM
};
enum ShiftType
{
ST_LSL = 0,
ST_LSR = 1,
ST_ASR = 2,
ST_ROR = 3,
};
enum IndexType
{
INDEX_UNSIGNED,
INDEX_POST,
INDEX_PRE,
};
enum ShiftAmount
{
SHIFT_0 = 0,
SHIFT_16 = 1,
SHIFT_32 = 2,
SHIFT_48 = 3,
};
enum ExtendType
{
EXTEND_UXTW = 2,
EXTEND_LSL = 3, // Default for zero shift amount
EXTEND_SXTW = 6,
EXTEND_SXTX = 7,
};
struct FixupBranch
{
u8 *ptr;
// Type defines
// 0 = CBZ (32bit)
// 1 = CBNZ (32bit)
// 2 = B (conditional)
// 3 = TBZ
// 4 = TBNZ
// 5 = B (unconditional)
// 6 = BL (unconditional)
u32 type;
// Used with B.cond
CCFlags cond;
// Used with TBZ/TBNZ
u8 bit;
// Used with Test/Compare and Branch
ARM64Reg reg;
};
enum PStateField
{
FIELD_SPSel = 0,
FIELD_DAIFSet,
FIELD_DAIFClr,
};
enum SystemHint
{
HINT_NOP = 0,
HINT_YIELD,
HINT_WFE,
HINT_WFI,
HINT_SEV,
HINT_SEVL,
};
enum BarrierType
{
OSHLD = 1,
OSHST = 2,
OSH = 3,
NSHLD = 5,
NSHST = 6,
NSH = 7,
ISHLD = 9,
ISHST = 10,
ISH = 11,
LD = 13,
ST = 14,
SY = 15,
};
class ArithOption
{
public:
enum WidthSpecifier {
WIDTH_DEFAULT,
WIDTH_32BIT,
WIDTH_64BIT,
};
enum ExtendSpecifier {
EXTEND_UXTB = 0x0,
EXTEND_UXTH = 0x1,
EXTEND_UXTW = 0x2, /* Also LSL on 32bit width */
EXTEND_UXTX = 0x3, /* Also LSL on 64bit width */
EXTEND_SXTB = 0x4,
EXTEND_SXTH = 0x5,
EXTEND_SXTW = 0x6,
EXTEND_SXTX = 0x7,
};
enum TypeSpecifier {
TYPE_EXTENDEDREG,
TYPE_IMM,
TYPE_SHIFTEDREG,
};
private:
ARM64Reg _destReg;
WidthSpecifier _width;
ExtendSpecifier _extend;
TypeSpecifier _type;
ShiftType _shifttype;
u32 _shift;
public:
ArithOption(ARM64Reg Rd)
{
_destReg = Rd;
_shift = 0;
_type = TYPE_EXTENDEDREG;
if (is64Bit(Rd))
{
_width = WIDTH_64BIT;
_extend = EXTEND_UXTX;
}
else
{
_width = WIDTH_32BIT;
_extend = EXTEND_UXTW;
}
}
ArithOption(ARM64Reg Rd, ShiftType ShiftType, u32 Shift)
{
_destReg = Rd;
_shift = Shift;
_shifttype = ShiftType;
_type = TYPE_SHIFTEDREG;
if (is64Bit(Rd))
_width = WIDTH_64BIT;
else
_width = WIDTH_32BIT;
}
TypeSpecifier GetType()
{
return _type;
}
u32 GetData()
{
switch (_type)
{
case TYPE_EXTENDEDREG:
return (_width == WIDTH_64BIT ? (1 << 31) : 0) |
(_extend << 13) |
(_shift << 10);
break;
case TYPE_SHIFTEDREG:
return (_width == WIDTH_64BIT ? (1 << 31) : 0) |
(_shifttype << 22) |
(_shift << 10);
break;
default:
_dbg_assert_msg_(DYNA_REC, false, "Invalid type in GetData");
break;
}
return 0;
}
};
class ARM64XEmitter
{
private:
u8 *code, *startcode;
u8 *lastCacheFlushEnd;
void EncodeCompareBranchInst(u32 op, ARM64Reg Rt, const void* ptr);
void EncodeTestBranchInst(u32 op, ARM64Reg Rt, u8 bits, const void* ptr);
void EncodeUnconditionalBranchInst(u32 op, const void* ptr);
void EncodeUnconditionalBranchInst(u32 opc, u32 op2, u32 op3, u32 op4, ARM64Reg Rn);
void EncodeExceptionInst(u32 instenc, u32 imm);
void EncodeSystemInst(u32 op0, u32 op1, u32 CRn, u32 CRm, u32 op2, ARM64Reg Rt);
void EncodeArithmeticInst(u32 instenc, bool flags, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option);
void EncodeArithmeticCarryInst(u32 op, bool flags, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void EncodeCondCompareImmInst(u32 op, ARM64Reg Rn, u32 imm, u32 nzcv, CCFlags cond);
void EncodeCondCompareRegInst(u32 op, ARM64Reg Rn, ARM64Reg Rm, u32 nzcv, CCFlags cond);
void EncodeCondSelectInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond);
void EncodeData1SrcInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn);
void EncodeData2SrcInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void EncodeData3SrcInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
void EncodeLogicalInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift);
void EncodeLoadRegisterInst(u32 bitop, ARM64Reg Rt, u32 imm);
void EncodeLoadStoreExcInst(u32 instenc, ARM64Reg Rs, ARM64Reg Rt2, ARM64Reg Rn, ARM64Reg Rt);
void EncodeLoadStorePairedInst(u32 op, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, u32 imm);
void EncodeLoadStoreIndexedInst(u32 op, u32 op2, ARM64Reg Rt, ARM64Reg Rn, u32 imm);
void EncodeLoadStoreIndexedInst(u32 op, ARM64Reg Rt, ARM64Reg Rn, u32 imm);
void EncodeMOVWideInst(u32 op, ARM64Reg Rd, u32 imm, ShiftAmount pos);
void EncodeBitfieldMOVInst(u32 op, ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms);
void EncodeLoadStoreRegisterOffset(u32 size, u32 opc, ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm, ExtendType extend);
void EncodeAddSubImmInst(u32 op, bool flags, u32 shift, u32 imm, ARM64Reg Rn, ARM64Reg Rd);
void EncodeLogicalImmInst(u32 op, ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms);
protected:
inline void Write32(u32 value) {*(u32*)code = value; code+=4;}
public:
ARM64XEmitter() : code(0), startcode(0), lastCacheFlushEnd(0) {}
virtual ~ARM64XEmitter() {}
void SetCodePtr(u8 *ptr);
void ReserveCodeSpace(u32 bytes);
const u8 *AlignCode16();
const u8 *AlignCodePage();
const u8 *GetCodePtr() const;
void FlushIcache();
void FlushIcacheSection(u8 *start, u8 *end);
u8 *GetWritableCodePtr();
// FixupBranch branching
void SetJumpTarget(FixupBranch const &branch);
FixupBranch CBZ(ARM64Reg Rt);
FixupBranch CBNZ(ARM64Reg Rt);
FixupBranch B(CCFlags cond);
FixupBranch TBZ(ARM64Reg Rt, u8 bit);
FixupBranch TBNZ(ARM64Reg Rt, u8 bit);
FixupBranch B();
FixupBranch BL();
// Compare and Branch
void CBZ(ARM64Reg Rt, const void* ptr);
void CBNZ(ARM64Reg Rt, const void* ptr);
// Conditional Branch
void B(CCFlags cond, const void* ptr);
// Test and Branch
void TBZ(ARM64Reg Rt, u8 bits, const void* ptr);
void TBNZ(ARM64Reg Rt, u8 bits, const void* ptr);
// Unconditional Branch
void B(const void *ptr);
void BL(const void *ptr);
// Unconditional Branch (register)
void BR(ARM64Reg Rn);
void BLR(ARM64Reg Rn);
void RET(ARM64Reg Rn);
void ERET();
void DRPS();
// Exception generation
void SVC(u32 imm);
void HVC(u32 imm);
void SMC(u32 imm);
void BRK(u32 imm);
void HLT(u32 imm);
void DCPS1(u32 imm);
void DCPS2(u32 imm);
void DCPS3(u32 imm);
// System
void _MSR(PStateField field, u8 imm);
void HINT(SystemHint op);
void CLREX();
void DSB(BarrierType type);
void DMB(BarrierType type);
void ISB(BarrierType type);
// Add/Subtract (Extended/Shifted register)
void ADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void ADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option);
void ADDS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void ADDS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option);
void SUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void SUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option);
void SUBS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void SUBS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option);
void CMN(ARM64Reg Rn, ARM64Reg Rm);
void CMN(ARM64Reg Rn, ARM64Reg Rm, ArithOption Option);
void CMP(ARM64Reg Rn, ARM64Reg Rm);
void CMP(ARM64Reg Rn, ARM64Reg Rm, ArithOption Option);
// Add/Subtract (with carry)
void ADC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void ADCS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void SBC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void SBCS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
// Conditional Compare (immediate)
void CCMN(ARM64Reg Rn, u32 imm, u32 nzcv, CCFlags cond);
void CCMP(ARM64Reg Rn, u32 imm, u32 nzcv, CCFlags cond);
// Conditional Compare (register)
void CCMN(ARM64Reg Rn, ARM64Reg Rm, u32 nzcv, CCFlags cond);
void CCMP(ARM64Reg Rn, ARM64Reg Rm, u32 nzcv, CCFlags cond);
// Conditional Select
void CSEL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond);
void CSINC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond);
void CSINV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond);
void CSNEG(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond);
// Data-Processing 1 source
void RBIT(ARM64Reg Rd, ARM64Reg Rn);
void REV16(ARM64Reg Rd, ARM64Reg Rn);
void REV32(ARM64Reg Rd, ARM64Reg Rn);
void REV64(ARM64Reg Rd, ARM64Reg Rn);
void CLZ(ARM64Reg Rd, ARM64Reg Rn);
void CLS(ARM64Reg Rd, ARM64Reg Rn);
// Data-Processing 2 source
void UDIV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void SDIV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void LSLV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void LSRV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void ASRV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void RORV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void CRC32B(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void CRC32H(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void CRC32W(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void CRC32CB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void CRC32CH(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void CRC32CW(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void CRC32X(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
void CRC32CX(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
// Data-Processing 3 source
void MADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
void MSUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
void SMADDL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
void SMSUBL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
void SMULH(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
void UMADDL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
void UMSUBL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
void UMULH(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
// Logical (shifted register)
void AND(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift);
void BIC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift);
void ORR(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift);
void ORN(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift);
void EOR(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift);
void EON(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift);
void ANDS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift);
void BICS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift);
// Logical (immediate)
void AND(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms);
void ANDS(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms);
void EOR(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms);
void ORR(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms);
void TST(ARM64Reg Rn, u32 immr, u32 imms);
// Add/subtract (immediate)
void ADD(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift = false);
void ADDS(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift = false);
void SUB(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift = false);
void SUBS(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift = false);
void CMP(ARM64Reg Rn, u32 imm, bool shift = false);
// Data Processing (Immediate)
void MOVZ(ARM64Reg Rd, u32 imm, ShiftAmount pos = SHIFT_0);
void MOVN(ARM64Reg Rd, u32 imm, ShiftAmount pos = SHIFT_0);
void MOVK(ARM64Reg Rd, u32 imm, ShiftAmount pos = SHIFT_0);
// Bitfield move
void BFM(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms);
void SBFM(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms);
void UBFM(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms);
// Load Register (Literal)
void LDR(ARM64Reg Rt, u32 imm);
void LDRSW(ARM64Reg Rt, u32 imm);
void PRFM(ARM64Reg Rt, u32 imm);
// Load/Store Exclusive
void STXRB(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn);
void STLXRB(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn);
void LDXRB(ARM64Reg Rt, ARM64Reg Rn);
void LDAXRB(ARM64Reg Rt, ARM64Reg Rn);
void STLRB(ARM64Reg Rt, ARM64Reg Rn);
void LDARB(ARM64Reg Rt, ARM64Reg Rn);
void STXRH(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn);
void STLXRH(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn);
void LDXRH(ARM64Reg Rt, ARM64Reg Rn);
void LDAXRH(ARM64Reg Rt, ARM64Reg Rn);
void STLRH(ARM64Reg Rt, ARM64Reg Rn);
void LDARH(ARM64Reg Rt, ARM64Reg Rn);
void STXR(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn);
void STLXR(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn);
void STXP(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn);
void STLXP(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn);
void LDXR(ARM64Reg Rt, ARM64Reg Rn);
void LDAXR(ARM64Reg Rt, ARM64Reg Rn);
void LDXP(ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn);
void LDAXP(ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn);
void STLR(ARM64Reg Rt, ARM64Reg Rn);
void LDAR(ARM64Reg Rt, ARM64Reg Rn);
// Load/Store no-allocate pair (offset)
void STNP(ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, u32 imm);
void LDNP(ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, u32 imm);
// Load/Store register (immediate indexed)
void STRB(IndexType type, ARM64Reg Rt, ARM64Reg Rn, u32 imm);
void LDRB(IndexType type, ARM64Reg Rt, ARM64Reg Rn, u32 imm);
void LDRSB(IndexType type, ARM64Reg Rt, ARM64Reg Rn, u32 imm);
void STRH(IndexType type, ARM64Reg Rt, ARM64Reg Rn, u32 imm);
void LDRH(IndexType type, ARM64Reg Rt, ARM64Reg Rn, u32 imm);
void LDRSH(IndexType type, ARM64Reg Rt, ARM64Reg Rn, u32 imm);
void STR(IndexType type, ARM64Reg Rt, ARM64Reg Rn, u32 imm);
void LDR(IndexType type, ARM64Reg Rt, ARM64Reg Rn, u32 imm);
void LDRSW(IndexType type, ARM64Reg Rt, ARM64Reg Rn, u32 imm);
// Load/Store register (register offset)
void STRB(ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm, ExtendType extend = EXTEND_LSL);
void LDRB(ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm, ExtendType extend = EXTEND_LSL);
void LDRSB(ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm, ExtendType extend = EXTEND_LSL);
void STRH(ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm, ExtendType extend = EXTEND_LSL);
void LDRH(ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm, ExtendType extend = EXTEND_LSL);
void LDRSH(ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm, ExtendType extend = EXTEND_LSL);
void STR(ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm, ExtendType extend = EXTEND_LSL);
void LDR(ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm, ExtendType extend = EXTEND_LSL);
void LDRSW(ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm, ExtendType extend = EXTEND_LSL);
void PRFM(ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm, ExtendType extend = EXTEND_LSL);
// Wrapper around MOVZ+MOVK
void MOVI2R(ARM64Reg Rd, u64 imm, bool optimize = true);
};
class ARM64CodeBlock : public CodeBlock<ARM64XEmitter>
{
private:
void PoisonMemory() override
{
u32* ptr = (u32*)region;
u32* maxptr = (u32*)region + region_size;
// If our memory isn't a multiple of u32 then this won't write the last remaining bytes with anything
// Less than optimal, but there would be nothing we could do but throw a runtime warning anyway.
// AArch64: 0xD4200000 = BRK 0
while (ptr < maxptr)
*ptr++ = 0xD4200000;
}
};
}

View File

@ -0,0 +1,26 @@
// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
enum CCFlags
{
CC_EQ = 0, // Equal
CC_NEQ, // Not equal
CC_CS, // Carry Set
CC_CC, // Carry Clear
CC_MI, // Minus (Negative)
CC_PL, // Plus
CC_VS, // Overflow
CC_VC, // No Overflow
CC_HI, // Unsigned higher
CC_LS, // Unsigned lower or same
CC_GE, // Signed greater than or equal
CC_LT, // Signed less than
CC_GT, // Signed greater than
CC_LE, // Signed less than or equal
CC_AL, // Always (unconditional) 14
CC_HS = CC_CS, // Alias of CC_CS Unsigned higher or same
CC_LO = CC_CC, // Alias of CC_CC Unsigned lower
};
const u32 NO_COND = 0xE0000000;

View File

@ -8,6 +8,7 @@
#include <vector> #include <vector>
#include "Common/ArmCommon.h"
#include "Common/CodeBlock.h" #include "Common/CodeBlock.h"
#include "Common/Common.h" #include "Common/Common.h"
@ -61,28 +62,6 @@ enum ARMReg
INVALID_REG = 0xFFFFFFFF INVALID_REG = 0xFFFFFFFF
}; };
enum CCFlags
{
CC_EQ = 0, // Equal
CC_NEQ, // Not equal
CC_CS, // Carry Set
CC_CC, // Carry Clear
CC_MI, // Minus (Negative)
CC_PL, // Plus
CC_VS, // Overflow
CC_VC, // No Overflow
CC_HI, // Unsigned higher
CC_LS, // Unsigned lower or same
CC_GE, // Signed greater than or equal
CC_LT, // Signed less than
CC_GT, // Signed greater than
CC_LE, // Signed less than or equal
CC_AL, // Always (unconditional) 14
CC_HS = CC_CS, // Alias of CC_CS Unsigned higher or same
CC_LO = CC_CC, // Alias of CC_CC Unsigned lower
};
const u32 NO_COND = 0xE0000000;
enum ShiftType enum ShiftType
{ {
ST_LSL = 0, ST_LSL = 0,

View File

@ -31,19 +31,23 @@ set(SRCS BreakPoints.cpp
Logging/LogManager.cpp) Logging/LogManager.cpp)
if(_M_ARM)
if (_M_ARM_32) #ARMv7 if (_M_ARM_32) #ARMv7
set(SRCS ${SRCS}
ArmEmitter.cpp)
else() #AArch64
set(SRCS ${SRCS}
Arm64Emitter.cpp)
endif()
set(SRCS ${SRCS} set(SRCS ${SRCS}
ArmCPUDetect.cpp ArmCPUDetect.cpp
ArmEmitter.cpp
GenericFPURoundMode.cpp) GenericFPURoundMode.cpp)
elseif(_M_X86) #X86 else()
if(_M_X86) #X86
set(SRCS ${SRCS} set(SRCS ${SRCS}
x64CPUDetect.cpp
x64FPURoundMode.cpp) x64FPURoundMode.cpp)
else() #Generic endif()
set(SRCS ${SRCS} set(SRCS ${SRCS} x64CPUDetect.cpp)
GenericFPURoundMode.cpp
x64CPUDetect.cpp)
endif() endif()
if(WIN32) if(WIN32)
set(SRCS ${SRCS} ExtendedTrace.cpp) set(SRCS ${SRCS} ExtendedTrace.cpp)

View File

@ -198,8 +198,7 @@ if(_M_X86)
PowerPC/JitCommon/JitBackpatch.cpp PowerPC/JitCommon/JitBackpatch.cpp
PowerPC/JitCommon/JitAsmCommon.cpp PowerPC/JitCommon/JitAsmCommon.cpp
PowerPC/JitCommon/Jit_Util.cpp) PowerPC/JitCommon/Jit_Util.cpp)
endif() elseif(_M_ARM_32)
if(_M_ARM_32)
set(SRCS ${SRCS} set(SRCS ${SRCS}
ArmMemTools.cpp ArmMemTools.cpp
PowerPC/JitArm32/Jit.cpp PowerPC/JitArm32/Jit.cpp
@ -218,6 +217,16 @@ if(_M_ARM_32)
PowerPC/JitArm32/JitArm_SystemRegisters.cpp PowerPC/JitArm32/JitArm_SystemRegisters.cpp
PowerPC/JitArm32/JitArm_LoadStoreFloating.cpp PowerPC/JitArm32/JitArm_LoadStoreFloating.cpp
) )
elseif(_M_ARM_64)
set(SRCS ${SRCS}
PowerPC/JitArm64/Jit.cpp
PowerPC/JitArm64/JitAsm.cpp
PowerPC/JitArm64/JitArm64Cache.cpp
PowerPC/JitArm64/JitArm64_RegCache.cpp
PowerPC/JitArm64/JitArm64_Branch.cpp
PowerPC/JitArm64/JitArm64_LoadStore.cpp
PowerPC/JitArm64/JitArm64_SystemRegisters.cpp
PowerPC/JitArm64/JitArm64_Tables.cpp)
endif() endif()
set(LIBS set(LIBS

View File

@ -0,0 +1,287 @@
// Copyright 2014 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#include "Common/Arm64Emitter.h"
#include "Common/Common.h"
#include "Core/PatchEngine.h"
#include "Core/PowerPC/JitArm64/Jit.h"
#include "Core/PowerPC/JitArm64/JitArm64_RegCache.h"
#include "Core/PowerPC/JitArm64/JitArm64_Tables.h"
using namespace Arm64Gen;
static int CODE_SIZE = 1024*1024*32;
void JitArm64::Init()
{
AllocCodeSpace(CODE_SIZE);
jo.enableBlocklink = true;
gpr.Init(this);
fpr.Init(this);
blocks.Init();
asm_routines.Init();
code_block.m_stats = &js.st;
code_block.m_gpa = &js.gpa;
code_block.m_fpa = &js.fpa;
}
void JitArm64::ClearCache()
{
ClearCodeSpace();
blocks.Clear();
}
void JitArm64::Shutdown()
{
FreeCodeSpace();
blocks.Shutdown();
asm_routines.Shutdown();
}
void JitArm64::unknown_instruction(UGeckoInstruction inst)
{
WARN_LOG(DYNA_REC, "unknown_instruction %08x - Fix me ;)", inst.hex);
}
void JitArm64::FallBackToInterpreter(UGeckoInstruction inst)
{
gpr.Flush(FlushMode::FLUSH_ALL);
fpr.Flush(FlushMode::FLUSH_ALL);
Interpreter::_interpreterInstruction instr = GetInterpreterOp(inst);
MOVI2R(W0, inst.hex);
MOVI2R(X30, (u64)instr);
BLR(X30);
}
void JitArm64::HLEFunction(UGeckoInstruction inst)
{
WARN_LOG(DYNA_REC, "HLEFunction %08x - Fix me ;)", inst.hex);
exit(0);
}
void JitArm64::DoNothing(UGeckoInstruction inst)
{
// Yup, just don't do anything.
}
void JitArm64::Break(UGeckoInstruction inst)
{
WARN_LOG(DYNA_REC, "Breaking! %08x - Fix me ;)", inst.hex);
exit(0);
}
void JitArm64::DoDownCount()
{
ARM64Reg WA = gpr.GetReg();
LDR(INDEX_UNSIGNED, WA, X29, PPCSTATE_OFF(downcount));
if (js.downcountAmount < 4096) // We can enlarge this if we used rotations
{
SUBS(WA, WA, js.downcountAmount);
STR(INDEX_UNSIGNED, WA, X29, PPCSTATE_OFF(downcount));
}
else
{
ARM64Reg WB = gpr.GetReg();
MOVI2R(WB, js.downcountAmount);
SUBS(WA, WA, WB);
STR(INDEX_UNSIGNED, WA, X29, PPCSTATE_OFF(downcount));
gpr.Unlock(WB);
}
gpr.Unlock(WA);
}
// Exits
void JitArm64::WriteExit(u32 destination)
{
//If nobody has taken care of this yet (this can be removed when all branches are done)
JitBlock *b = js.curBlock;
JitBlock::LinkData linkData;
linkData.exitAddress = destination;
linkData.exitPtrs = GetWritableCodePtr();
linkData.linkStatus = false;
DoDownCount();
// Link opportunity!
int block;
if (jo.enableBlocklink && (block = blocks.GetBlockNumberFromStartAddress(destination)) >= 0)
{
// It exists! Joy of joy!
B(blocks.GetBlock(block)->checkedEntry);
linkData.linkStatus = true;
}
else
{
ARM64Reg WA = gpr.GetReg();
ARM64Reg XA = EncodeRegTo64(WA);
MOVI2R(WA, destination);
STR(INDEX_UNSIGNED, WA, X29, PPCSTATE_OFF(pc));
MOVI2R(XA, (u64)asm_routines.dispatcher);
BR(XA);
gpr.Unlock(WA);
}
b->linkData.push_back(linkData);
}
void JitArm64::WriteExceptionExit(ARM64Reg dest)
{
STR(INDEX_UNSIGNED, dest, X29, PPCSTATE_OFF(pc));
STR(INDEX_UNSIGNED, dest, X29, PPCSTATE_OFF(npc));
gpr.Unlock(dest);
DoDownCount();
MOVI2R(EncodeRegTo64(dest), (u64)&PowerPC::CheckExceptions);
BLR(EncodeRegTo64(dest));
LDR(INDEX_UNSIGNED, dest, X29, PPCSTATE_OFF(npc));
STR(INDEX_UNSIGNED, dest, X29, PPCSTATE_OFF(pc));
MOVI2R(EncodeRegTo64(dest), (u64)asm_routines.dispatcher);
BR(EncodeRegTo64(dest));
}
void JitArm64::WriteExitDestInR(ARM64Reg Reg)
{
STR(INDEX_UNSIGNED, Reg, X29, PPCSTATE_OFF(pc));
gpr.Unlock(Reg);
DoDownCount();
MOVI2R(EncodeRegTo64(Reg), (u64)asm_routines.dispatcher);
BR(EncodeRegTo64(Reg));
}
void STACKALIGN JitArm64::Run()
{
CompiledCode pExecAddr = (CompiledCode)asm_routines.enterCode;
pExecAddr();
}
void JitArm64::SingleStep()
{
CompiledCode pExecAddr = (CompiledCode)asm_routines.enterCode;
pExecAddr();
}
void STACKALIGN JitArm64::Jit(u32 em_address)
{
if (GetSpaceLeft() < 0x10000 || blocks.IsFull() || Core::g_CoreStartupParameter.bJITNoBlockCache)
{
ClearCache();
}
int block_num = blocks.AllocateBlock(PowerPC::ppcState.pc);
JitBlock *b = blocks.GetBlock(block_num);
const u8* BlockPtr = DoJit(PowerPC::ppcState.pc, &code_buffer, b);
blocks.FinalizeBlock(block_num, jo.enableBlocklink, BlockPtr);
}
const u8* JitArm64::DoJit(u32 em_address, PPCAnalyst::CodeBuffer *code_buf, JitBlock *b)
{
int blockSize = code_buf->GetSize();
if (Core::g_CoreStartupParameter.bEnableDebugging)
{
// Comment out the following to disable breakpoints (speed-up)
blockSize = 1;
}
if (em_address == 0)
{
Core::SetState(Core::CORE_PAUSE);
WARN_LOG(DYNA_REC, "ERROR: Compiling at 0. LR=%08x CTR=%08x", LR, CTR);
}
js.isLastInstruction = false;
js.blockStart = em_address;
js.fifoBytesThisBlock = 0;
js.downcountAmount = 0;
js.skipnext = false;
js.curBlock = b;
u32 nextPC = em_address;
// Analyze the block, collect all instructions it is made of (including inlining,
// if that is enabled), reorder instructions for optimal performance, and join joinable instructions.
nextPC = analyzer.Analyze(em_address, &code_block, code_buf, blockSize);
PPCAnalyst::CodeOp *ops = code_buf->codebuffer;
const u8 *start = GetCodePtr();
b->checkedEntry = start;
b->runCount = 0;
// Downcount flag check, Only valid for linked blocks
{
FixupBranch bail = B(CC_PL);
ARM64Reg WA = gpr.GetReg();
ARM64Reg XA = EncodeRegTo64(WA);
MOVI2R(WA, js.blockStart);
STR(INDEX_UNSIGNED, WA, X29, PPCSTATE_OFF(pc));
MOVI2R(XA, (u64)asm_routines.doTiming);
BR(XA);
gpr.Unlock(WA);
SetJumpTarget(bail);
}
const u8 *normalEntry = GetCodePtr();
b->normalEntry = normalEntry;
gpr.Start(js.gpa);
fpr.Start(js.fpa);
if (!Core::g_CoreStartupParameter.bEnableDebugging)
js.downcountAmount += PatchEngine::GetSpeedhackCycles(em_address);
// Translate instructions
for (u32 i = 0; i < code_block.m_num_instructions; i++)
{
js.compilerPC = ops[i].address;
js.op = &ops[i];
js.instructionNumber = i;
const GekkoOPInfo *opinfo = ops[i].opinfo;
js.downcountAmount += opinfo->numCycles;
if (i == (code_block.m_num_instructions - 1))
{
// WARNING - cmp->branch merging will screw this up.
js.isLastInstruction = true;
js.next_inst = 0;
}
else
{
// help peephole optimizations
js.next_inst = ops[i + 1].inst;
js.next_compilerPC = ops[i + 1].address;
}
if (!ops[i].skip)
{
if (js.memcheck && (opinfo->flags & FL_USE_FPU))
{
// Don't do this yet
BRK(0x7777);
}
JitArm64Tables::CompileInstruction(ops[i]);
if (js.memcheck && (opinfo->flags & FL_LOADSTORE))
{
// Don't do this yet
BRK(0x666);
}
}
}
if (code_block.m_memory_exception)
BRK(0x500);
if (code_block.m_broken)
{
printf("Broken Block going to 0x%08x\n", nextPC);
WriteExit(nextPC);
}
b->codeSize = (u32)(GetCodePtr() - normalEntry);
b->originalSize = code_block.m_num_instructions;
FlushIcache();
return start;
}

View File

@ -0,0 +1,104 @@
// Copyright 2014 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#pragma once
#include "Common/Arm64Emitter.h"
#include "Core/PowerPC/CPUCoreBase.h"
#include "Core/PowerPC/PPCAnalyst.h"
#include "Core/PowerPC/JitArm64/JitArm64_RegCache.h"
#include "Core/PowerPC/JitArm64/JitArm64Cache.h"
#include "Core/PowerPC/JitArm64/JitAsm.h"
#include "Core/PowerPC/JitCommon/JitBase.h"
#define PPCSTATE_OFF(elem) ((s64)&PowerPC::ppcState.elem - (s64)&PowerPC::ppcState)
// Some asserts to make sure we will be able to load everything
static_assert(PPCSTATE_OFF(spr[1023]) <= 16380, "LDR(32bit) can't reach the last SPR");
static_assert((PPCSTATE_OFF(ps[0][0]) % 8) == 0, "LDR(64bit VFP) requires FPRs to be 8 byte aligned");
using namespace Arm64Gen;
class JitArm64 : public JitBase, public Arm64Gen::ARM64CodeBlock
{
public:
JitArm64() : code_buffer(32000) {}
~JitArm64() {}
void Init();
void Shutdown();
JitBaseBlockCache *GetBlockCache() { return &blocks; }
const u8 *BackPatch(u8 *codePtr, u32 em_address, void *ctx) { return NULL; }
bool IsInCodeSpace(u8 *ptr) { return IsInSpace(ptr); }
void ClearCache();
CommonAsmRoutinesBase *GetAsmRoutines()
{
return &asm_routines;
}
void Run();
void SingleStep();
void Jit(u32 em_address);
const char *GetName()
{
return "JITARM64";
}
// OPCODES
void unknown_instruction(UGeckoInstruction inst);
void FallBackToInterpreter(UGeckoInstruction inst);
void DoNothing(UGeckoInstruction inst);
void HLEFunction(UGeckoInstruction inst);
void DynaRunTable4(UGeckoInstruction inst);
void DynaRunTable19(UGeckoInstruction inst);
void DynaRunTable31(UGeckoInstruction inst);
void DynaRunTable59(UGeckoInstruction inst);
void DynaRunTable63(UGeckoInstruction inst);
// Force break
void Break(UGeckoInstruction inst);
// Branch
void sc(UGeckoInstruction inst);
void rfi(UGeckoInstruction inst);
void bx(UGeckoInstruction inst);
void bcx(UGeckoInstruction inst);
void bcctrx(UGeckoInstruction inst);
void bclrx(UGeckoInstruction inst);
// System Registers
void mtmsr(UGeckoInstruction inst);
// LoadStore
void icbi(UGeckoInstruction inst);
private:
Arm64GPRCache gpr;
Arm64FPRCache fpr;
JitArm64BlockCache blocks;
JitArm64AsmRoutineManager asm_routines;
PPCAnalyst::CodeBuffer code_buffer;
const u8* DoJit(u32 em_address, PPCAnalyst::CodeBuffer *code_buf, JitBlock *b);
void DoDownCount();
// Exits
void WriteExit(u32 destination);
void WriteExceptionExit(ARM64Reg dest);
void WriteExitDestInR(ARM64Reg dest);
FixupBranch JumpIfCRFieldBit(int field, int bit, bool jump_if_set);
};

View File

@ -0,0 +1,16 @@
// Copyright 2014 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#include "Core/PowerPC/JitInterface.h"
#include "Core/PowerPC/JitArm64/Jit.h"
#include "Core/PowerPC/JitArm64/JitArm64Cache.h"
void JitArm64BlockCache::WriteLinkBlock(u8* location, const u8* address)
{
}
void JitArm64BlockCache::WriteDestroyBlock(const u8* location, u32 address)
{
}

View File

@ -0,0 +1,17 @@
// Copyright 2014 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#pragma once
#include "Core/PowerPC/JitCommon/JitCache.h"
typedef void (*CompiledCode)();
class JitArm64BlockCache : public JitBaseBlockCache
{
private:
void WriteLinkBlock(u8* location, const u8* address);
void WriteDestroyBlock(const u8* location, u32 address);
};

View File

@ -0,0 +1,254 @@
// Copyright 2014 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#include "Common/Arm64Emitter.h"
#include "Common/Common.h"
#include "Core/Core.h"
#include "Core/CoreTiming.h"
#include "Core/PowerPC/PowerPC.h"
#include "Core/PowerPC/PPCTables.h"
#include "Core/PowerPC/JitArm64/Jit.h"
#include "Core/PowerPC/JitArm64/JitArm64_RegCache.h"
#include "Core/PowerPC/JitArm64/JitAsm.h"
using namespace Arm64Gen;
void JitArm64::sc(UGeckoInstruction inst)
{
INSTRUCTION_START
gpr.Flush(FlushMode::FLUSH_ALL);
fpr.Flush(FlushMode::FLUSH_ALL);
ARM64Reg WA = gpr.GetReg();
LDR(INDEX_UNSIGNED, WA, X29, PPCSTATE_OFF(Exceptions));
ORR(WA, WA, 31, 0); // Same as WA | EXCEPTION_SYSCALL
STR(INDEX_UNSIGNED, WA, X29, PPCSTATE_OFF(Exceptions));
MOVI2R(WA, js.compilerPC + 4);
STR(INDEX_UNSIGNED, WA, X29, PPCSTATE_OFF(pc));
// WA is unlocked in this function
WriteExceptionExit(WA);
}
void JitArm64::rfi(UGeckoInstruction inst)
{
INSTRUCTION_START
gpr.Flush(FlushMode::FLUSH_ALL);
fpr.Flush(FlushMode::FLUSH_ALL);
// See Interpreter rfi for details
const u32 mask = 0x87C0FFFF;
const u32 clearMSR13 = 0xFFFBFFFF; // Mask used to clear the bit MSR[13]
// MSR = ((MSR & ~mask) | (SRR1 & mask)) & clearMSR13;
// R0 = MSR location
// R1 = MSR contents
// R2 = Mask
// R3 = Mask
ARM64Reg WA = gpr.GetReg();
ARM64Reg WB = gpr.GetReg();
ARM64Reg WC = gpr.GetReg();
MOVI2R(WA, (~mask) & clearMSR13);
MOVI2R(WB, mask & clearMSR13);
LDR(INDEX_UNSIGNED, WC, X29, PPCSTATE_OFF(msr));
AND(WC, WC, WB, ArithOption(WC, ST_LSL, 0)); // rD = Masked MSR
LDR(INDEX_UNSIGNED, WA, X29, PPCSTATE_OFF(spr[SPR_SRR1])); // rB contains SRR1 here
AND(WA, WA, WB, ArithOption(WA, ST_LSL, 0)); // rB contains masked SRR1 here
ORR(WA, WA, WC, ArithOption(WA, ST_LSL, 0)); // rB = Masked MSR OR masked SRR1
STR(INDEX_UNSIGNED, WA, X29, PPCSTATE_OFF(msr)); // STR rB in to rA
LDR(INDEX_UNSIGNED, WA, X29, PPCSTATE_OFF(spr[SPR_SRR0]));
gpr.Unlock(WB, WC);
// WA is unlocked in this function
WriteExceptionExit(WA);
}
void JitArm64::bx(UGeckoInstruction inst)
{
INSTRUCTION_START
gpr.Flush(FlushMode::FLUSH_ALL);
fpr.Flush(FlushMode::FLUSH_ALL);
u32 destination;
if (inst.AA)
destination = SignExt26(inst.LI << 2);
else
destination = js.compilerPC + SignExt26(inst.LI << 2);
if (inst.LK)
{
u32 Jumpto = js.compilerPC + 4;
ARM64Reg WA = gpr.GetReg();
MOVI2R(WA, Jumpto);
STR(INDEX_UNSIGNED, WA, X29, PPCSTATE_OFF(spr[SPR_LR]));
gpr.Unlock(WA);
}
if (destination == js.compilerPC)
{
// make idle loops go faster
ARM64Reg WA = gpr.GetReg();
ARM64Reg XA = EncodeRegTo64(WA);
MOVI2R(XA, (u64)&CoreTiming::Idle);
BLR(XA);
MOVI2R(WA, js.compilerPC);
WriteExceptionExit(WA);
}
WriteExit(destination);
}
void JitArm64::bcx(UGeckoInstruction inst)
{
INSTRUCTION_START
gpr.Flush(FlushMode::FLUSH_ALL);
fpr.Flush(FlushMode::FLUSH_ALL);
ARM64Reg WA = gpr.GetReg();
FixupBranch pCTRDontBranch;
if ((inst.BO & BO_DONT_DECREMENT_FLAG) == 0) // Decrement and test CTR
{
LDR(INDEX_UNSIGNED, WA, X29, PPCSTATE_OFF(spr[SPR_CTR]));
SUBS(WA, WA, 1);
STR(INDEX_UNSIGNED, WA, X29, PPCSTATE_OFF(spr[SPR_CTR]));
if (inst.BO & BO_BRANCH_IF_CTR_0)
pCTRDontBranch = B(CC_NEQ);
else
pCTRDontBranch = B(CC_EQ);
}
FixupBranch pConditionDontBranch;
if ((inst.BO & BO_DONT_CHECK_CONDITION) == 0) // Test a CR bit
{
pConditionDontBranch = JumpIfCRFieldBit(inst.BI >> 2, 3 - (inst.BI & 3),
!(inst.BO_2 & BO_BRANCH_IF_TRUE));
}
if (inst.LK)
{
u32 Jumpto = js.compilerPC + 4;
MOVI2R(WA, Jumpto);
STR(INDEX_UNSIGNED, WA, X29, PPCSTATE_OFF(spr[SPR_LR]));
}
gpr.Unlock(WA);
u32 destination;
if (inst.AA)
destination = SignExt16(inst.BD << 2);
else
destination = js.compilerPC + SignExt16(inst.BD << 2);
WriteExit(destination);
if ((inst.BO & BO_DONT_CHECK_CONDITION) == 0)
SetJumpTarget( pConditionDontBranch );
if ((inst.BO & BO_DONT_DECREMENT_FLAG) == 0)
SetJumpTarget( pCTRDontBranch );
WriteExit(js.compilerPC + 4);
}
void JitArm64::bcctrx(UGeckoInstruction inst)
{
INSTRUCTION_START
// bcctrx doesn't decrement and/or test CTR
_assert_msg_(DYNA_REC, inst.BO_2 & BO_DONT_DECREMENT_FLAG, "bcctrx with decrement and test CTR option is invalid!");
if (inst.BO_2 & BO_DONT_CHECK_CONDITION)
{
// BO_2 == 1z1zz -> b always
//NPC = CTR & 0xfffffffc;
gpr.Flush(FlushMode::FLUSH_ALL);
fpr.Flush(FlushMode::FLUSH_ALL);
if (inst.LK_3)
{
ARM64Reg WB = gpr.GetReg();
u32 Jumpto = js.compilerPC + 4;
MOVI2R(WB, Jumpto);
STR(INDEX_UNSIGNED, WB, X29, PPCSTATE_OFF(spr[SPR_LR]));
gpr.Unlock(WB);
}
ARM64Reg WA = gpr.GetReg();
LDR(INDEX_UNSIGNED, WA, X29, PPCSTATE_OFF(spr[SPR_CTR]));
AND(WA, WA, 30, 29); // Wipe the bottom 2 bits.
WriteExitDestInR(WA);
}
else
{
// Rare condition seen in (just some versions of?) Nintendo's NES Emulator
// BO_2 == 001zy -> b if false
// BO_2 == 011zy -> b if true
_assert_msg_(DYNA_REC, false, "Haven't implemented rare form of bcctrx yet");
}
}
void JitArm64::bclrx(UGeckoInstruction inst)
{
INSTRUCTION_START
gpr.Flush(FlushMode::FLUSH_ALL);
fpr.Flush(FlushMode::FLUSH_ALL);
ARM64Reg WA = gpr.GetReg();
FixupBranch pCTRDontBranch;
if ((inst.BO & BO_DONT_DECREMENT_FLAG) == 0) // Decrement and test CTR
{
LDR(INDEX_UNSIGNED, WA, X29, PPCSTATE_OFF(spr[SPR_CTR]));
SUBS(WA, WA, 1);
STR(INDEX_UNSIGNED, WA, X29, PPCSTATE_OFF(spr[SPR_CTR]));
if (inst.BO & BO_BRANCH_IF_CTR_0)
pCTRDontBranch = B(CC_NEQ);
else
pCTRDontBranch = B(CC_EQ);
}
FixupBranch pConditionDontBranch;
if ((inst.BO & BO_DONT_CHECK_CONDITION) == 0) // Test a CR bit
{
pConditionDontBranch = JumpIfCRFieldBit(inst.BI >> 2, 3 - (inst.BI & 3),
!(inst.BO_2 & BO_BRANCH_IF_TRUE));
}
LDR(INDEX_UNSIGNED, WA, X29, PPCSTATE_OFF(spr[SPR_LR]));
AND(WA, WA, 30, 29); // Wipe the bottom 2 bits.
if (inst.LK)
{
ARM64Reg WB = gpr.GetReg();
u32 Jumpto = js.compilerPC + 4;
MOVI2R(WB, Jumpto);
STR(INDEX_UNSIGNED, WB, X29, PPCSTATE_OFF(spr[SPR_LR]));
gpr.Unlock(WB);
}
WriteExitDestInR(WA);
if ((inst.BO & BO_DONT_CHECK_CONDITION) == 0)
SetJumpTarget( pConditionDontBranch );
if ((inst.BO & BO_DONT_DECREMENT_FLAG) == 0)
SetJumpTarget( pCTRDontBranch );
WriteExit(js.compilerPC + 4);
}

View File

@ -0,0 +1,22 @@
// Copyright 2014 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#include "Common/Arm64Emitter.h"
#include "Common/Common.h"
#include "Core/Core.h"
#include "Core/CoreTiming.h"
#include "Core/PowerPC/PowerPC.h"
#include "Core/PowerPC/PPCTables.h"
#include "Core/PowerPC/JitArm64/Jit.h"
#include "Core/PowerPC/JitArm64/JitArm64_RegCache.h"
#include "Core/PowerPC/JitArm64/JitAsm.h"
using namespace Arm64Gen;
void JitArm64::icbi(UGeckoInstruction inst)
{
FallBackToInterpreter(inst);
WriteExit(js.compilerPC + 4);
}

View File

@ -0,0 +1,319 @@
// copyright 2014 dolphin emulator project
// licensed under gplv2
// refer to the license.txt file included.
#include "Core/PowerPC/JitArm64/Jit.h"
#include "Core/PowerPC/JitArm64/JitArm64_RegCache.h"
using namespace Arm64Gen;
void Arm64RegCache::Init(ARM64XEmitter *emitter)
{
m_emit = emitter;
GetAllocationOrder();
}
ARM64Reg Arm64RegCache::GetReg(void)
{
for (auto& it : m_host_registers)
{
if (!it.IsLocked())
{
it.Lock();
return it.GetReg();
}
}
// Holy cow, how did you run out of registers?
// We can't return anything reasonable in this case. Return INVALID_REG and watch the failure happen
_assert_msg_(_DYNA_REC_, false, "All available registers are locked dumb dumb");
return INVALID_REG;
}
void Arm64RegCache::LockRegister(ARM64Reg host_reg)
{
auto reg = std::find(m_host_registers.begin(), m_host_registers.end(), host_reg);
if (reg == m_host_registers.end())
_assert_msg_(DYNA_REC, false, "Don't try locking a register that isn't in the cache");
_assert_msg_(DYNA_REC, !reg->IsLocked(), "This register is already locked");
reg->Lock();
}
void Arm64RegCache::UnlockRegister(ARM64Reg host_reg)
{
auto reg = std::find(m_host_registers.begin(), m_host_registers.end(), host_reg);
if (reg == m_host_registers.end())
_assert_msg_(DYNA_REC, false, "Don't try unlocking a register that isn't in the cache");
_assert_msg_(DYNA_REC, reg->IsLocked(), "This register is already unlocked");
reg->Unlock();
}
// GPR Cache
void Arm64GPRCache::Start(PPCAnalyst::BlockRegStats &stats)
{
// To make this technique easy, let's just work on pairs of even/odd registers
// We could do simple odd/even as well to get a few spare temporary registers
// but it isn't really needed, we aren't starved for registers
for (int reg = 0; reg < 32; reg += 2)
{
u32 regs_used = (stats.IsUsed(reg) << 1) | stats.IsUsed(reg + 1);
switch (regs_used)
{
case 0x02: // Reg+0 used
{
ARM64Reg host_reg = GetReg();
m_guest_registers[reg].LoadToReg(host_reg);
m_emit->LDR(INDEX_UNSIGNED, host_reg, X29, PPCSTATE_OFF(gpr[reg]));
}
break;
case 0x01: // Reg+1 used
{
ARM64Reg host_reg = GetReg();
m_guest_registers[reg + 1].LoadToReg(host_reg);
m_emit->LDR(INDEX_UNSIGNED, host_reg, X29, PPCSTATE_OFF(gpr[reg + 1]));
}
break;
case 0x03: // Both registers used
{
// Get a 64bit host register
ARM64Reg host_reg = EncodeRegTo64(GetReg());
m_guest_registers[reg].LoadToAway(host_reg, REG_LOW);
m_guest_registers[reg + 1].LoadToAway(host_reg, REG_HIGH);
// host_reg is 64bit here.
// It'll load both guest_registers in one LDR
m_emit->LDR(INDEX_UNSIGNED, host_reg, X29, PPCSTATE_OFF(gpr[reg]));
}
break;
case 0x00: // Neither used
default:
break;
}
}
}
bool Arm64GPRCache::IsCalleeSaved(ARM64Reg reg)
{
static std::vector<ARM64Reg> callee_regs =
{
X28, X27, X26, X25, X24, X23, X22, X21, X20,
X19, INVALID_REG,
};
return std::find(callee_regs.begin(), callee_regs.end(), EncodeRegTo64(reg)) != callee_regs.end();
}
void Arm64GPRCache::Flush(FlushMode mode, PPCAnalyst::CodeOp* op)
{
for (int i = 0; i < 32; ++i)
{
bool flush = true;
if (mode == FLUSH_INTERPRETER)
{
if (!(op->regsOut[0] == i ||
op->regsOut[1] == i ||
op->regsIn[0] == i ||
op->regsIn[1] == i ||
op->regsIn[2] == i))
{
// This interpreted instruction doesn't use this register
flush = false;
}
}
if (m_guest_registers[i].GetType() == REG_REG)
{
// Has to be flushed if it isn't in a callee saved register
ARM64Reg host_reg = m_guest_registers[i].GetReg();
if (flush || !IsCalleeSaved(host_reg))
{
m_emit->STR(INDEX_UNSIGNED, host_reg, X29, PPCSTATE_OFF(gpr[i]));
Unlock(host_reg);
m_guest_registers[i].Flush();
}
}
else if (m_guest_registers[i].GetType() == REG_IMM)
{
if (flush)
{
ARM64Reg host_reg = GetReg();
m_emit->MOVI2R(host_reg, m_guest_registers[i].GetImm());
m_emit->STR(INDEX_UNSIGNED, host_reg, X29, PPCSTATE_OFF(gpr[i]));
Unlock(host_reg);
m_guest_registers[i].Flush();
}
}
else if (m_guest_registers[i].GetType() == REG_AWAY)
{
// We are away, that means that this register and the next are stored in a single 64bit register
// There is a very good chance that both the registers are out in some "temp" register
bool flush_2 = true;
if (mode == FLUSH_INTERPRETER)
{
if (!(op->regsOut[0] == (i + 1) ||
op->regsOut[1] == (i + 1) ||
op->regsIn[0] == (i + 1) ||
op->regsIn[1] == (i + 1) ||
op->regsIn[2] == (i + 1)))
{
// This interpreted instruction doesn't use this register
flush_2 = false;
}
}
ARM64Reg host_reg = m_guest_registers[i].GetAwayReg();
ARM64Reg host_reg_1 = m_guest_registers[i].GetReg();
ARM64Reg host_reg_2 = m_guest_registers[i + 1].GetReg();
// Flush if either of these shared registers are used.
if (flush ||
flush_2 ||
!IsCalleeSaved(host_reg) ||
!IsCalleeSaved(host_reg_1) ||
!IsCalleeSaved(host_reg_2))
{
if (host_reg_1 == INVALID_REG)
{
// We never loaded this register
// We've got to test the state of our shared register
// Currently it is always reg+1
if (host_reg_2 == INVALID_REG)
{
// We didn't load either of these registers
// This can happen in cases where we had to flush register state
// or if we hit an interpreted instruction before we could use it
// Dump the whole thing in one go and flush both registers
// 64bit host register will store 2 32bit store registers in one go
m_emit->STR(INDEX_UNSIGNED, host_reg, X29, PPCSTATE_OFF(gpr[i]));
}
else
{
// Alright, bottom register isn't used, but top one is
// Only store the top one
m_emit->STR(INDEX_UNSIGNED, host_reg_2, X29, PPCSTATE_OFF(gpr[i + 1]));
Unlock(host_reg_2);
}
}
else
{
m_emit->STR(INDEX_UNSIGNED, host_reg_1, X29, PPCSTATE_OFF(gpr[i]));
Unlock(host_reg_1);
}
// Flush both registers
m_guest_registers[i].Flush();
m_guest_registers[i + 1].Flush();
Unlock(DecodeReg(host_reg));
}
// Skip the next register since we've handled it here
++i;
}
}
}
ARM64Reg Arm64GPRCache::R(u32 preg)
{
OpArg& reg = m_guest_registers[preg];
switch (reg.GetType())
{
case REG_REG: // already in a reg
return reg.GetReg();
break;
case REG_IMM: // Is an immediate
{
ARM64Reg host_reg = GetReg();
m_emit->MOVI2R(host_reg, reg.GetImm());
}
break;
case REG_AWAY: // Register is away in a shared register
{
// Let's do the voodoo that we dodo
if (reg.GetReg() == INVALID_REG)
{
// Alright, we need to move to a valid location
ARM64Reg host_reg = GetReg();
reg.LoadAwayToReg(host_reg);
// Alright, we need to extract from our away register
// To our new 32bit register
if (reg.GetAwayLocation() == REG_LOW)
{
// We are in the low bits
// Just move it over to the low bits of the new register
m_emit->UBFM(EncodeRegTo64(host_reg), reg.GetAwayReg(), 0, 31);
}
else
{
// We are in the high bits
m_emit->UBFM(EncodeRegTo64(host_reg), reg.GetAwayReg(), 32, 63);
}
}
else
{
// We've already moved to a valid place to work on
return reg.GetReg();
}
}
break;
case REG_NOTLOADED: // Register isn't loaded at /all/
{
// This is kind of annoying, we shouldn't have gotten here
// This can happen with instructions that use multiple registers(eg lmw)
// The PPCAnalyst needs to be modified to handle these cases
_dbg_assert_msg_(DYNA_REC, false, "Hit REG_NOTLOADED type oparg. Fix the PPCAnalyst");
ARM64Reg host_reg = GetReg();
reg.LoadToReg(host_reg);
m_emit->LDR(INDEX_UNSIGNED, host_reg, X29, PPCSTATE_OFF(gpr[preg]));
return host_reg;
}
break;
default:
_dbg_assert_msg_(DYNA_REC, false, "Invalid OpArg Type!");
break;
}
// We've got an issue if we end up here
return INVALID_REG;
}
void Arm64GPRCache::GetAllocationOrder(void)
{
// Callee saved registers first in hopes that we will keep everything stored there first
const std::vector<ARM64Reg> allocation_order =
{
W28, W27, W26, W25, W24, W23, W22, W21, W20,
W19, W0, W1, W2, W3, W4, W5, W6, W7, W8, W9,
W10, W11, W12, W13, W14, W15, W16, W17, W18,
W30,
};
for (ARM64Reg reg : allocation_order)
m_host_registers.push_back(HostReg(reg));
}
// FPR Cache
void Arm64FPRCache::Flush(FlushMode mode, PPCAnalyst::CodeOp* op)
{
// XXX: Flush our stuff
}
ARM64Reg Arm64FPRCache::R(u32 preg)
{
// XXX: return a host reg holding a guest register
}
void Arm64FPRCache::GetAllocationOrder(void)
{
const std::vector<ARM64Reg> allocation_order =
{
D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10,
D11, D12, D13, D14, D15, D16, D17, D18, D19,
D20, D21, D22, D23, D24, D25, D26, D27, D28,
D29, D30, D31,
};
for (ARM64Reg reg : allocation_order)
m_host_registers.push_back(HostReg(reg));
}

View File

@ -0,0 +1,251 @@
// copyright 2014 dolphin emulator project
// licensed under gplv2
// refer to the license.txt file included.
#pragma once
#include <vector>
#include "Common/Arm64Emitter.h"
#include "Core/PowerPC/Gekko.h"
#include "Core/PowerPC/PPCAnalyst.h"
// Dedicated host registers
// X29 = ppcState pointer
using namespace Arm64Gen;
enum RegType
{
REG_NOTLOADED = 0,
REG_REG, // Reg type is register
REG_IMM, // Reg is really a IMM
REG_AWAY, // Reg is away
};
enum RegLocation
{
REG_LOW = 0,
REG_HIGH,
};
enum FlushMode
{
// Flushes all registers, no exceptions
FLUSH_ALL = 0,
// Flushes registers in a conditional branch
// Doesn't wipe the state of the registers from the cache
FLUSH_MAINTAIN_STATE,
// Flushes only the required registers for an interpreter call
FLUSH_INTERPRETER,
};
class OpArg
{
public:
OpArg()
{
m_type = REG_NOTLOADED;
m_reg = INVALID_REG;
m_value = 0;
}
RegType GetType()
{
return m_type;
}
ARM64Reg GetReg()
{
return m_reg;
}
ARM64Reg GetAwayReg()
{
return m_away_reg;
}
RegLocation GetAwayLocation()
{
return m_away_location;
}
u32 GetImm()
{
return m_value;
}
void LoadToReg(ARM64Reg reg)
{
m_type = REG_REG;
m_reg = reg;
}
void LoadToAway(ARM64Reg reg, RegLocation location)
{
m_type = REG_AWAY;
m_reg = INVALID_REG;
m_away_reg = reg;
m_away_location = location;
}
void LoadAwayToReg(ARM64Reg reg)
{
// We are still an away type
// We just are also in another register
m_reg = reg;
}
void LoadToImm(u32 imm)
{
m_type = REG_IMM;
m_value = imm;
}
void Flush()
{
m_type = REG_NOTLOADED;
}
private:
// For REG_REG
RegType m_type; // store type
ARM64Reg m_reg; // host register we are in
// For REG_AWAY
// Host register that we are away in
// This is a 64bit register
ARM64Reg m_away_reg;
RegLocation m_away_location;
// For REG_IMM
u32 m_value; // IMM value
};
class HostReg
{
public:
HostReg() : m_reg(INVALID_REG), m_locked(false) {}
HostReg(ARM64Reg reg) : m_reg(reg), m_locked(false) {}
bool IsLocked(void) { return m_locked; }
void Lock(void) { m_locked = true; }
void Unlock(void) { m_locked = false; }
ARM64Reg GetReg(void) { return m_reg; }
bool operator==(const ARM64Reg& reg)
{
return reg == m_reg;
}
private:
ARM64Reg m_reg;
bool m_locked;
};
class Arm64RegCache
{
public:
Arm64RegCache(void) : m_emit(nullptr), m_reg_stats(nullptr) {};
virtual ~Arm64RegCache() {};
void Init(ARM64XEmitter *emitter);
virtual void Start(PPCAnalyst::BlockRegStats &stats) {}
// Flushes the register cache in different ways depending on the mode
virtual void Flush(FlushMode mode, PPCAnalyst::CodeOp* op) = 0;
// Returns a guest register inside of a host register
// Will dump an immediate to the host register as well
virtual ARM64Reg R(u32 reg) = 0;
// Returns a temporary register for use
// Requires unlocking after done
ARM64Reg GetReg(void);
// Locks a register so a cache cannot use it
// Useful for function calls
template<typename T = ARM64Reg, typename... Args>
void Lock(Args... args)
{
for (T reg : {args...})
{
LockRegister(reg);
}
}
// Unlocks a locked register
// Unlocks registers locked with both GetReg and LockRegister
template<typename T = ARM64Reg, typename... Args>
void Unlock(Args... args)
{
for (T reg : {args...})
{
UnlockRegister(reg);
}
}
protected:
// Get the order of the host registers
virtual void GetAllocationOrder(void) = 0;
// Lock a register
void LockRegister(ARM64Reg host_reg);
// Unlock a register
void UnlockRegister(ARM64Reg host_reg);
// Code emitter
ARM64XEmitter *m_emit;
// Host side registers that hold the host registers in order of use
std::vector<HostReg> m_host_registers;
// Register stats for the current block
PPCAnalyst::BlockRegStats *m_reg_stats;
};
class Arm64GPRCache : public Arm64RegCache
{
public:
~Arm64GPRCache() {}
void Start(PPCAnalyst::BlockRegStats &stats);
// Flushes the register cache in different ways depending on the mode
void Flush(FlushMode mode, PPCAnalyst::CodeOp* op = nullptr);
// Returns a guest register inside of a host register
// Will dump an immediate to the host register as well
ARM64Reg R(u32 preg);
// Set a register to an immediate
void SetImmediate(u32 reg, u32 imm) { m_guest_registers[reg].LoadToImm(imm); }
// Returns if a register is set as an immediate
bool IsImm(u32 reg) { return m_guest_registers[reg].GetType() == REG_IMM; }
// Gets the immediate that a register is set to
u32 GetImm(u32 reg) { return m_guest_registers[reg].GetImm(); }
protected:
// Get the order of the host registers
void GetAllocationOrder(void);
// Our guest GPRs
// PowerPC has 32 GPRs
OpArg m_guest_registers[32];
private:
bool IsCalleeSaved(ARM64Reg reg);
};
class Arm64FPRCache : public Arm64RegCache
{
public:
~Arm64FPRCache() {}
// Flushes the register cache in different ways depending on the mode
void Flush(FlushMode mode, PPCAnalyst::CodeOp* op = nullptr);
// Returns a guest register inside of a host register
// Will dump an immediate to the host register as well
ARM64Reg R(u32 preg);
protected:
// Get the order of the host registers
void GetAllocationOrder(void);
// Our guest FPRs
// Gekko has 32 paired registers(32x2)
OpArg m_guest_registers[32][2];
};

View File

@ -0,0 +1,60 @@
// Copyright 2014 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#include "Common/Arm64Emitter.h"
#include "Common/Common.h"
#include "Core/Core.h"
#include "Core/CoreTiming.h"
#include "Core/PowerPC/PowerPC.h"
#include "Core/PowerPC/PPCTables.h"
#include "Core/PowerPC/JitArm64/Jit.h"
#include "Core/PowerPC/JitArm64/JitAsm.h"
FixupBranch JitArm64::JumpIfCRFieldBit(int field, int bit, bool jump_if_set)
{
ARM64Reg WA = gpr.GetReg();
ARM64Reg XA = EncodeRegTo64(WA);
FixupBranch branch;
switch (bit)
{
case CR_SO_BIT: // check bit 61 set
LDR(INDEX_UNSIGNED, XA, X29, PPCSTATE_OFF(cr_val[field]));
branch = jump_if_set ? TBNZ(XA, 61) : TBZ(XA, 61);
break;
case CR_EQ_BIT: // check bits 31-0 == 0
LDR(INDEX_UNSIGNED, WA, X29, PPCSTATE_OFF(cr_val[field]));
branch = jump_if_set ? CBZ(WA) : CBNZ(WA);
break;
case CR_GT_BIT: // check val > 0
LDR(INDEX_UNSIGNED, XA, X29, PPCSTATE_OFF(cr_val[field]));
CMP(XA, SP);
branch = B(jump_if_set ? CC_GT : CC_LE);
break;
case CR_LT_BIT: // check bit 62 set
LDR(INDEX_UNSIGNED, XA, X29, PPCSTATE_OFF(cr_val[field]));
branch = jump_if_set ? TBNZ(XA, 62) : TBZ(XA, 62);
break;
default:
_assert_msg_(DYNA_REC, false, "Invalid CR bit");
}
gpr.Unlock(WA);
return branch;
}
void JitArm64::mtmsr(UGeckoInstruction inst)
{
INSTRUCTION_START
// Don't interpret this, if we do we get thrown out
//JITDISABLE(bJITSystemRegistersOff)
STR(INDEX_UNSIGNED, gpr.R(inst.RS), X29, PPCSTATE_OFF(msr));
gpr.Flush(FlushMode::FLUSH_ALL);
fpr.Flush(FlushMode::FLUSH_ALL);
WriteExit(js.compilerPC + 4);
}

View File

@ -0,0 +1,493 @@
// Copyright 2014 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#include "Core/PowerPC/JitInterface.h"
#include "Core/PowerPC/JitArm64/Jit.h"
#include "Core/PowerPC/JitArm64/JitArm64_Tables.h"
// Should be moved in to the Jit class
typedef void (JitArm64::*_Instruction) (UGeckoInstruction instCode);
static _Instruction dynaOpTable[64];
static _Instruction dynaOpTable4[1024];
static _Instruction dynaOpTable19[1024];
static _Instruction dynaOpTable31[1024];
static _Instruction dynaOpTable59[32];
static _Instruction dynaOpTable63[1024];
void JitArm64::DynaRunTable4(UGeckoInstruction inst) {(this->*dynaOpTable4 [inst.SUBOP10])(inst);}
void JitArm64::DynaRunTable19(UGeckoInstruction inst) {(this->*dynaOpTable19[inst.SUBOP10])(inst);}
void JitArm64::DynaRunTable31(UGeckoInstruction inst) {(this->*dynaOpTable31[inst.SUBOP10])(inst);}
void JitArm64::DynaRunTable59(UGeckoInstruction inst) {(this->*dynaOpTable59[inst.SUBOP5 ])(inst);}
void JitArm64::DynaRunTable63(UGeckoInstruction inst) {(this->*dynaOpTable63[inst.SUBOP10])(inst);}
struct GekkoOPTemplate
{
int opcode;
_Instruction Inst;
//GekkoOPInfo opinfo; // Doesn't need opinfo, Interpreter fills it out
};
static GekkoOPTemplate primarytable[] =
{
{4, &JitArm64::DynaRunTable4}, //"RunTable4", OPTYPE_SUBTABLE | (4<<24), 0}},
{19, &JitArm64::DynaRunTable19}, //"RunTable19", OPTYPE_SUBTABLE | (19<<24), 0}},
{31, &JitArm64::DynaRunTable31}, //"RunTable31", OPTYPE_SUBTABLE | (31<<24), 0}},
{59, &JitArm64::DynaRunTable59}, //"RunTable59", OPTYPE_SUBTABLE | (59<<24), 0}},
{63, &JitArm64::DynaRunTable63}, //"RunTable63", OPTYPE_SUBTABLE | (63<<24), 0}},
{16, &JitArm64::bcx}, //"bcx", OPTYPE_SYSTEM, FL_ENDBLOCK}},
{18, &JitArm64::bx}, //"bx", OPTYPE_SYSTEM, FL_ENDBLOCK}},
{1, &JitArm64::HLEFunction}, //"HLEFunction", OPTYPE_SYSTEM, FL_ENDBLOCK}},
{2, &JitArm64::FallBackToInterpreter}, //"DynaBlock", OPTYPE_SYSTEM, 0}},
{3, &JitArm64::Break}, //"twi", OPTYPE_SYSTEM, FL_ENDBLOCK}},
{17, &JitArm64::sc}, //"sc", OPTYPE_SYSTEM, FL_ENDBLOCK, 1}},
{7, &JitArm64::FallBackToInterpreter}, //"mulli", OPTYPE_INTEGER, FL_OUT_D | FL_IN_A | FL_RC_BIT, 2}},
{8, &JitArm64::FallBackToInterpreter}, //"subfic", OPTYPE_INTEGER, FL_OUT_D | FL_IN_A | FL_SET_CA}},
{10, &JitArm64::FallBackToInterpreter}, //"cmpli", OPTYPE_INTEGER, FL_IN_A | FL_SET_CRn}},
{11, &JitArm64::FallBackToInterpreter}, //"cmpi", OPTYPE_INTEGER, FL_IN_A | FL_SET_CRn}},
{12, &JitArm64::FallBackToInterpreter}, //"addic", OPTYPE_INTEGER, FL_OUT_D | FL_IN_A | FL_SET_CA}},
{13, &JitArm64::FallBackToInterpreter}, //"addic_rc", OPTYPE_INTEGER, FL_OUT_D | FL_IN_A | FL_SET_CR0}},
{14, &JitArm64::FallBackToInterpreter}, //"addi", OPTYPE_INTEGER, FL_OUT_D | FL_IN_A0}},
{15, &JitArm64::FallBackToInterpreter}, //"addis", OPTYPE_INTEGER, FL_OUT_D | FL_IN_A0}},
{20, &JitArm64::FallBackToInterpreter}, //"rlwimix", OPTYPE_INTEGER, FL_OUT_A | FL_IN_A | FL_IN_S | FL_RC_BIT}},
{21, &JitArm64::FallBackToInterpreter}, //"rlwinmx", OPTYPE_INTEGER, FL_OUT_A | FL_IN_S | FL_RC_BIT}},
{23, &JitArm64::FallBackToInterpreter}, //"rlwnmx", OPTYPE_INTEGER, FL_OUT_A | FL_IN_S | FL_IN_B | FL_RC_BIT}},
{24, &JitArm64::FallBackToInterpreter}, //"ori", OPTYPE_INTEGER, FL_OUT_A | FL_IN_S}},
{25, &JitArm64::FallBackToInterpreter}, //"oris", OPTYPE_INTEGER, FL_OUT_A | FL_IN_S}},
{26, &JitArm64::FallBackToInterpreter}, //"xori", OPTYPE_INTEGER, FL_OUT_A | FL_IN_S}},
{27, &JitArm64::FallBackToInterpreter}, //"xoris", OPTYPE_INTEGER, FL_OUT_A | FL_IN_S}},
{28, &JitArm64::FallBackToInterpreter}, //"andi_rc", OPTYPE_INTEGER, FL_OUT_A | FL_IN_S | FL_SET_CR0}},
{29, &JitArm64::FallBackToInterpreter}, //"andis_rc", OPTYPE_INTEGER, FL_OUT_A | FL_IN_S | FL_SET_CR0}},
{32, &JitArm64::FallBackToInterpreter}, //"lwz", OPTYPE_LOAD, FL_OUT_D | FL_IN_A}},
{33, &JitArm64::FallBackToInterpreter}, //"lwzu", OPTYPE_LOAD, FL_OUT_D | FL_OUT_A | FL_IN_A}},
{34, &JitArm64::FallBackToInterpreter}, //"lbz", OPTYPE_LOAD, FL_OUT_D | FL_IN_A}},
{35, &JitArm64::FallBackToInterpreter}, //"lbzu", OPTYPE_LOAD, FL_OUT_D | FL_OUT_A | FL_IN_A}},
{40, &JitArm64::FallBackToInterpreter}, //"lhz", OPTYPE_LOAD, FL_OUT_D | FL_IN_A}},
{41, &JitArm64::FallBackToInterpreter}, //"lhzu", OPTYPE_LOAD, FL_OUT_D | FL_OUT_A | FL_IN_A}},
{42, &JitArm64::FallBackToInterpreter}, //"lha", OPTYPE_LOAD, FL_OUT_D | FL_IN_A}},
{43, &JitArm64::FallBackToInterpreter}, //"lhau", OPTYPE_LOAD, FL_OUT_D | FL_OUT_A | FL_IN_A}},
{44, &JitArm64::FallBackToInterpreter}, //"sth", OPTYPE_STORE, FL_IN_A | FL_IN_S}},
{45, &JitArm64::FallBackToInterpreter}, //"sthu", OPTYPE_STORE, FL_OUT_A | FL_IN_A | FL_IN_S}},
{36, &JitArm64::FallBackToInterpreter}, //"stw", OPTYPE_STORE, FL_IN_A | FL_IN_S}},
{37, &JitArm64::FallBackToInterpreter}, //"stwu", OPTYPE_STORE, FL_OUT_A | FL_IN_A | FL_IN_S}},
{38, &JitArm64::FallBackToInterpreter}, //"stb", OPTYPE_STORE, FL_IN_A | FL_IN_S}},
{39, &JitArm64::FallBackToInterpreter}, //"stbu", OPTYPE_STORE, FL_OUT_A | FL_IN_A | FL_IN_S}},
{46, &JitArm64::FallBackToInterpreter}, //"lmw", OPTYPE_SYSTEM, FL_EVIL, 10}},
{47, &JitArm64::FallBackToInterpreter}, //"stmw", OPTYPE_SYSTEM, FL_EVIL, 10}},
{48, &JitArm64::FallBackToInterpreter}, //"lfs", OPTYPE_LOADFP, FL_IN_A}},
{49, &JitArm64::FallBackToInterpreter}, //"lfsu", OPTYPE_LOADFP, FL_OUT_A | FL_IN_A}},
{50, &JitArm64::FallBackToInterpreter}, //"lfd", OPTYPE_LOADFP, FL_IN_A}},
{51, &JitArm64::FallBackToInterpreter}, //"lfdu", OPTYPE_LOADFP, FL_OUT_A | FL_IN_A}},
{52, &JitArm64::FallBackToInterpreter}, //"stfs", OPTYPE_STOREFP, FL_IN_A}},
{53, &JitArm64::FallBackToInterpreter}, //"stfsu", OPTYPE_STOREFP, FL_OUT_A | FL_IN_A}},
{54, &JitArm64::FallBackToInterpreter}, //"stfd", OPTYPE_STOREFP, FL_IN_A}},
{55, &JitArm64::FallBackToInterpreter}, //"stfdu", OPTYPE_STOREFP, FL_OUT_A | FL_IN_A}},
{56, &JitArm64::FallBackToInterpreter}, //"psq_l", OPTYPE_PS, FL_IN_A}},
{57, &JitArm64::FallBackToInterpreter}, //"psq_lu", OPTYPE_PS, FL_OUT_A | FL_IN_A}},
{60, &JitArm64::FallBackToInterpreter}, //"psq_st", OPTYPE_PS, FL_IN_A}},
{61, &JitArm64::FallBackToInterpreter}, //"psq_stu", OPTYPE_PS, FL_OUT_A | FL_IN_A}},
//missing: 0, 5, 6, 9, 22, 30, 62, 58
{0, &JitArm64::FallBackToInterpreter}, //"unknown_instruction", OPTYPE_UNKNOWN, 0}},
{5, &JitArm64::FallBackToInterpreter}, //"unknown_instruction", OPTYPE_UNKNOWN, 0}},
{6, &JitArm64::FallBackToInterpreter}, //"unknown_instruction", OPTYPE_UNKNOWN, 0}},
{9, &JitArm64::FallBackToInterpreter}, //"unknown_instruction", OPTYPE_UNKNOWN, 0}},
{22, &JitArm64::FallBackToInterpreter}, //"unknown_instruction", OPTYPE_UNKNOWN, 0}},
{30, &JitArm64::FallBackToInterpreter}, //"unknown_instruction", OPTYPE_UNKNOWN, 0}},
{62, &JitArm64::FallBackToInterpreter}, //"unknown_instruction", OPTYPE_UNKNOWN, 0}},
{58, &JitArm64::FallBackToInterpreter}, //"unknown_instruction", OPTYPE_UNKNOWN, 0}},
};
static GekkoOPTemplate table4[] =
{ //SUBOP10
{0, &JitArm64::FallBackToInterpreter}, //"ps_cmpu0", OPTYPE_PS, FL_SET_CRn}},
{32, &JitArm64::FallBackToInterpreter}, //"ps_cmpo0", OPTYPE_PS, FL_SET_CRn}},
{40, &JitArm64::FallBackToInterpreter}, //"ps_neg", OPTYPE_PS, FL_RC_BIT}},
{136, &JitArm64::FallBackToInterpreter}, //"ps_nabs", OPTYPE_PS, FL_RC_BIT}},
{264, &JitArm64::FallBackToInterpreter}, //"ps_abs", OPTYPE_PS, FL_RC_BIT}},
{64, &JitArm64::FallBackToInterpreter}, //"ps_cmpu1", OPTYPE_PS, FL_RC_BIT}},
{72, &JitArm64::FallBackToInterpreter}, //"ps_mr", OPTYPE_PS, FL_RC_BIT}},
{96, &JitArm64::FallBackToInterpreter}, //"ps_cmpo1", OPTYPE_PS, FL_RC_BIT}},
{528, &JitArm64::FallBackToInterpreter}, //"ps_merge00", OPTYPE_PS, FL_RC_BIT}},
{560, &JitArm64::FallBackToInterpreter}, //"ps_merge01", OPTYPE_PS, FL_RC_BIT}},
{592, &JitArm64::FallBackToInterpreter}, //"ps_merge10", OPTYPE_PS, FL_RC_BIT}},
{624, &JitArm64::FallBackToInterpreter}, //"ps_merge11", OPTYPE_PS, FL_RC_BIT}},
{1014, &JitArm64::FallBackToInterpreter}, //"dcbz_l", OPTYPE_SYSTEM, 0}},
};
static GekkoOPTemplate table4_2[] =
{
{10, &JitArm64::FallBackToInterpreter}, //"ps_sum0", OPTYPE_PS, 0}},
{11, &JitArm64::FallBackToInterpreter}, //"ps_sum1", OPTYPE_PS, 0}},
{12, &JitArm64::FallBackToInterpreter}, //"ps_muls0", OPTYPE_PS, 0}},
{13, &JitArm64::FallBackToInterpreter}, //"ps_muls1", OPTYPE_PS, 0}},
{14, &JitArm64::FallBackToInterpreter}, //"ps_madds0", OPTYPE_PS, 0}},
{15, &JitArm64::FallBackToInterpreter}, //"ps_madds1", OPTYPE_PS, 0}},
{18, &JitArm64::FallBackToInterpreter}, //"ps_div", OPTYPE_PS, 0, 16}},
{20, &JitArm64::FallBackToInterpreter}, //"ps_sub", OPTYPE_PS, 0}},
{21, &JitArm64::FallBackToInterpreter}, //"ps_add", OPTYPE_PS, 0}},
{23, &JitArm64::FallBackToInterpreter}, //"ps_sel", OPTYPE_PS, 0}},
{24, &JitArm64::FallBackToInterpreter}, //"ps_res", OPTYPE_PS, 0}},
{25, &JitArm64::FallBackToInterpreter}, //"ps_mul", OPTYPE_PS, 0}},
{26, &JitArm64::FallBackToInterpreter}, //"ps_rsqrte", OPTYPE_PS, 0, 1}},
{28, &JitArm64::FallBackToInterpreter}, //"ps_msub", OPTYPE_PS, 0}},
{29, &JitArm64::FallBackToInterpreter}, //"ps_madd", OPTYPE_PS, 0}},
{30, &JitArm64::FallBackToInterpreter}, //"ps_nmsub", OPTYPE_PS, 0}},
{31, &JitArm64::FallBackToInterpreter}, //"ps_nmadd", OPTYPE_PS, 0}},
};
static GekkoOPTemplate table4_3[] =
{
{6, &JitArm64::FallBackToInterpreter}, //"psq_lx", OPTYPE_PS, 0}},
{7, &JitArm64::FallBackToInterpreter}, //"psq_stx", OPTYPE_PS, 0}},
{38, &JitArm64::FallBackToInterpreter}, //"psq_lux", OPTYPE_PS, 0}},
{39, &JitArm64::FallBackToInterpreter}, //"psq_stux", OPTYPE_PS, 0}},
};
static GekkoOPTemplate table19[] =
{
{528, &JitArm64::bcctrx}, //"bcctrx", OPTYPE_BRANCH, FL_ENDBLOCK}},
{16, &JitArm64::bclrx}, //"bclrx", OPTYPE_BRANCH, FL_ENDBLOCK}},
{257, &JitArm64::FallBackToInterpreter}, //"crand", OPTYPE_CR, FL_EVIL}},
{129, &JitArm64::FallBackToInterpreter}, //"crandc", OPTYPE_CR, FL_EVIL}},
{289, &JitArm64::FallBackToInterpreter}, //"creqv", OPTYPE_CR, FL_EVIL}},
{225, &JitArm64::FallBackToInterpreter}, //"crnand", OPTYPE_CR, FL_EVIL}},
{33, &JitArm64::FallBackToInterpreter}, //"crnor", OPTYPE_CR, FL_EVIL}},
{449, &JitArm64::FallBackToInterpreter}, //"cror", OPTYPE_CR, FL_EVIL}},
{417, &JitArm64::FallBackToInterpreter}, //"crorc", OPTYPE_CR, FL_EVIL}},
{193, &JitArm64::FallBackToInterpreter}, //"crxor", OPTYPE_CR, FL_EVIL}},
{150, &JitArm64::FallBackToInterpreter}, //"isync", OPTYPE_ICACHE, FL_EVIL}},
{0, &JitArm64::FallBackToInterpreter}, //"mcrf", OPTYPE_SYSTEM, FL_EVIL}},
{50, &JitArm64::rfi}, //"rfi", OPTYPE_SYSTEM, FL_ENDBLOCK | FL_CHECKEXCEPTIONS, 1}},
{18, &JitArm64::Break}, //"rfid", OPTYPE_SYSTEM, FL_ENDBLOCK | FL_CHECKEXCEPTIONS}}
};
static GekkoOPTemplate table31[] =
{
{28, &JitArm64::FallBackToInterpreter}, //"andx", OPTYPE_INTEGER, FL_OUT_A | FL_IN_SB | FL_RC_BIT}},
{60, &JitArm64::FallBackToInterpreter}, //"andcx", OPTYPE_INTEGER, FL_OUT_A | FL_IN_SB | FL_RC_BIT}},
{444, &JitArm64::FallBackToInterpreter}, //"orx", OPTYPE_INTEGER, FL_OUT_A | FL_IN_SB | FL_RC_BIT}},
{124, &JitArm64::FallBackToInterpreter}, //"norx", OPTYPE_INTEGER, FL_OUT_A | FL_IN_SB | FL_RC_BIT}},
{316, &JitArm64::FallBackToInterpreter}, //"xorx", OPTYPE_INTEGER, FL_OUT_A | FL_IN_SB | FL_RC_BIT}},
{412, &JitArm64::FallBackToInterpreter}, //"orcx", OPTYPE_INTEGER, FL_OUT_A | FL_IN_SB | FL_RC_BIT}},
{476, &JitArm64::FallBackToInterpreter}, //"nandx", OPTYPE_INTEGER, FL_OUT_A | FL_IN_SB | FL_RC_BIT}},
{284, &JitArm64::FallBackToInterpreter}, //"eqvx", OPTYPE_INTEGER, FL_OUT_A | FL_IN_SB | FL_RC_BIT}},
{0, &JitArm64::FallBackToInterpreter}, //"cmp", OPTYPE_INTEGER, FL_IN_AB | FL_SET_CRn}},
{32, &JitArm64::FallBackToInterpreter}, //"cmpl", OPTYPE_INTEGER, FL_IN_AB | FL_SET_CRn}},
{26, &JitArm64::FallBackToInterpreter}, //"cntlzwx",OPTYPE_INTEGER, FL_OUT_A | FL_IN_S | FL_RC_BIT}},
{922, &JitArm64::FallBackToInterpreter}, //"extshx", OPTYPE_INTEGER, FL_OUT_A | FL_IN_S | FL_RC_BIT}},
{954, &JitArm64::FallBackToInterpreter}, //"extsbx", OPTYPE_INTEGER, FL_OUT_A | FL_IN_S | FL_RC_BIT}},
{536, &JitArm64::FallBackToInterpreter}, //"srwx", OPTYPE_INTEGER, FL_OUT_A | FL_IN_B | FL_IN_S | FL_RC_BIT}},
{792, &JitArm64::FallBackToInterpreter}, //"srawx", OPTYPE_INTEGER, FL_OUT_A | FL_IN_B | FL_IN_S | FL_RC_BIT}},
{824, &JitArm64::FallBackToInterpreter}, //"srawix", OPTYPE_INTEGER, FL_OUT_A | FL_IN_B | FL_IN_S | FL_RC_BIT}},
{24, &JitArm64::FallBackToInterpreter}, //"slwx", OPTYPE_INTEGER, FL_OUT_A | FL_IN_B | FL_IN_S | FL_RC_BIT}},
{54, &JitArm64::FallBackToInterpreter}, //"dcbst", OPTYPE_DCACHE, 0, 4}},
{86, &JitArm64::FallBackToInterpreter}, //"dcbf", OPTYPE_DCACHE, 0, 4}},
{246, &JitArm64::FallBackToInterpreter}, //"dcbtst", OPTYPE_DCACHE, 0, 1}},
{278, &JitArm64::FallBackToInterpreter}, //"dcbt", OPTYPE_DCACHE, 0, 1}},
{470, &JitArm64::FallBackToInterpreter}, //"dcbi", OPTYPE_DCACHE, 0, 4}},
{758, &JitArm64::FallBackToInterpreter}, //"dcba", OPTYPE_DCACHE, 0, 4}},
{1014, &JitArm64::FallBackToInterpreter}, //"dcbz", OPTYPE_DCACHE, 0, 4}},
//load word
{23, &JitArm64::FallBackToInterpreter}, //"lwzx", OPTYPE_LOAD, FL_OUT_D | FL_IN_A0 | FL_IN_B}},
{55, &JitArm64::FallBackToInterpreter}, //"lwzux", OPTYPE_LOAD, FL_OUT_D | FL_OUT_A | FL_IN_A | FL_IN_B}},
//load halfword
{279, &JitArm64::FallBackToInterpreter}, //"lhzx", OPTYPE_LOAD, FL_OUT_D | FL_IN_A0 | FL_IN_B}},
{311, &JitArm64::FallBackToInterpreter}, //"lhzux", OPTYPE_LOAD, FL_OUT_D | FL_OUT_A | FL_IN_A | FL_IN_B}},
//load halfword signextend
{343, &JitArm64::FallBackToInterpreter}, //"lhax", OPTYPE_LOAD, FL_OUT_D | FL_IN_A0 | FL_IN_B}},
{375, &JitArm64::FallBackToInterpreter}, //"lhaux", OPTYPE_LOAD, FL_OUT_D | FL_OUT_A | FL_IN_A | FL_IN_B}},
//load byte
{87, &JitArm64::FallBackToInterpreter}, //"lbzx", OPTYPE_LOAD, FL_OUT_D | FL_IN_A0 | FL_IN_B}},
{119, &JitArm64::FallBackToInterpreter}, //"lbzux", OPTYPE_LOAD, FL_OUT_D | FL_OUT_A | FL_IN_A | FL_IN_B}},
//load byte reverse
{534, &JitArm64::FallBackToInterpreter}, //"lwbrx", OPTYPE_LOAD, FL_OUT_D | FL_IN_A0 | FL_IN_B}},
{790, &JitArm64::FallBackToInterpreter}, //"lhbrx", OPTYPE_LOAD, FL_OUT_D | FL_IN_A0 | FL_IN_B}},
// Conditional load/store (Wii SMP)
{150, &JitArm64::FallBackToInterpreter}, //"stwcxd", OPTYPE_STORE, FL_EVIL | FL_SET_CR0}},
{20, &JitArm64::FallBackToInterpreter}, //"lwarx", OPTYPE_LOAD, FL_EVIL | FL_OUT_D | FL_IN_A0B | FL_SET_CR0}},
//load string (interpret these)
{533, &JitArm64::FallBackToInterpreter}, //"lswx", OPTYPE_LOAD, FL_EVIL | FL_IN_A | FL_OUT_D}},
{597, &JitArm64::FallBackToInterpreter}, //"lswi", OPTYPE_LOAD, FL_EVIL | FL_IN_AB | FL_OUT_D}},
//store word
{151, &JitArm64::FallBackToInterpreter}, //"stwx", OPTYPE_STORE, FL_IN_A0 | FL_IN_B}},
{183, &JitArm64::FallBackToInterpreter}, //"stwux", OPTYPE_STORE, FL_OUT_A | FL_IN_A | FL_IN_B}},
//store halfword
{407, &JitArm64::FallBackToInterpreter}, //"sthx", OPTYPE_STORE, FL_IN_A0 | FL_IN_B}},
{439, &JitArm64::FallBackToInterpreter}, //"sthux", OPTYPE_STORE, FL_OUT_A | FL_IN_A | FL_IN_B}},
//store byte
{215, &JitArm64::FallBackToInterpreter}, //"stbx", OPTYPE_STORE, FL_IN_A0 | FL_IN_B}},
{247, &JitArm64::FallBackToInterpreter}, //"stbux", OPTYPE_STORE, FL_OUT_A | FL_IN_A | FL_IN_B}},
//store bytereverse
{662, &JitArm64::FallBackToInterpreter}, //"stwbrx", OPTYPE_STORE, FL_IN_A0 | FL_IN_B}},
{918, &JitArm64::FallBackToInterpreter}, //"sthbrx", OPTYPE_STORE, FL_IN_A | FL_IN_B}},
{661, &JitArm64::FallBackToInterpreter}, //"stswx", OPTYPE_STORE, FL_EVIL}},
{725, &JitArm64::FallBackToInterpreter}, //"stswi", OPTYPE_STORE, FL_EVIL}},
// fp load/store
{535, &JitArm64::FallBackToInterpreter}, //"lfsx", OPTYPE_LOADFP, FL_IN_A0 | FL_IN_B}},
{567, &JitArm64::FallBackToInterpreter}, //"lfsux", OPTYPE_LOADFP, FL_IN_A | FL_IN_B}},
{599, &JitArm64::FallBackToInterpreter}, //"lfdx", OPTYPE_LOADFP, FL_IN_A0 | FL_IN_B}},
{631, &JitArm64::FallBackToInterpreter}, //"lfdux", OPTYPE_LOADFP, FL_IN_A | FL_IN_B}},
{663, &JitArm64::FallBackToInterpreter}, //"stfsx", OPTYPE_STOREFP, FL_IN_A0 | FL_IN_B}},
{695, &JitArm64::FallBackToInterpreter}, //"stfsux", OPTYPE_STOREFP, FL_IN_A | FL_IN_B}},
{727, &JitArm64::FallBackToInterpreter}, //"stfdx", OPTYPE_STOREFP, FL_IN_A0 | FL_IN_B}},
{759, &JitArm64::FallBackToInterpreter}, //"stfdux", OPTYPE_STOREFP, FL_IN_A | FL_IN_B}},
{983, &JitArm64::FallBackToInterpreter}, //"stfiwx", OPTYPE_STOREFP, FL_IN_A0 | FL_IN_B}},
{19, &JitArm64::FallBackToInterpreter}, //"mfcr", OPTYPE_SYSTEM, FL_OUT_D}},
{83, &JitArm64::FallBackToInterpreter}, //"mfmsr", OPTYPE_SYSTEM, FL_OUT_D}},
{144, &JitArm64::FallBackToInterpreter}, //"mtcrf", OPTYPE_SYSTEM, 0}},
{146, &JitArm64::mtmsr}, //"mtmsr", OPTYPE_SYSTEM, FL_ENDBLOCK}},
{210, &JitArm64::FallBackToInterpreter}, //"mtsr", OPTYPE_SYSTEM, 0}},
{242, &JitArm64::FallBackToInterpreter}, //"mtsrin", OPTYPE_SYSTEM, 0}},
{339, &JitArm64::FallBackToInterpreter}, //"mfspr", OPTYPE_SPR, FL_OUT_D}},
{467, &JitArm64::FallBackToInterpreter}, //"mtspr", OPTYPE_SPR, 0, 2}},
{371, &JitArm64::FallBackToInterpreter}, //"mftb", OPTYPE_SYSTEM, FL_OUT_D | FL_TIMER}},
{512, &JitArm64::FallBackToInterpreter}, //"mcrxr", OPTYPE_SYSTEM, 0}},
{595, &JitArm64::FallBackToInterpreter}, //"mfsr", OPTYPE_SYSTEM, FL_OUT_D, 2}},
{659, &JitArm64::FallBackToInterpreter}, //"mfsrin", OPTYPE_SYSTEM, FL_OUT_D, 2}},
{4, &JitArm64::Break}, //"tw", OPTYPE_SYSTEM, FL_ENDBLOCK, 1}},
{598, &JitArm64::FallBackToInterpreter}, //"sync", OPTYPE_SYSTEM, 0, 2}},
{982, &JitArm64::icbi}, //"icbi", OPTYPE_SYSTEM, FL_ENDBLOCK, 3}},
// Unused instructions on GC
{310, &JitArm64::FallBackToInterpreter}, //"eciwx", OPTYPE_INTEGER, FL_RC_BIT}},
{438, &JitArm64::FallBackToInterpreter}, //"ecowx", OPTYPE_INTEGER, FL_RC_BIT}},
{854, &JitArm64::FallBackToInterpreter}, //"eieio", OPTYPE_INTEGER, FL_RC_BIT}},
{306, &JitArm64::FallBackToInterpreter}, //"tlbie", OPTYPE_SYSTEM, 0}},
{370, &JitArm64::FallBackToInterpreter}, //"tlbia", OPTYPE_SYSTEM, 0}},
{566, &JitArm64::FallBackToInterpreter}, //"tlbsync", OPTYPE_SYSTEM, 0}},
};
static GekkoOPTemplate table31_2[] =
{
{266, &JitArm64::FallBackToInterpreter}, //"addx", OPTYPE_INTEGER, FL_OUT_D | FL_IN_AB | FL_RC_BIT}},
{778, &JitArm64::FallBackToInterpreter}, //"addx", OPTYPE_INTEGER, FL_OUT_D | FL_IN_AB | FL_RC_BIT}},
{10, &JitArm64::FallBackToInterpreter}, //"addcx", OPTYPE_INTEGER, FL_OUT_D | FL_IN_AB | FL_SET_CA | FL_RC_BIT}},
{522, &JitArm64::FallBackToInterpreter}, //"addcox", OPTYPE_INTEGER, FL_OUT_D | FL_IN_AB | FL_SET_CA | FL_RC_BIT}},
{138, &JitArm64::FallBackToInterpreter}, //"addex", OPTYPE_INTEGER, FL_OUT_D | FL_IN_AB | FL_READ_CA | FL_SET_CA | FL_RC_BIT}},
{650, &JitArm64::FallBackToInterpreter}, //"addeox", OPTYPE_INTEGER, FL_OUT_D | FL_IN_AB | FL_READ_CA | FL_SET_CA | FL_RC_BIT}},
{234, &JitArm64::FallBackToInterpreter}, //"addmex", OPTYPE_INTEGER, FL_OUT_D | FL_IN_AB | FL_READ_CA | FL_SET_CA | FL_RC_BIT}},
{202, &JitArm64::FallBackToInterpreter}, //"addzex", OPTYPE_INTEGER, FL_OUT_D | FL_IN_AB | FL_READ_CA | FL_SET_CA | FL_RC_BIT}},
{491, &JitArm64::FallBackToInterpreter}, //"divwx", OPTYPE_INTEGER, FL_OUT_D | FL_IN_AB | FL_RC_BIT, 39}},
{1003, &JitArm64::FallBackToInterpreter}, //"divwox", OPTYPE_INTEGER, FL_OUT_D | FL_IN_AB | FL_RC_BIT, 39}},
{459, &JitArm64::FallBackToInterpreter}, //"divwux", OPTYPE_INTEGER, FL_OUT_D | FL_IN_AB | FL_RC_BIT, 39}},
{971, &JitArm64::FallBackToInterpreter}, //"divwuox", OPTYPE_INTEGER, FL_OUT_D | FL_IN_AB | FL_RC_BIT, 39}},
{75, &JitArm64::FallBackToInterpreter}, //"mulhwx", OPTYPE_INTEGER, FL_OUT_D | FL_IN_AB | FL_RC_BIT, 4}},
{11, &JitArm64::FallBackToInterpreter}, //"mulhwux", OPTYPE_INTEGER, FL_OUT_D | FL_IN_AB | FL_RC_BIT, 4}},
{235, &JitArm64::FallBackToInterpreter}, //"mullwx", OPTYPE_INTEGER, FL_OUT_D | FL_IN_AB | FL_RC_BIT, 4}},
{747, &JitArm64::FallBackToInterpreter}, //"mullwox", OPTYPE_INTEGER, FL_OUT_D | FL_IN_AB | FL_RC_BIT, 4}},
{104, &JitArm64::FallBackToInterpreter}, //"negx", OPTYPE_INTEGER, FL_OUT_D | FL_IN_AB | FL_RC_BIT}},
{40, &JitArm64::FallBackToInterpreter}, //"subfx", OPTYPE_INTEGER, FL_OUT_D | FL_IN_AB | FL_RC_BIT}},
{552, &JitArm64::FallBackToInterpreter}, //"subox", OPTYPE_INTEGER, FL_OUT_D | FL_IN_AB | FL_RC_BIT}},
{8, &JitArm64::FallBackToInterpreter}, //"subfcx", OPTYPE_INTEGER, FL_OUT_D | FL_IN_AB | FL_SET_CA | FL_RC_BIT}},
{520, &JitArm64::FallBackToInterpreter}, //"subfcox", OPTYPE_INTEGER, FL_OUT_D | FL_IN_AB | FL_SET_CA | FL_RC_BIT}},
{136, &JitArm64::FallBackToInterpreter}, //"subfex", OPTYPE_INTEGER, FL_OUT_D | FL_IN_AB | FL_READ_CA | FL_SET_CA | FL_RC_BIT}},
{232, &JitArm64::FallBackToInterpreter}, //"subfmex", OPTYPE_INTEGER, FL_OUT_D | FL_IN_AB | FL_READ_CA | FL_SET_CA | FL_RC_BIT}},
{200, &JitArm64::FallBackToInterpreter}, //"subfzex", OPTYPE_INTEGER, FL_OUT_D | FL_IN_AB | FL_READ_CA | FL_SET_CA | FL_RC_BIT}},
};
static GekkoOPTemplate table59[] =
{
{18, &JitArm64::FallBackToInterpreter}, //{"fdivsx", OPTYPE_FPU, FL_RC_BIT_F, 16}},
{20, &JitArm64::FallBackToInterpreter}, //"fsubsx", OPTYPE_FPU, FL_RC_BIT_F}},
{21, &JitArm64::FallBackToInterpreter}, //"faddsx", OPTYPE_FPU, FL_RC_BIT_F}},
// {22, &JitArm64::FallBackToInterpreter}, //"fsqrtsx", OPTYPE_FPU, FL_RC_BIT_F}},
{24, &JitArm64::FallBackToInterpreter}, //"fresx", OPTYPE_FPU, FL_RC_BIT_F}},
{25, &JitArm64::FallBackToInterpreter}, //"fmulsx", OPTYPE_FPU, FL_RC_BIT_F}},
{28, &JitArm64::FallBackToInterpreter}, //"fmsubsx", OPTYPE_FPU, FL_RC_BIT_F}},
{29, &JitArm64::FallBackToInterpreter}, //"fmaddsx", OPTYPE_FPU, FL_RC_BIT_F}},
{30, &JitArm64::FallBackToInterpreter}, //"fnmsubsx", OPTYPE_FPU, FL_RC_BIT_F}},
{31, &JitArm64::FallBackToInterpreter}, //"fnmaddsx", OPTYPE_FPU, FL_RC_BIT_F}},
};
static GekkoOPTemplate table63[] =
{
{264, &JitArm64::FallBackToInterpreter}, //"fabsx", OPTYPE_FPU, FL_RC_BIT_F}},
{32, &JitArm64::FallBackToInterpreter}, //"fcmpo", OPTYPE_FPU, FL_RC_BIT_F}},
{0, &JitArm64::FallBackToInterpreter}, //"fcmpu", OPTYPE_FPU, FL_RC_BIT_F}},
{14, &JitArm64::FallBackToInterpreter}, //"fctiwx", OPTYPE_FPU, FL_RC_BIT_F}},
{15, &JitArm64::FallBackToInterpreter}, //"fctiwzx", OPTYPE_FPU, FL_RC_BIT_F}},
{72, &JitArm64::FallBackToInterpreter}, //"fmrx", OPTYPE_FPU, FL_RC_BIT_F}},
{136, &JitArm64::FallBackToInterpreter}, //"fnabsx", OPTYPE_FPU, FL_RC_BIT_F}},
{40, &JitArm64::FallBackToInterpreter}, //"fnegx", OPTYPE_FPU, FL_RC_BIT_F}},
{12, &JitArm64::FallBackToInterpreter}, //"frspx", OPTYPE_FPU, FL_RC_BIT_F}},
{64, &JitArm64::FallBackToInterpreter}, //"mcrfs", OPTYPE_SYSTEMFP, 0}},
{583, &JitArm64::FallBackToInterpreter}, //"mffsx", OPTYPE_SYSTEMFP, 0}},
{70, &JitArm64::FallBackToInterpreter}, //"mtfsb0x", OPTYPE_SYSTEMFP, 0, 2}},
{38, &JitArm64::FallBackToInterpreter}, //"mtfsb1x", OPTYPE_SYSTEMFP, 0, 2}},
{134, &JitArm64::FallBackToInterpreter}, //"mtfsfix", OPTYPE_SYSTEMFP, 0, 2}},
{711, &JitArm64::FallBackToInterpreter}, //"mtfsfx", OPTYPE_SYSTEMFP, 0, 2}},
};
static GekkoOPTemplate table63_2[] =
{
{18, &JitArm64::FallBackToInterpreter}, //"fdivx", OPTYPE_FPU, FL_RC_BIT_F, 30}},
{20, &JitArm64::FallBackToInterpreter}, //"fsubx", OPTYPE_FPU, FL_RC_BIT_F}},
{21, &JitArm64::FallBackToInterpreter}, //"faddx", OPTYPE_FPU, FL_RC_BIT_F}},
{22, &JitArm64::FallBackToInterpreter}, //"fsqrtx", OPTYPE_FPU, FL_RC_BIT_F}},
{23, &JitArm64::FallBackToInterpreter}, //"fselx", OPTYPE_FPU, FL_RC_BIT_F}},
{25, &JitArm64::FallBackToInterpreter}, //"fmulx", OPTYPE_FPU, FL_RC_BIT_F}},
{26, &JitArm64::FallBackToInterpreter}, //"frsqrtex", OPTYPE_FPU, FL_RC_BIT_F}},
{28, &JitArm64::FallBackToInterpreter}, //"fmsubx", OPTYPE_FPU, FL_RC_BIT_F}},
{29, &JitArm64::FallBackToInterpreter}, //"fmaddx", OPTYPE_FPU, FL_RC_BIT_F}},
{30, &JitArm64::FallBackToInterpreter}, //"fnmsubx", OPTYPE_FPU, FL_RC_BIT_F}},
{31, &JitArm64::FallBackToInterpreter}, //"fnmaddx", OPTYPE_FPU, FL_RC_BIT_F}},
};
namespace JitArm64Tables
{
void CompileInstruction(PPCAnalyst::CodeOp & op)
{
JitArm64 *jitarm = (JitArm64 *)jit;
(jitarm->*dynaOpTable[op.inst.OPCD])(op.inst);
GekkoOPInfo *info = op.opinfo;
if (info)
{
#ifdef OPLOG
if (!strcmp(info->opname, OP_TO_LOG)){ ///"mcrfs"
rsplocations.push_back(jit.js.compilerPC);
}
#endif
info->compileCount++;
info->lastUse = jit->js.compilerPC;
}
}
void InitTables()
{
// once initialized, tables are read-only
static bool initialized = false;
if (initialized)
return;
//clear
for (int i = 0; i < 32; i++)
{
dynaOpTable59[i] = &JitArm64::unknown_instruction;
}
for (int i = 0; i < 1024; i++)
{
dynaOpTable4 [i] = &JitArm64::unknown_instruction;
dynaOpTable19[i] = &JitArm64::unknown_instruction;
dynaOpTable31[i] = &JitArm64::unknown_instruction;
dynaOpTable63[i] = &JitArm64::unknown_instruction;
}
for (int i = 0; i < (int)(sizeof(primarytable) / sizeof(GekkoOPTemplate)); i++)
{
dynaOpTable[primarytable[i].opcode] = primarytable[i].Inst;
}
for (int i = 0; i < 32; i++)
{
int fill = i << 5;
for (int j = 0; j < (int)(sizeof(table4_2) / sizeof(GekkoOPTemplate)); j++)
{
int op = fill+table4_2[j].opcode;
dynaOpTable4[op] = table4_2[j].Inst;
}
}
for (int i = 0; i < 16; i++)
{
int fill = i << 6;
for (int j = 0; j < (int)(sizeof(table4_3) / sizeof(GekkoOPTemplate)); j++)
{
int op = fill+table4_3[j].opcode;
dynaOpTable4[op] = table4_3[j].Inst;
}
}
for (int i = 0; i < (int)(sizeof(table4) / sizeof(GekkoOPTemplate)); i++)
{
int op = table4[i].opcode;
dynaOpTable4[op] = table4[i].Inst;
}
for (int i = 0; i < (int)(sizeof(table31) / sizeof(GekkoOPTemplate)); i++)
{
int op = table31[i].opcode;
dynaOpTable31[op] = table31[i].Inst;
}
for (int i = 0; i < 1; i++)
{
int fill = i << 9;
for (int j = 0; j < (int)(sizeof(table31_2) / sizeof(GekkoOPTemplate)); j++)
{
int op = fill + table31_2[j].opcode;
dynaOpTable31[op] = table31_2[j].Inst;
}
}
for (int i = 0; i < (int)(sizeof(table19) / sizeof(GekkoOPTemplate)); i++)
{
int op = table19[i].opcode;
dynaOpTable19[op] = table19[i].Inst;
}
for (int i = 0; i < (int)(sizeof(table59) / sizeof(GekkoOPTemplate)); i++)
{
int op = table59[i].opcode;
dynaOpTable59[op] = table59[i].Inst;
}
for (int i = 0; i < (int)(sizeof(table63) / sizeof(GekkoOPTemplate)); i++)
{
int op = table63[i].opcode;
dynaOpTable63[op] = table63[i].Inst;
}
for (int i = 0; i < 32; i++)
{
int fill = i << 5;
for (int j = 0; j < (int)(sizeof(table63_2) / sizeof(GekkoOPTemplate)); j++)
{
int op = fill + table63_2[j].opcode;
dynaOpTable63[op] = table63_2[j].Inst;
}
}
initialized = true;
}
} // namespace

View File

@ -0,0 +1,14 @@
// Copyright 2014 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#pragma once
#include "Core/PowerPC/Gekko.h"
#include "Core/PowerPC/PPCTables.h"
namespace JitArm64Tables
{
void CompileInstruction(PPCAnalyst::CodeOp & op);
void InitTables();
}

View File

@ -0,0 +1,80 @@
// Copyright 2014 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#include "Common/Arm64Emitter.h"
#include "Core/PowerPC/PowerPC.h"
#include "Core/PowerPC/JitArm64/Jit.h"
#include "Core/PowerPC/JitArm64/JitAsm.h"
#include "Core/PowerPC/JitCommon/JitCache.h"
using namespace Arm64Gen;
void JitArm64AsmRoutineManager::Generate()
{
enterCode = GetCodePtr();
MOVI2R(X29, (u64)&PowerPC::ppcState);
dispatcher = GetCodePtr();
printf("Dispatcher is %p\n", dispatcher);
// Downcount Check
// The result of slice decrementation should be in flags if somebody jumped here
// IMPORTANT - We jump on negative, not carry!!!
FixupBranch bail = B(CC_MI);
dispatcherNoCheck = GetCodePtr();
// This block of code gets the address of the compiled block of code
// It runs though to the compiling portion if it isn't found
LDR(INDEX_UNSIGNED, W28, X29, PPCSTATE_OFF(pc)); // Load the current PC into W28
BFM(W28, WSP, 3, 2); // Wipe the top 3 bits. Same as PC & JIT_ICACHE_MASK
MOVI2R(X27, (u64)jit->GetBlockCache()->iCache);
LDR(W27, X27, X28);
FixupBranch JitBlock = TBNZ(W27, 7); // Test the 7th bit
// Success, it is our Jitblock.
MOVI2R(X30, (u64)jit->GetBlockCache()->GetCodePointers());
UBFM(X27, X27, 61, 60); // Same as X27 << 3
LDR(X30, X30, X27); // Load the block address in to R14
BR(X30);
// No need to jump anywhere after here, the block will go back to dispatcher start
SetJumpTarget(JitBlock);
MOVI2R(X30, (u64)&Jit);
BLR(X30);
B(dispatcherNoCheck);
SetJumpTarget(bail);
doTiming = GetCodePtr();
MOVI2R(X30, (u64)&CoreTiming::Advance);
BLR(X30);
// Does exception checking
LDR(INDEX_UNSIGNED, W0, X29, PPCSTATE_OFF(pc));
STR(INDEX_UNSIGNED, W0, X29, PPCSTATE_OFF(npc));
MOVI2R(X30, (u64)&PowerPC::CheckExceptions);
BLR(X30);
LDR(INDEX_UNSIGNED, W0, X29, PPCSTATE_OFF(npc));
STR(INDEX_UNSIGNED, W0, X29, PPCSTATE_OFF(pc));
// Check the state pointer to see if we are exiting
// Gets checked on every exception check
MOVI2R(W0, (u64)PowerPC::GetStatePtr());
LDR(INDEX_UNSIGNED, W0, W0, 0);
FixupBranch Exit = CBNZ(W0);
B(dispatcher);
SetJumpTarget(Exit);
FlushIcache();
}
void JitArm64AsmRoutineManager::GenerateCommon()
{
}

View File

@ -0,0 +1,29 @@
// Copyright 2014 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
#pragma once
#include "Common/Arm64Emitter.h"
#include "Core/PowerPC/JitCommon/JitAsmCommon.h"
class JitArm64AsmRoutineManager : public CommonAsmRoutinesBase, public Arm64Gen::ARM64CodeBlock
{
private:
void Generate();
void GenerateCommon();
public:
void Init()
{
AllocCodeSpace(8192);
Generate();
WriteProtect();
}
void Shutdown()
{
FreeCodeSpace();
}
};

View File

@ -83,6 +83,11 @@ const int BACKPATCH_SIZE = 5;
#define CTX_R14 gregs[REG_R14] #define CTX_R14 gregs[REG_R14]
#define CTX_R15 gregs[REG_R15] #define CTX_R15 gregs[REG_R15]
#define CTX_RIP gregs[REG_RIP] #define CTX_RIP gregs[REG_RIP]
#elif _M_ARM_64
typedef struct sigcontext SContext;
#define CTX_REG(x) regs[x]
#define CTX_SP sp
#define CTX_PC pc
#elif _M_ARM_32 #elif _M_ARM_32
// Add others if required. // Add others if required.
typedef struct sigcontext SContext; typedef struct sigcontext SContext;

View File

@ -29,6 +29,11 @@
#include "Core/PowerPC/JitArm32/JitArm_Tables.h" #include "Core/PowerPC/JitArm32/JitArm_Tables.h"
#endif #endif
#if _M_ARM_64
#include "Core/PowerPC/JitArm64/Jit.h"
#include "Core/PowerPC/JitArm64/JitArm64_Tables.h"
#endif
static bool bFakeVMEM = false; static bool bFakeVMEM = false;
bool bMMU = false; bool bMMU = false;
@ -66,6 +71,13 @@ namespace JitInterface
break; break;
} }
#endif #endif
#if _M_ARM_64
case 4:
{
ptr = new JitArm64();
break;
}
#endif
default: default:
{ {
PanicAlert("Unrecognizable cpu_core: %d", core); PanicAlert("Unrecognizable cpu_core: %d", core);
@ -100,6 +112,13 @@ namespace JitInterface
break; break;
} }
#endif #endif
#if _M_ARM_64
case 4:
{
JitArm64Tables::InitTables();
break;
}
#endif
default: default:
{ {
PanicAlert("Unrecognizable cpu_core: %d", core); PanicAlert("Unrecognizable cpu_core: %d", core);

View File

@ -69,6 +69,11 @@ struct BlockRegStats
std::min(firstRead[reg], firstWrite[reg]); std::min(firstRead[reg], firstWrite[reg]);
} }
bool IsUsed(int reg)
{
return (numReads[reg] + numWrites[reg]) > 0;
}
inline void SetInputRegister(int reg, short opindex) inline void SetInputRegister(int reg, short opindex)
{ {
if (firstRead[reg] == -1) if (firstRead[reg] == -1)