Merge pull request #11132 from K0bin/vma

Vulkan: Use VMA for memory allocations
This commit is contained in:
JMC47 2022-10-23 01:18:47 -04:00 committed by GitHub
commit 06bd0a9086
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
20 changed files with 290 additions and 444 deletions

3
.gitmodules vendored
View File

@ -37,3 +37,6 @@
url = https://github.com/randy408/libspng.git url = https://github.com/randy408/libspng.git
branch = v0.7.2 branch = v0.7.2
shallow = true shallow = true
[submodule "Externals/VulkanMemoryAllocator"]
path = Externals/VulkanMemoryAllocator
url = https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator.git

1
Externals/VulkanMemoryAllocator vendored Submodule

@ -0,0 +1 @@
Subproject commit c351692490513cdb0e5a2c925aaf7ea4a9b672f4

View File

@ -52,6 +52,7 @@ PRIVATE
target_include_directories(videovulkan target_include_directories(videovulkan
PRIVATE PRIVATE
${CMAKE_SOURCE_DIR}/Externals/Vulkan/Include ${CMAKE_SOURCE_DIR}/Externals/Vulkan/Include
${CMAKE_SOURCE_DIR}/Externals/VulkanMemoryAllocator/include
) )
if(MSVC) if(MSVC)

View File

@ -525,13 +525,6 @@ void CommandBufferManager::BeginCommandBuffer()
m_current_cmd_buffer = next_buffer_index; m_current_cmd_buffer = next_buffer_index;
} }
void CommandBufferManager::DeferBufferDestruction(VkBuffer object)
{
CmdBufferResources& cmd_buffer_resources = GetCurrentCmdBufferResources();
cmd_buffer_resources.cleanup_resources.push_back(
[object]() { vkDestroyBuffer(g_vulkan_context->GetDevice(), object, nullptr); });
}
void CommandBufferManager::DeferBufferViewDestruction(VkBufferView object) void CommandBufferManager::DeferBufferViewDestruction(VkBufferView object)
{ {
CmdBufferResources& cmd_buffer_resources = GetCurrentCmdBufferResources(); CmdBufferResources& cmd_buffer_resources = GetCurrentCmdBufferResources();
@ -539,11 +532,12 @@ void CommandBufferManager::DeferBufferViewDestruction(VkBufferView object)
[object]() { vkDestroyBufferView(g_vulkan_context->GetDevice(), object, nullptr); }); [object]() { vkDestroyBufferView(g_vulkan_context->GetDevice(), object, nullptr); });
} }
void CommandBufferManager::DeferDeviceMemoryDestruction(VkDeviceMemory object) void CommandBufferManager::DeferBufferDestruction(VkBuffer buffer, VmaAllocation alloc)
{ {
CmdBufferResources& cmd_buffer_resources = GetCurrentCmdBufferResources(); CmdBufferResources& cmd_buffer_resources = GetCurrentCmdBufferResources();
cmd_buffer_resources.cleanup_resources.push_back( cmd_buffer_resources.cleanup_resources.push_back([buffer, alloc]() {
[object]() { vkFreeMemory(g_vulkan_context->GetDevice(), object, nullptr); }); vmaDestroyBuffer(g_vulkan_context->GetMemoryAllocator(), buffer, alloc);
});
} }
void CommandBufferManager::DeferFramebufferDestruction(VkFramebuffer object) void CommandBufferManager::DeferFramebufferDestruction(VkFramebuffer object)
@ -553,11 +547,11 @@ void CommandBufferManager::DeferFramebufferDestruction(VkFramebuffer object)
[object]() { vkDestroyFramebuffer(g_vulkan_context->GetDevice(), object, nullptr); }); [object]() { vkDestroyFramebuffer(g_vulkan_context->GetDevice(), object, nullptr); });
} }
void CommandBufferManager::DeferImageDestruction(VkImage object) void CommandBufferManager::DeferImageDestruction(VkImage image, VmaAllocation alloc)
{ {
CmdBufferResources& cmd_buffer_resources = GetCurrentCmdBufferResources(); CmdBufferResources& cmd_buffer_resources = GetCurrentCmdBufferResources();
cmd_buffer_resources.cleanup_resources.push_back( cmd_buffer_resources.cleanup_resources.push_back(
[object]() { vkDestroyImage(g_vulkan_context->GetDevice(), object, nullptr); }); [image, alloc]() { vmaDestroyImage(g_vulkan_context->GetMemoryAllocator(), image, alloc); });
} }
void CommandBufferManager::DeferImageViewDestruction(VkImageView object) void CommandBufferManager::DeferImageViewDestruction(VkImageView object)

View File

@ -86,11 +86,10 @@ public:
// Schedule a vulkan resource for destruction later on. This will occur when the command buffer // Schedule a vulkan resource for destruction later on. This will occur when the command buffer
// is next re-used, and the GPU has finished working with the specified resource. // is next re-used, and the GPU has finished working with the specified resource.
void DeferBufferDestruction(VkBuffer object);
void DeferBufferViewDestruction(VkBufferView object); void DeferBufferViewDestruction(VkBufferView object);
void DeferDeviceMemoryDestruction(VkDeviceMemory object); void DeferBufferDestruction(VkBuffer buffer, VmaAllocation alloc);
void DeferFramebufferDestruction(VkFramebuffer object); void DeferFramebufferDestruction(VkFramebuffer object);
void DeferImageDestruction(VkImage object); void DeferImageDestruction(VkImage object, VmaAllocation alloc);
void DeferImageViewDestruction(VkImageView object); void DeferImageViewDestruction(VkImageView object);
private: private:

View File

@ -10,12 +10,13 @@
#include "VideoBackends/Vulkan/CommandBufferManager.h" #include "VideoBackends/Vulkan/CommandBufferManager.h"
#include "VideoBackends/Vulkan/VulkanContext.h" #include "VideoBackends/Vulkan/VulkanContext.h"
#include "VideoCommon/DriverDetails.h"
namespace Vulkan namespace Vulkan
{ {
StagingBuffer::StagingBuffer(STAGING_BUFFER_TYPE type, VkBuffer buffer, VkDeviceMemory memory, StagingBuffer::StagingBuffer(STAGING_BUFFER_TYPE type, VkBuffer buffer, VmaAllocation alloc,
VkDeviceSize size, bool coherent) VkDeviceSize size, char* map_ptr)
: m_type(type), m_buffer(buffer), m_memory(memory), m_size(size), m_coherent(coherent) : m_type(type), m_buffer(buffer), m_alloc(alloc), m_size(size), m_map_pointer(map_ptr)
{ {
} }
@ -25,8 +26,7 @@ StagingBuffer::~StagingBuffer()
if (m_map_pointer) if (m_map_pointer)
Unmap(); Unmap();
g_command_buffer_mgr->DeferDeviceMemoryDestruction(m_memory); g_command_buffer_mgr->DeferBufferDestruction(m_buffer, m_alloc);
g_command_buffer_mgr->DeferBufferDestruction(m_buffer);
} }
void StagingBuffer::BufferMemoryBarrier(VkCommandBuffer command_buffer, VkBuffer buffer, void StagingBuffer::BufferMemoryBarrier(VkCommandBuffer command_buffer, VkBuffer buffer,
@ -51,49 +51,21 @@ void StagingBuffer::BufferMemoryBarrier(VkCommandBuffer command_buffer, VkBuffer
&buffer_info, 0, nullptr); &buffer_info, 0, nullptr);
} }
bool StagingBuffer::Map(VkDeviceSize offset, VkDeviceSize size) bool StagingBuffer::Map()
{ {
m_map_offset = offset; // The staging buffer is permanently mapped and VMA handles the mapping for us
if (size == VK_WHOLE_SIZE)
m_map_size = m_size - offset;
else
m_map_size = size;
ASSERT(!m_map_pointer);
ASSERT(m_map_offset + m_map_size <= m_size);
void* map_pointer;
VkResult res = vkMapMemory(g_vulkan_context->GetDevice(), m_memory, m_map_offset, m_map_size, 0,
&map_pointer);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkMapMemory failed: ");
return false;
}
m_map_pointer = reinterpret_cast<char*>(map_pointer);
return true; return true;
} }
void StagingBuffer::Unmap() void StagingBuffer::Unmap()
{ {
ASSERT(m_map_pointer); // The staging buffer is permanently mapped and VMA handles the unmapping for us
vkUnmapMemory(g_vulkan_context->GetDevice(), m_memory);
m_map_pointer = nullptr;
m_map_offset = 0;
m_map_size = 0;
} }
void StagingBuffer::FlushCPUCache(VkDeviceSize offset, VkDeviceSize size) void StagingBuffer::FlushCPUCache(VkDeviceSize offset, VkDeviceSize size)
{ {
ASSERT(offset >= m_map_offset); // vmaFlushAllocation checks whether the allocation uses a coherent memory type internally
if (m_coherent) vmaFlushAllocation(g_vulkan_context->GetMemoryAllocator(), m_alloc, offset, size);
return;
VkMappedMemoryRange range = {VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE, nullptr, m_memory,
offset - m_map_offset, size};
vkFlushMappedMemoryRanges(g_vulkan_context->GetDevice(), 1, &range);
} }
void StagingBuffer::InvalidateGPUCache(VkCommandBuffer command_buffer, void StagingBuffer::InvalidateGPUCache(VkCommandBuffer command_buffer,
@ -101,7 +73,9 @@ void StagingBuffer::InvalidateGPUCache(VkCommandBuffer command_buffer,
VkPipelineStageFlagBits dest_pipeline_stage, VkPipelineStageFlagBits dest_pipeline_stage,
VkDeviceSize offset, VkDeviceSize size) VkDeviceSize offset, VkDeviceSize size)
{ {
if (m_coherent) VkMemoryPropertyFlags flags = 0;
vmaGetAllocationMemoryProperties(g_vulkan_context->GetMemoryAllocator(), m_alloc, &flags);
if (flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) [[likely]]
return; return;
ASSERT((offset + size) <= m_size || (offset < m_size && size == VK_WHOLE_SIZE)); ASSERT((offset + size) <= m_size || (offset < m_size && size == VK_WHOLE_SIZE));
@ -114,7 +88,9 @@ void StagingBuffer::PrepareForGPUWrite(VkCommandBuffer command_buffer,
VkPipelineStageFlagBits dst_pipeline_stage, VkPipelineStageFlagBits dst_pipeline_stage,
VkDeviceSize offset, VkDeviceSize size) VkDeviceSize offset, VkDeviceSize size)
{ {
if (m_coherent) VkMemoryPropertyFlags flags = 0;
vmaGetAllocationMemoryProperties(g_vulkan_context->GetMemoryAllocator(), m_alloc, &flags);
if (flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) [[likely]]
return; return;
ASSERT((offset + size) <= m_size || (offset < m_size && size == VK_WHOLE_SIZE)); ASSERT((offset + size) <= m_size || (offset < m_size && size == VK_WHOLE_SIZE));
@ -126,7 +102,9 @@ void StagingBuffer::FlushGPUCache(VkCommandBuffer command_buffer, VkAccessFlagBi
VkPipelineStageFlagBits src_pipeline_stage, VkDeviceSize offset, VkPipelineStageFlagBits src_pipeline_stage, VkDeviceSize offset,
VkDeviceSize size) VkDeviceSize size)
{ {
if (m_coherent) VkMemoryPropertyFlags flags = 0;
vmaGetAllocationMemoryProperties(g_vulkan_context->GetMemoryAllocator(), m_alloc, &flags);
if (flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) [[likely]]
return; return;
ASSERT((offset + size) <= m_size || (offset < m_size && size == VK_WHOLE_SIZE)); ASSERT((offset + size) <= m_size || (offset < m_size && size == VK_WHOLE_SIZE));
@ -136,39 +114,32 @@ void StagingBuffer::FlushGPUCache(VkCommandBuffer command_buffer, VkAccessFlagBi
void StagingBuffer::InvalidateCPUCache(VkDeviceSize offset, VkDeviceSize size) void StagingBuffer::InvalidateCPUCache(VkDeviceSize offset, VkDeviceSize size)
{ {
ASSERT(offset >= m_map_offset); // vmaInvalidateAllocation checks whether the allocation uses a coherent memory type internally
if (m_coherent) vmaInvalidateAllocation(g_vulkan_context->GetMemoryAllocator(), m_alloc, offset, size);
return;
VkMappedMemoryRange range = {VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE, nullptr, m_memory,
offset - m_map_offset, size};
vkInvalidateMappedMemoryRanges(g_vulkan_context->GetDevice(), 1, &range);
} }
void StagingBuffer::Read(VkDeviceSize offset, void* data, size_t size, bool invalidate_caches) void StagingBuffer::Read(VkDeviceSize offset, void* data, size_t size, bool invalidate_caches)
{ {
ASSERT((offset + size) <= m_size); ASSERT((offset + size) <= m_size);
ASSERT(offset >= m_map_offset && size <= (m_map_size + (offset - m_map_offset)));
if (invalidate_caches) if (invalidate_caches)
InvalidateCPUCache(offset, size); InvalidateCPUCache(offset, size);
memcpy(data, m_map_pointer + (offset - m_map_offset), size); memcpy(data, m_map_pointer + offset, size);
} }
void StagingBuffer::Write(VkDeviceSize offset, const void* data, size_t size, void StagingBuffer::Write(VkDeviceSize offset, const void* data, size_t size,
bool invalidate_caches) bool invalidate_caches)
{ {
ASSERT((offset + size) <= m_size); ASSERT((offset + size) <= m_size);
ASSERT(offset >= m_map_offset && size <= (m_map_size + (offset - m_map_offset)));
memcpy(m_map_pointer + (offset - m_map_offset), data, size); memcpy(m_map_pointer + offset, data, size);
if (invalidate_caches) if (invalidate_caches)
FlushCPUCache(offset, size); FlushCPUCache(offset, size);
} }
bool StagingBuffer::AllocateBuffer(STAGING_BUFFER_TYPE type, VkDeviceSize size, bool StagingBuffer::AllocateBuffer(STAGING_BUFFER_TYPE type, VkDeviceSize size,
VkBufferUsageFlags usage, VkBuffer* out_buffer, VkBufferUsageFlags usage, VkBuffer* out_buffer,
VkDeviceMemory* out_memory, bool* out_coherent) VmaAllocation* out_alloc, char** out_map_ptr)
{ {
VkBufferCreateInfo buffer_create_info = { VkBufferCreateInfo buffer_create_info = {
VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO, // VkStructureType sType VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO, // VkStructureType sType
@ -180,46 +151,60 @@ bool StagingBuffer::AllocateBuffer(STAGING_BUFFER_TYPE type, VkDeviceSize size,
0, // uint32_t queueFamilyIndexCount 0, // uint32_t queueFamilyIndexCount
nullptr // const uint32_t* pQueueFamilyIndices nullptr // const uint32_t* pQueueFamilyIndices
}; };
VkResult res =
vkCreateBuffer(g_vulkan_context->GetDevice(), &buffer_create_info, nullptr, out_buffer); VmaAllocationCreateInfo alloc_create_info = {};
if (res != VK_SUCCESS) alloc_create_info.flags =
VMA_ALLOCATION_CREATE_MAPPED_BIT | VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT;
alloc_create_info.usage = VMA_MEMORY_USAGE_AUTO;
alloc_create_info.pool = VK_NULL_HANDLE;
alloc_create_info.pUserData = nullptr;
alloc_create_info.priority = 0.0;
alloc_create_info.preferredFlags = 0;
alloc_create_info.requiredFlags = 0;
if (DriverDetails::HasBug(DriverDetails::BUG_SLOW_CACHED_READBACK_MEMORY)) [[unlikely]]
{ {
LOG_VULKAN_ERROR(res, "vkCreateBuffer failed: "); // If there is no memory type that is both CACHED and COHERENT,
return false; // pick the one that is COHERENT
alloc_create_info.usage = VMA_MEMORY_USAGE_UNKNOWN;
alloc_create_info.requiredFlags =
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
alloc_create_info.preferredFlags = VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
} }
VkMemoryRequirements requirements;
vkGetBufferMemoryRequirements(g_vulkan_context->GetDevice(), *out_buffer, &requirements);
u32 type_index;
if (type == STAGING_BUFFER_TYPE_UPLOAD)
type_index = g_vulkan_context->GetUploadMemoryType(requirements.memoryTypeBits, out_coherent);
else else
type_index = g_vulkan_context->GetReadbackMemoryType(requirements.memoryTypeBits, out_coherent); {
if (type == STAGING_BUFFER_TYPE_UPLOAD)
alloc_create_info.flags |= VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT;
else
alloc_create_info.flags |= VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT;
}
VmaAllocationInfo alloc_info;
VkResult res = vmaCreateBuffer(g_vulkan_context->GetMemoryAllocator(), &buffer_create_info,
&alloc_create_info, out_buffer, out_alloc, &alloc_info);
if (type == STAGING_BUFFER_TYPE_UPLOAD)
{
VkMemoryPropertyFlags flags = 0;
vmaGetMemoryTypeProperties(g_vulkan_context->GetMemoryAllocator(), alloc_info.memoryType,
&flags);
if (!(flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT))
{
WARN_LOG_FMT(VIDEO, "Vulkan: Failed to find a coherent memory type for uploads, this will "
"affect performance.");
}
}
*out_map_ptr = reinterpret_cast<char*>(alloc_info.pMappedData);
VkMemoryAllocateInfo memory_allocate_info = {
VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, // VkStructureType sType
nullptr, // const void* pNext
requirements.size, // VkDeviceSize allocationSize
type_index // uint32_t memoryTypeIndex
};
res = vkAllocateMemory(g_vulkan_context->GetDevice(), &memory_allocate_info, nullptr, out_memory);
if (res != VK_SUCCESS) if (res != VK_SUCCESS)
{ {
LOG_VULKAN_ERROR(res, "vkAllocateMemory failed: "); LOG_VULKAN_ERROR(res, "vmaCreateBuffer failed: ");
vkDestroyBuffer(g_vulkan_context->GetDevice(), *out_buffer, nullptr);
return false;
}
res = vkBindBufferMemory(g_vulkan_context->GetDevice(), *out_buffer, *out_memory, 0);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkBindBufferMemory failed: ");
vkDestroyBuffer(g_vulkan_context->GetDevice(), *out_buffer, nullptr);
vkFreeMemory(g_vulkan_context->GetDevice(), *out_memory, nullptr);
return false; return false;
} }
VkMemoryPropertyFlags flags = 0;
vmaGetAllocationMemoryProperties(g_vulkan_context->GetMemoryAllocator(), *out_alloc, &flags);
return true; return true;
} }
@ -227,12 +212,12 @@ std::unique_ptr<StagingBuffer> StagingBuffer::Create(STAGING_BUFFER_TYPE type, V
VkBufferUsageFlags usage) VkBufferUsageFlags usage)
{ {
VkBuffer buffer; VkBuffer buffer;
VkDeviceMemory memory; VmaAllocation alloc;
bool coherent; char* map_ptr;
if (!AllocateBuffer(type, size, usage, &buffer, &memory, &coherent)) if (!AllocateBuffer(type, size, usage, &buffer, &alloc, &map_ptr))
return nullptr; return nullptr;
return std::make_unique<StagingBuffer>(type, buffer, memory, size, coherent); return std::make_unique<StagingBuffer>(type, buffer, alloc, size, map_ptr);
} }
} // namespace Vulkan } // namespace Vulkan

View File

@ -13,8 +13,8 @@ namespace Vulkan
class StagingBuffer class StagingBuffer
{ {
public: public:
StagingBuffer(STAGING_BUFFER_TYPE type, VkBuffer buffer, VkDeviceMemory memory, VkDeviceSize size, StagingBuffer(STAGING_BUFFER_TYPE type, VkBuffer buffer, VmaAllocation allocation,
bool coherent); VkDeviceSize size, char* map_ptr);
virtual ~StagingBuffer(); virtual ~StagingBuffer();
STAGING_BUFFER_TYPE GetType() const { return m_type; } STAGING_BUFFER_TYPE GetType() const { return m_type; }
@ -23,9 +23,7 @@ public:
bool IsMapped() const { return m_map_pointer != nullptr; } bool IsMapped() const { return m_map_pointer != nullptr; }
const char* GetMapPointer() const { return m_map_pointer; } const char* GetMapPointer() const { return m_map_pointer; }
char* GetMapPointer() { return m_map_pointer; } char* GetMapPointer() { return m_map_pointer; }
VkDeviceSize GetMapOffset() const { return m_map_offset; } bool Map();
VkDeviceSize GetMapSize() const { return m_map_size; }
bool Map(VkDeviceSize offset = 0, VkDeviceSize size = VK_WHOLE_SIZE);
void Unmap(); void Unmap();
// Upload part 1: Prepare from device read from the CPU side // Upload part 1: Prepare from device read from the CPU side
@ -60,7 +58,7 @@ public:
// Allocates the resources needed to create a staging buffer. // Allocates the resources needed to create a staging buffer.
static bool AllocateBuffer(STAGING_BUFFER_TYPE type, VkDeviceSize size, VkBufferUsageFlags usage, static bool AllocateBuffer(STAGING_BUFFER_TYPE type, VkDeviceSize size, VkBufferUsageFlags usage,
VkBuffer* out_buffer, VkDeviceMemory* out_memory, bool* out_coherent); VkBuffer* out_buffer, VmaAllocation* out_alloc, char** out_map_ptr);
// Wrapper for creating an barrier on a buffer // Wrapper for creating an barrier on a buffer
static void BufferMemoryBarrier(VkCommandBuffer command_buffer, VkBuffer buffer, static void BufferMemoryBarrier(VkCommandBuffer command_buffer, VkBuffer buffer,
@ -72,12 +70,9 @@ public:
protected: protected:
STAGING_BUFFER_TYPE m_type; STAGING_BUFFER_TYPE m_type;
VkBuffer m_buffer; VkBuffer m_buffer;
VkDeviceMemory m_memory; VmaAllocation m_alloc;
VkDeviceSize m_size; VkDeviceSize m_size;
bool m_coherent;
char* m_map_pointer = nullptr; char* m_map_pointer = nullptr;
VkDeviceSize m_map_offset = 0;
VkDeviceSize m_map_size = 0;
}; };
} // namespace Vulkan } // namespace Vulkan

View File

@ -20,8 +20,7 @@ VKBoundingBox::~VKBoundingBox()
{ {
if (m_gpu_buffer != VK_NULL_HANDLE) if (m_gpu_buffer != VK_NULL_HANDLE)
{ {
vkDestroyBuffer(g_vulkan_context->GetDevice(), m_gpu_buffer, nullptr); vmaDestroyBuffer(g_vulkan_context->GetMemoryAllocator(), m_gpu_buffer, m_gpu_allocation);
vkFreeMemory(g_vulkan_context->GetDevice(), m_gpu_memory, nullptr);
} }
} }
@ -118,47 +117,27 @@ bool VKBoundingBox::CreateGPUBuffer()
nullptr // const uint32_t* pQueueFamilyIndices nullptr // const uint32_t* pQueueFamilyIndices
}; };
VmaAllocationCreateInfo alloc_create_info = {};
alloc_create_info.flags = VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT;
alloc_create_info.usage = VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE;
alloc_create_info.pool = VK_NULL_HANDLE;
alloc_create_info.pUserData = nullptr;
alloc_create_info.priority = 0.0;
alloc_create_info.requiredFlags = 0;
alloc_create_info.preferredFlags = 0;
VkBuffer buffer; VkBuffer buffer;
VkResult res = vkCreateBuffer(g_vulkan_context->GetDevice(), &info, nullptr, &buffer); VmaAllocation alloc;
VkResult res = vmaCreateBuffer(g_vulkan_context->GetMemoryAllocator(), &info, &alloc_create_info,
&buffer, &alloc, nullptr);
if (res != VK_SUCCESS) if (res != VK_SUCCESS)
{ {
LOG_VULKAN_ERROR(res, "vkCreateBuffer failed: "); LOG_VULKAN_ERROR(res, "vmaCreateBuffer failed: ");
return false;
}
VkMemoryRequirements memory_requirements;
vkGetBufferMemoryRequirements(g_vulkan_context->GetDevice(), buffer, &memory_requirements);
uint32_t memory_type_index = g_vulkan_context
->GetMemoryType(memory_requirements.memoryTypeBits,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, false)
.value_or(0);
VkMemoryAllocateInfo memory_allocate_info = {
VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, // VkStructureType sType
nullptr, // const void* pNext
memory_requirements.size, // VkDeviceSize allocationSize
memory_type_index // uint32_t memoryTypeIndex
};
VkDeviceMemory memory;
res = vkAllocateMemory(g_vulkan_context->GetDevice(), &memory_allocate_info, nullptr, &memory);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkAllocateMemory failed: ");
vkDestroyBuffer(g_vulkan_context->GetDevice(), buffer, nullptr);
return false;
}
res = vkBindBufferMemory(g_vulkan_context->GetDevice(), buffer, memory, 0);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkBindBufferMemory failed: ");
vkDestroyBuffer(g_vulkan_context->GetDevice(), buffer, nullptr);
vkFreeMemory(g_vulkan_context->GetDevice(), memory, nullptr);
return false; return false;
} }
m_gpu_buffer = buffer; m_gpu_buffer = buffer;
m_gpu_memory = memory; m_gpu_allocation = alloc;
return true; return true;
} }

View File

@ -32,7 +32,7 @@ private:
bool CreateReadbackBuffer(); bool CreateReadbackBuffer();
VkBuffer m_gpu_buffer = VK_NULL_HANDLE; VkBuffer m_gpu_buffer = VK_NULL_HANDLE;
VkDeviceMemory m_gpu_memory = VK_NULL_HANDLE; VmaAllocation m_gpu_allocation = VK_NULL_HANDLE;
static constexpr size_t BUFFER_SIZE = sizeof(BBoxType) * NUM_BBOX_VALUES; static constexpr size_t BUFFER_SIZE = sizeof(BBoxType) * NUM_BBOX_VALUES;

View File

@ -35,8 +35,9 @@ void VideoBackend::InitBackendInfo()
if (LoadVulkanLibrary()) if (LoadVulkanLibrary())
{ {
VkInstance temp_instance = u32 vk_api_version = 0;
VulkanContext::CreateVulkanInstance(WindowSystemType::Headless, false, false); VkInstance temp_instance = VulkanContext::CreateVulkanInstance(WindowSystemType::Headless,
false, false, &vk_api_version);
if (temp_instance) if (temp_instance)
{ {
if (LoadVulkanInstanceFunctions(temp_instance)) if (LoadVulkanInstanceFunctions(temp_instance))
@ -114,8 +115,9 @@ bool VideoBackend::Initialize(const WindowSystemInfo& wsi)
// We use this instance to fill in backend info, then re-use it for the actual device. // We use this instance to fill in backend info, then re-use it for the actual device.
bool enable_surface = wsi.type != WindowSystemType::Headless; bool enable_surface = wsi.type != WindowSystemType::Headless;
bool enable_debug_reports = ShouldEnableDebugReports(enable_validation_layer); bool enable_debug_reports = ShouldEnableDebugReports(enable_validation_layer);
VkInstance instance = u32 vk_api_version = 0;
VulkanContext::CreateVulkanInstance(wsi.type, enable_debug_reports, enable_validation_layer); VkInstance instance = VulkanContext::CreateVulkanInstance(
wsi.type, enable_debug_reports, enable_validation_layer, &vk_api_version);
if (instance == VK_NULL_HANDLE) if (instance == VK_NULL_HANDLE)
{ {
PanicAlertFmt("Failed to create Vulkan instance."); PanicAlertFmt("Failed to create Vulkan instance.");
@ -171,8 +173,9 @@ bool VideoBackend::Initialize(const WindowSystemInfo& wsi)
} }
// Now we can create the Vulkan device. VulkanContext takes ownership of the instance and surface. // Now we can create the Vulkan device. VulkanContext takes ownership of the instance and surface.
g_vulkan_context = VulkanContext::Create(instance, gpu_list[selected_adapter_index], surface, g_vulkan_context =
enable_debug_reports, enable_validation_layer); VulkanContext::Create(instance, gpu_list[selected_adapter_index], surface,
enable_debug_reports, enable_validation_layer, vk_api_version);
if (!g_vulkan_context) if (!g_vulkan_context)
{ {
PanicAlertFmt("Failed to create Vulkan device"); PanicAlertFmt("Failed to create Vulkan device");

View File

@ -22,13 +22,9 @@ StreamBuffer::StreamBuffer(VkBufferUsageFlags usage, u32 size) : m_usage(usage),
StreamBuffer::~StreamBuffer() StreamBuffer::~StreamBuffer()
{ {
if (m_host_pointer) // VMA_ALLOCATION_CREATE_MAPPED_BIT automatically handles unmapping for us
vkUnmapMemory(g_vulkan_context->GetDevice(), m_memory);
if (m_buffer != VK_NULL_HANDLE) if (m_buffer != VK_NULL_HANDLE)
g_command_buffer_mgr->DeferBufferDestruction(m_buffer); g_command_buffer_mgr->DeferBufferDestruction(m_buffer, m_alloc);
if (m_memory != VK_NULL_HANDLE)
g_command_buffer_mgr->DeferDeviceMemoryDestruction(m_memory);
} }
std::unique_ptr<StreamBuffer> StreamBuffer::Create(VkBufferUsageFlags usage, u32 size) std::unique_ptr<StreamBuffer> StreamBuffer::Create(VkBufferUsageFlags usage, u32 size)
@ -54,74 +50,38 @@ bool StreamBuffer::AllocateBuffer()
nullptr // const uint32_t* pQueueFamilyIndices nullptr // const uint32_t* pQueueFamilyIndices
}; };
VmaAllocationCreateInfo alloc_create_info = {};
alloc_create_info.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT |
VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT |
VMA_ALLOCATION_CREATE_MAPPED_BIT;
alloc_create_info.usage =
VMA_MEMORY_USAGE_AUTO_PREFER_HOST; // Host visible VRAM is slower in practice
alloc_create_info.pool = VK_NULL_HANDLE;
alloc_create_info.pUserData = nullptr;
alloc_create_info.priority = 0.0;
alloc_create_info.requiredFlags = 0;
alloc_create_info.preferredFlags = 0;
VkBuffer buffer = VK_NULL_HANDLE; VkBuffer buffer = VK_NULL_HANDLE;
VkResult res = VmaAllocation alloc = VK_NULL_HANDLE;
vkCreateBuffer(g_vulkan_context->GetDevice(), &buffer_create_info, nullptr, &buffer); VmaAllocationInfo alloc_info;
VkResult res = vmaCreateBuffer(g_vulkan_context->GetMemoryAllocator(), &buffer_create_info,
&alloc_create_info, &buffer, &alloc, &alloc_info);
if (res != VK_SUCCESS) if (res != VK_SUCCESS)
{ {
LOG_VULKAN_ERROR(res, "vkCreateBuffer failed: "); LOG_VULKAN_ERROR(res, "vmaCreateBuffer failed: ");
return false; return false;
} }
// Get memory requirements (types etc) for this buffer
VkMemoryRequirements memory_requirements;
vkGetBufferMemoryRequirements(g_vulkan_context->GetDevice(), buffer, &memory_requirements);
// Aim for a coherent mapping if possible.
u32 memory_type_index = g_vulkan_context->GetUploadMemoryType(memory_requirements.memoryTypeBits,
&m_coherent_mapping);
// Allocate memory for backing this buffer
VkMemoryAllocateInfo memory_allocate_info = {
VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, // VkStructureType sType
nullptr, // const void* pNext
memory_requirements.size, // VkDeviceSize allocationSize
memory_type_index // uint32_t memoryTypeIndex
};
VkDeviceMemory memory = VK_NULL_HANDLE;
res = vkAllocateMemory(g_vulkan_context->GetDevice(), &memory_allocate_info, nullptr, &memory);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkAllocateMemory failed: ");
vkDestroyBuffer(g_vulkan_context->GetDevice(), buffer, nullptr);
return false;
}
// Bind memory to buffer
res = vkBindBufferMemory(g_vulkan_context->GetDevice(), buffer, memory, 0);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkBindBufferMemory failed: ");
vkDestroyBuffer(g_vulkan_context->GetDevice(), buffer, nullptr);
vkFreeMemory(g_vulkan_context->GetDevice(), memory, nullptr);
return false;
}
// Map this buffer into user-space
void* mapped_ptr = nullptr;
res = vkMapMemory(g_vulkan_context->GetDevice(), memory, 0, m_size, 0, &mapped_ptr);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkMapMemory failed: ");
vkDestroyBuffer(g_vulkan_context->GetDevice(), buffer, nullptr);
vkFreeMemory(g_vulkan_context->GetDevice(), memory, nullptr);
return false;
}
// Unmap current host pointer (if there was a previous buffer)
if (m_host_pointer)
vkUnmapMemory(g_vulkan_context->GetDevice(), m_memory);
// Destroy the backings for the buffer after the command buffer executes // Destroy the backings for the buffer after the command buffer executes
// VMA_ALLOCATION_CREATE_MAPPED_BIT automatically handles unmapping for us
if (m_buffer != VK_NULL_HANDLE) if (m_buffer != VK_NULL_HANDLE)
g_command_buffer_mgr->DeferBufferDestruction(m_buffer); g_command_buffer_mgr->DeferBufferDestruction(m_buffer, m_alloc);
if (m_memory != VK_NULL_HANDLE)
g_command_buffer_mgr->DeferDeviceMemoryDestruction(m_memory);
// Replace with the new buffer // Replace with the new buffer
m_buffer = buffer; m_buffer = buffer;
m_memory = memory; m_alloc = alloc;
m_host_pointer = reinterpret_cast<u8*>(mapped_ptr); m_host_pointer = reinterpret_cast<u8*>(alloc_info.pMappedData);
m_current_offset = 0; m_current_offset = 0;
m_current_gpu_position = 0; m_current_gpu_position = 0;
m_tracked_fences.clear(); m_tracked_fences.clear();
@ -201,12 +161,9 @@ void StreamBuffer::CommitMemory(u32 final_num_bytes)
ASSERT(final_num_bytes <= m_last_allocation_size); ASSERT(final_num_bytes <= m_last_allocation_size);
// For non-coherent mappings, flush the memory range // For non-coherent mappings, flush the memory range
if (!m_coherent_mapping) // vmaFlushAllocation checks whether the allocation uses a coherent memory type internally
{ vmaFlushAllocation(g_vulkan_context->GetMemoryAllocator(), m_alloc, m_current_offset,
VkMappedMemoryRange range = {VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE, nullptr, m_memory, final_num_bytes);
m_current_offset, final_num_bytes};
vkFlushMappedMemoryRanges(g_vulkan_context->GetDevice(), 1, &range);
}
m_current_offset += final_num_bytes; m_current_offset += final_num_bytes;
} }

View File

@ -20,7 +20,6 @@ public:
~StreamBuffer(); ~StreamBuffer();
VkBuffer GetBuffer() const { return m_buffer; } VkBuffer GetBuffer() const { return m_buffer; }
VkDeviceMemory GetDeviceMemory() const { return m_memory; }
u8* GetHostPointer() const { return m_host_pointer; } u8* GetHostPointer() const { return m_host_pointer; }
u8* GetCurrentHostPointer() const { return m_host_pointer + m_current_offset; } u8* GetCurrentHostPointer() const { return m_host_pointer + m_current_offset; }
u32 GetCurrentSize() const { return m_size; } u32 GetCurrentSize() const { return m_size; }
@ -45,13 +44,11 @@ private:
u32 m_last_allocation_size = 0; u32 m_last_allocation_size = 0;
VkBuffer m_buffer = VK_NULL_HANDLE; VkBuffer m_buffer = VK_NULL_HANDLE;
VkDeviceMemory m_memory = VK_NULL_HANDLE; VmaAllocation m_alloc = VK_NULL_HANDLE;
u8* m_host_pointer = nullptr; u8* m_host_pointer = nullptr;
// List of fences and the corresponding positions in the buffer // List of fences and the corresponding positions in the buffer
std::deque<std::pair<u64, u32>> m_tracked_fences; std::deque<std::pair<u64, u32>> m_tracked_fences;
bool m_coherent_mapping = false;
}; };
} // namespace Vulkan } // namespace Vulkan

View File

@ -26,10 +26,10 @@
namespace Vulkan namespace Vulkan
{ {
VKTexture::VKTexture(const TextureConfig& tex_config, VkDeviceMemory device_memory, VkImage image, VKTexture::VKTexture(const TextureConfig& tex_config, VmaAllocation alloc, VkImage image,
std::string_view name, VkImageLayout layout /* = VK_IMAGE_LAYOUT_UNDEFINED */, std::string_view name, VkImageLayout layout /* = VK_IMAGE_LAYOUT_UNDEFINED */,
ComputeImageLayout compute_layout /* = ComputeImageLayout::Undefined */) ComputeImageLayout compute_layout /* = ComputeImageLayout::Undefined */)
: AbstractTexture(tex_config), m_device_memory(device_memory), m_image(image), m_layout(layout), : AbstractTexture(tex_config), m_alloc(alloc), m_image(image), m_layout(layout),
m_compute_layout(compute_layout), m_name(name) m_compute_layout(compute_layout), m_name(name)
{ {
if (!m_name.empty() && g_ActiveConfig.backend_info.bSupportsSettingObjectNames) if (!m_name.empty() && g_ActiveConfig.backend_info.bSupportsSettingObjectNames)
@ -49,10 +49,9 @@ VKTexture::~VKTexture()
g_command_buffer_mgr->DeferImageViewDestruction(m_view); g_command_buffer_mgr->DeferImageViewDestruction(m_view);
// If we don't have device memory allocated, the image is not owned by us (e.g. swapchain) // If we don't have device memory allocated, the image is not owned by us (e.g. swapchain)
if (m_device_memory != VK_NULL_HANDLE) if (m_alloc != VK_NULL_HANDLE)
{ {
g_command_buffer_mgr->DeferImageDestruction(m_image); g_command_buffer_mgr->DeferImageDestruction(m_image, m_alloc);
g_command_buffer_mgr->DeferDeviceMemoryDestruction(m_device_memory);
} }
} }
@ -85,46 +84,28 @@ std::unique_ptr<VKTexture> VKTexture::Create(const TextureConfig& tex_config, st
nullptr, nullptr,
VK_IMAGE_LAYOUT_UNDEFINED}; VK_IMAGE_LAYOUT_UNDEFINED};
VmaAllocationCreateInfo alloc_create_info = {};
alloc_create_info.flags = VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT;
alloc_create_info.usage = VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE;
alloc_create_info.pool = VK_NULL_HANDLE;
alloc_create_info.pUserData = nullptr;
alloc_create_info.priority =
tex_config.IsComputeImage() || tex_config.IsRenderTarget() ? 1.0 : 0.0;
alloc_create_info.requiredFlags = 0;
alloc_create_info.preferredFlags = 0;
VkImage image = VK_NULL_HANDLE; VkImage image = VK_NULL_HANDLE;
VkResult res = vkCreateImage(g_vulkan_context->GetDevice(), &image_info, nullptr, &image); VmaAllocation alloc = VK_NULL_HANDLE;
VkResult res = vmaCreateImage(g_vulkan_context->GetMemoryAllocator(), &image_info,
&alloc_create_info, &image, &alloc, nullptr);
if (res != VK_SUCCESS) if (res != VK_SUCCESS)
{ {
LOG_VULKAN_ERROR(res, "vkCreateImage failed: "); LOG_VULKAN_ERROR(res, "vmaCreateImage failed: ");
return nullptr; return nullptr;
} }
// Allocate memory to back this texture, we want device local memory in this case std::unique_ptr<VKTexture> texture = std::make_unique<VKTexture>(
VkMemoryRequirements memory_requirements; tex_config, alloc, image, name, VK_IMAGE_LAYOUT_UNDEFINED, ComputeImageLayout::Undefined);
vkGetImageMemoryRequirements(g_vulkan_context->GetDevice(), image, &memory_requirements);
VkMemoryAllocateInfo memory_info = {
VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, nullptr, memory_requirements.size,
g_vulkan_context
->GetMemoryType(memory_requirements.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
false)
.value_or(0)};
VkDeviceMemory device_memory;
res = vkAllocateMemory(g_vulkan_context->GetDevice(), &memory_info, nullptr, &device_memory);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkAllocateMemory failed: ");
vkDestroyImage(g_vulkan_context->GetDevice(), image, nullptr);
return nullptr;
}
res = vkBindImageMemory(g_vulkan_context->GetDevice(), image, device_memory, 0);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkBindImageMemory failed: ");
vkDestroyImage(g_vulkan_context->GetDevice(), image, nullptr);
vkFreeMemory(g_vulkan_context->GetDevice(), device_memory, nullptr);
return nullptr;
}
std::unique_ptr<VKTexture> texture =
std::make_unique<VKTexture>(tex_config, device_memory, image, name, VK_IMAGE_LAYOUT_UNDEFINED,
ComputeImageLayout::Undefined);
if (!texture->CreateView(VK_IMAGE_VIEW_TYPE_2D_ARRAY)) if (!texture->CreateView(VK_IMAGE_VIEW_TYPE_2D_ARRAY))
return nullptr; return nullptr;
@ -135,7 +116,7 @@ std::unique_ptr<VKTexture> VKTexture::CreateAdopted(const TextureConfig& tex_con
VkImageViewType view_type, VkImageLayout layout) VkImageViewType view_type, VkImageLayout layout)
{ {
std::unique_ptr<VKTexture> texture = std::make_unique<VKTexture>( std::unique_ptr<VKTexture> texture = std::make_unique<VKTexture>(
tex_config, VkDeviceMemory(VK_NULL_HANDLE), image, "", layout, ComputeImageLayout::Undefined); tex_config, VmaAllocation(VK_NULL_HANDLE), image, "", layout, ComputeImageLayout::Undefined);
if (!texture->CreateView(view_type)) if (!texture->CreateView(view_type))
return nullptr; return nullptr;
@ -701,9 +682,9 @@ void VKTexture::TransitionToLayout(VkCommandBuffer command_buffer,
VKStagingTexture::VKStagingTexture(PrivateTag, StagingTextureType type, const TextureConfig& config, VKStagingTexture::VKStagingTexture(PrivateTag, StagingTextureType type, const TextureConfig& config,
std::unique_ptr<StagingBuffer> buffer, VkImage linear_image, std::unique_ptr<StagingBuffer> buffer, VkImage linear_image,
VkDeviceMemory linear_image_memory) VmaAllocation linear_image_alloc)
: AbstractStagingTexture(type, config), m_staging_buffer(std::move(buffer)), : AbstractStagingTexture(type, config), m_staging_buffer(std::move(buffer)),
m_linear_image(linear_image), m_linear_image_memory(linear_image_memory) m_linear_image(linear_image), m_linear_image_alloc(linear_image_alloc)
{ {
} }
@ -711,8 +692,7 @@ VKStagingTexture::~VKStagingTexture()
{ {
if (m_linear_image != VK_NULL_HANDLE) if (m_linear_image != VK_NULL_HANDLE)
{ {
g_command_buffer_mgr->DeferImageDestruction(m_linear_image); g_command_buffer_mgr->DeferImageDestruction(m_linear_image, m_linear_image_alloc);
g_command_buffer_mgr->DeferDeviceMemoryDestruction(m_linear_image_memory);
} }
} }
@ -741,28 +721,27 @@ std::unique_ptr<VKStagingTexture> VKStagingTexture::Create(StagingTextureType ty
} }
VkBuffer buffer; VkBuffer buffer;
VkDeviceMemory memory; VmaAllocation alloc;
bool coherent; char* map_ptr;
if (!StagingBuffer::AllocateBuffer(buffer_type, buffer_size, buffer_usage, &buffer, &memory, if (!StagingBuffer::AllocateBuffer(buffer_type, buffer_size, buffer_usage, &buffer, &alloc,
&coherent)) &map_ptr))
{ {
return nullptr; return nullptr;
} }
// Linear image // Linear image
VkImage linear_image = VK_NULL_HANDLE; VkImage linear_image = VK_NULL_HANDLE;
VkDeviceMemory linear_image_device_memory = VK_NULL_HANDLE; VmaAllocation linear_image_alloc = VK_NULL_HANDLE;
if (DriverDetails::HasBug(DriverDetails::BUG_SLOW_OPTIMAL_IMAGE_TO_BUFFER_COPY) && if (DriverDetails::HasBug(DriverDetails::BUG_SLOW_OPTIMAL_IMAGE_TO_BUFFER_COPY) &&
type == StagingTextureType::Readback && config.samples == 1) type == StagingTextureType::Readback && config.samples == 1)
{ {
std::tie(linear_image, linear_image_device_memory) = CreateLinearImage(type, config); std::tie(linear_image, linear_image_alloc) = CreateLinearImage(type, config);
} }
std::unique_ptr<StagingBuffer> staging_buffer = std::unique_ptr<StagingBuffer> staging_buffer =
std::make_unique<StagingBuffer>(buffer_type, buffer, memory, buffer_size, coherent); std::make_unique<StagingBuffer>(buffer_type, buffer, alloc, buffer_size, map_ptr);
std::unique_ptr<VKStagingTexture> staging_tex = std::unique_ptr<VKStagingTexture> staging_tex = std::make_unique<VKStagingTexture>(
std::make_unique<VKStagingTexture>(PrivateTag{}, type, config, std::move(staging_buffer), PrivateTag{}, type, config, std::move(staging_buffer), linear_image, linear_image_alloc);
linear_image, linear_image_device_memory);
// Use persistent mapping. // Use persistent mapping.
if (!staging_tex->m_staging_buffer->Map()) if (!staging_tex->m_staging_buffer->Map())
@ -772,8 +751,8 @@ std::unique_ptr<VKStagingTexture> VKStagingTexture::Create(StagingTextureType ty
return staging_tex; return staging_tex;
} }
std::pair<VkImage, VkDeviceMemory> VKStagingTexture::CreateLinearImage(StagingTextureType type, std::pair<VkImage, VmaAllocation> VKStagingTexture::CreateLinearImage(StagingTextureType type,
const TextureConfig& config) const TextureConfig& config)
{ {
// Create a intermediate texture with linear tiling // Create a intermediate texture with linear tiling
VkImageCreateInfo image_info = {VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, VkImageCreateInfo image_info = {VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
@ -802,43 +781,25 @@ std::pair<VkImage, VkDeviceMemory> VKStagingTexture::CreateLinearImage(StagingTe
return std::make_pair(VK_NULL_HANDLE, VK_NULL_HANDLE); return std::make_pair(VK_NULL_HANDLE, VK_NULL_HANDLE);
} }
VmaAllocationCreateInfo alloc_create_info = {};
alloc_create_info.flags = VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT;
alloc_create_info.usage = VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE;
alloc_create_info.pool = VK_NULL_HANDLE;
alloc_create_info.pUserData = nullptr;
alloc_create_info.priority = 0.0;
alloc_create_info.requiredFlags = 0;
alloc_create_info.preferredFlags = 0;
VkImage image; VkImage image;
res = vkCreateImage(g_vulkan_context->GetDevice(), &image_info, nullptr, &image); VmaAllocation alloc;
res = vmaCreateImage(g_vulkan_context->GetMemoryAllocator(), &image_info, &alloc_create_info,
&image, &alloc, nullptr);
if (res != VK_SUCCESS) if (res != VK_SUCCESS)
{ {
LOG_VULKAN_ERROR(res, "vkCreateImage failed: "); LOG_VULKAN_ERROR(res, "vmaCreateImage failed: ");
return std::make_pair(VK_NULL_HANDLE, VK_NULL_HANDLE); return std::make_pair(VK_NULL_HANDLE, VK_NULL_HANDLE);
} }
return std::make_pair(image, alloc);
// Allocate memory to back this texture, we want device local memory in this case
VkMemoryRequirements memory_requirements;
vkGetImageMemoryRequirements(g_vulkan_context->GetDevice(), image, &memory_requirements);
VkMemoryAllocateInfo memory_info = {
VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, nullptr, memory_requirements.size,
g_vulkan_context
->GetMemoryType(memory_requirements.memoryTypeBits, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
false)
.value_or(0)};
VkDeviceMemory device_memory;
res = vkAllocateMemory(g_vulkan_context->GetDevice(), &memory_info, nullptr, &device_memory);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkAllocateMemory failed: ");
vkDestroyImage(g_vulkan_context->GetDevice(), image, nullptr);
return std::make_pair(VK_NULL_HANDLE, VK_NULL_HANDLE);
}
res = vkBindImageMemory(g_vulkan_context->GetDevice(), image, device_memory, 0);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vkBindImageMemory failed: ");
vkDestroyImage(g_vulkan_context->GetDevice(), image, nullptr);
vkFreeMemory(g_vulkan_context->GetDevice(), device_memory, nullptr);
return std::make_pair(VK_NULL_HANDLE, VK_NULL_HANDLE);
}
return std::make_pair(image, device_memory);
} }
void VKStagingTexture::CopyFromTexture(const AbstractTexture* src, void VKStagingTexture::CopyFromTexture(const AbstractTexture* src,

View File

@ -30,7 +30,7 @@ public:
}; };
VKTexture() = delete; VKTexture() = delete;
VKTexture(const TextureConfig& tex_config, VkDeviceMemory device_memory, VkImage image, VKTexture(const TextureConfig& tex_config, VmaAllocation alloc, VkImage image,
std::string_view name, VkImageLayout layout = VK_IMAGE_LAYOUT_UNDEFINED, std::string_view name, VkImageLayout layout = VK_IMAGE_LAYOUT_UNDEFINED,
ComputeImageLayout compute_layout = ComputeImageLayout::Undefined); ComputeImageLayout compute_layout = ComputeImageLayout::Undefined);
~VKTexture(); ~VKTexture();
@ -51,11 +51,10 @@ public:
void FinishedRendering() override; void FinishedRendering() override;
VkImage GetImage() const { return m_image; } VkImage GetImage() const { return m_image; }
VkDeviceMemory GetDeviceMemory() const { return m_device_memory; }
VkImageView GetView() const { return m_view; } VkImageView GetView() const { return m_view; }
VkImageLayout GetLayout() const { return m_layout; } VkImageLayout GetLayout() const { return m_layout; }
VkFormat GetVkFormat() const { return GetVkFormatForHostTextureFormat(m_config.format); } VkFormat GetVkFormat() const { return GetVkFormatForHostTextureFormat(m_config.format); }
bool IsAdopted() const { return m_device_memory != VkDeviceMemory(VK_NULL_HANDLE); } bool IsAdopted() const { return m_alloc != VmaAllocation(VK_NULL_HANDLE); }
static std::unique_ptr<VKTexture> Create(const TextureConfig& tex_config, std::string_view name); static std::unique_ptr<VKTexture> Create(const TextureConfig& tex_config, std::string_view name);
static std::unique_ptr<VKTexture> static std::unique_ptr<VKTexture>
@ -74,7 +73,7 @@ public:
private: private:
bool CreateView(VkImageViewType type); bool CreateView(VkImageViewType type);
VkDeviceMemory m_device_memory; VmaAllocation m_alloc;
VkImage m_image; VkImage m_image;
VkImageView m_view = VK_NULL_HANDLE; VkImageView m_view = VK_NULL_HANDLE;
mutable VkImageLayout m_layout = VK_IMAGE_LAYOUT_UNDEFINED; mutable VkImageLayout m_layout = VK_IMAGE_LAYOUT_UNDEFINED;
@ -92,7 +91,7 @@ public:
VKStagingTexture() = delete; VKStagingTexture() = delete;
VKStagingTexture(PrivateTag, StagingTextureType type, const TextureConfig& config, VKStagingTexture(PrivateTag, StagingTextureType type, const TextureConfig& config,
std::unique_ptr<StagingBuffer> buffer, VkImage linear_image, std::unique_ptr<StagingBuffer> buffer, VkImage linear_image,
VkDeviceMemory linear_image_memory); VmaAllocation linear_image_alloc);
~VKStagingTexture(); ~VKStagingTexture();
@ -110,8 +109,8 @@ public:
static std::unique_ptr<VKStagingTexture> Create(StagingTextureType type, static std::unique_ptr<VKStagingTexture> Create(StagingTextureType type,
const TextureConfig& config); const TextureConfig& config);
static std::pair<VkImage, VkDeviceMemory> CreateLinearImage(StagingTextureType type, static std::pair<VkImage, VmaAllocation> CreateLinearImage(StagingTextureType type,
const TextureConfig& config); const TextureConfig& config);
private: private:
void CopyFromTextureToLinearImage(const VKTexture* src_tex, void CopyFromTextureToLinearImage(const VKTexture* src_tex,
@ -120,7 +119,7 @@ private:
std::unique_ptr<StagingBuffer> m_staging_buffer; std::unique_ptr<StagingBuffer> m_staging_buffer;
VkImage m_linear_image = VK_NULL_HANDLE; VkImage m_linear_image = VK_NULL_HANDLE;
VkDeviceMemory m_linear_image_memory = VK_NULL_HANDLE; VmaAllocation m_linear_image_alloc = VK_NULL_HANDLE;
u64 m_flush_fence_counter = 0; u64 m_flush_fence_counter = 0;
}; };

View File

@ -40,6 +40,8 @@ VulkanContext::VulkanContext(VkInstance instance, VkPhysicalDevice physical_devi
VulkanContext::~VulkanContext() VulkanContext::~VulkanContext()
{ {
if (m_allocator != VK_NULL_HANDLE)
vmaDestroyAllocator(m_allocator);
if (m_device != VK_NULL_HANDLE) if (m_device != VK_NULL_HANDLE)
vkDestroyDevice(m_device, nullptr); vkDestroyDevice(m_device, nullptr);
@ -86,7 +88,8 @@ bool VulkanContext::CheckValidationLayerAvailablility()
} }
VkInstance VulkanContext::CreateVulkanInstance(WindowSystemType wstype, bool enable_debug_report, VkInstance VulkanContext::CreateVulkanInstance(WindowSystemType wstype, bool enable_debug_report,
bool enable_validation_layer) bool enable_validation_layer,
u32* out_vk_api_version)
{ {
std::vector<const char*> enabled_extensions; std::vector<const char*> enabled_extensions;
if (!SelectInstanceExtensions(&enabled_extensions, wstype, enable_debug_report)) if (!SelectInstanceExtensions(&enabled_extensions, wstype, enable_debug_report))
@ -114,6 +117,8 @@ VkInstance VulkanContext::CreateVulkanInstance(WindowSystemType wstype, bool ena
} }
} }
*out_vk_api_version = app_info.apiVersion;
VkInstanceCreateInfo instance_create_info = {}; VkInstanceCreateInfo instance_create_info = {};
instance_create_info.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO; instance_create_info.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
instance_create_info.pNext = nullptr; instance_create_info.pNext = nullptr;
@ -429,10 +434,9 @@ void VulkanContext::PopulateBackendInfoMultisampleModes(
config->backend_info.AAModes.emplace_back(64); config->backend_info.AAModes.emplace_back(64);
} }
std::unique_ptr<VulkanContext> VulkanContext::Create(VkInstance instance, VkPhysicalDevice gpu, std::unique_ptr<VulkanContext>
VkSurfaceKHR surface, VulkanContext::Create(VkInstance instance, VkPhysicalDevice gpu, VkSurfaceKHR surface,
bool enable_debug_reports, bool enable_debug_reports, bool enable_validation_layer, u32 vk_api_version)
bool enable_validation_layer)
{ {
std::unique_ptr<VulkanContext> context = std::make_unique<VulkanContext>(instance, gpu); std::unique_ptr<VulkanContext> context = std::make_unique<VulkanContext>(instance, gpu);
@ -445,7 +449,8 @@ std::unique_ptr<VulkanContext> VulkanContext::Create(VkInstance instance, VkPhys
context->EnableDebugReports(); context->EnableDebugReports();
// Attempt to create the device. // Attempt to create the device.
if (!context->CreateDevice(surface, enable_validation_layer)) if (!context->CreateDevice(surface, enable_validation_layer) ||
!context->CreateAllocator(vk_api_version))
{ {
// Since we are destroying the instance, we're also responsible for destroying the surface. // Since we are destroying the instance, we're also responsible for destroying the surface.
if (surface != VK_NULL_HANDLE) if (surface != VK_NULL_HANDLE)
@ -508,6 +513,9 @@ bool VulkanContext::SelectDeviceExtensions(bool enable_surface)
INFO_LOG_FMT(VIDEO, "Using VK_EXT_full_screen_exclusive for exclusive fullscreen."); INFO_LOG_FMT(VIDEO, "Using VK_EXT_full_screen_exclusive for exclusive fullscreen.");
#endif #endif
AddExtension(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME, false);
AddExtension(VK_EXT_MEMORY_BUDGET_EXTENSION_NAME, false);
return true; return true;
} }
@ -695,6 +703,34 @@ bool VulkanContext::CreateDevice(VkSurfaceKHR surface, bool enable_validation_la
return true; return true;
} }
bool VulkanContext::CreateAllocator(u32 vk_api_version)
{
VmaAllocatorCreateInfo allocator_info = {};
allocator_info.flags = VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT;
allocator_info.physicalDevice = m_physical_device;
allocator_info.device = m_device;
allocator_info.preferredLargeHeapBlockSize = 64 << 20;
allocator_info.pAllocationCallbacks = nullptr;
allocator_info.pDeviceMemoryCallbacks = nullptr;
allocator_info.pHeapSizeLimit = nullptr;
allocator_info.pVulkanFunctions = nullptr;
allocator_info.instance = m_instance;
allocator_info.vulkanApiVersion = vk_api_version;
allocator_info.pTypeExternalMemoryHandleTypes = nullptr;
if (SupportsDeviceExtension(VK_EXT_MEMORY_BUDGET_EXTENSION_NAME))
allocator_info.flags |= VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT;
VkResult res = vmaCreateAllocator(&allocator_info, &m_allocator);
if (res != VK_SUCCESS)
{
LOG_VULKAN_ERROR(res, "vmaCreateAllocator failed: ");
return false;
}
return true;
}
static VKAPI_ATTR VkBool32 VKAPI_CALL DebugReportCallback(VkDebugReportFlagsEXT flags, static VKAPI_ATTR VkBool32 VKAPI_CALL DebugReportCallback(VkDebugReportFlagsEXT flags,
VkDebugReportObjectTypeEXT objectType, VkDebugReportObjectTypeEXT objectType,
uint64_t object, size_t location, uint64_t object, size_t location,
@ -756,109 +792,6 @@ void VulkanContext::DisableDebugReports()
} }
} }
std::optional<u32> VulkanContext::GetMemoryType(u32 bits, VkMemoryPropertyFlags properties,
bool strict, bool* is_coherent)
{
static constexpr u32 ALL_MEMORY_PROPERTY_FLAGS = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
const u32 mask = strict ? ALL_MEMORY_PROPERTY_FLAGS : properties;
for (u32 i = 0; i < VK_MAX_MEMORY_TYPES; i++)
{
if ((bits & (1 << i)) != 0)
{
const VkMemoryPropertyFlags type_flags =
m_device_memory_properties.memoryTypes[i].propertyFlags;
const VkMemoryPropertyFlags supported = type_flags & mask;
if (supported == properties)
{
if (is_coherent)
*is_coherent = (type_flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) != 0;
return i;
}
}
}
return std::nullopt;
}
u32 VulkanContext::GetUploadMemoryType(u32 bits, bool* is_coherent)
{
static constexpr VkMemoryPropertyFlags COHERENT_FLAGS =
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
// Try for coherent memory. Some drivers (looking at you, Adreno) have the cached type before the
// uncached type, so use a strict check first.
std::optional<u32> type_index = GetMemoryType(bits, COHERENT_FLAGS, true, is_coherent);
if (type_index)
return type_index.value();
// Try for coherent memory, with any other bits set.
type_index = GetMemoryType(bits, COHERENT_FLAGS, false, is_coherent);
if (type_index)
{
WARN_LOG_FMT(VIDEO,
"Strict check for upload memory properties failed, this may affect performance");
return type_index.value();
}
// Fall back to non-coherent memory.
WARN_LOG_FMT(
VIDEO,
"Vulkan: Failed to find a coherent memory type for uploads, this will affect performance.");
type_index = GetMemoryType(bits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, false, is_coherent);
if (type_index)
return type_index.value();
// Shouldn't happen, there should be at least one host-visible heap.
PanicAlertFmt("Unable to get memory type for upload.");
return 0;
}
u32 VulkanContext::GetReadbackMemoryType(u32 bits, bool* is_coherent)
{
std::optional<u32> type_index;
// Mali driver appears to be significantly slower for readbacks when using cached memory.
if (DriverDetails::HasBug(DriverDetails::BUG_SLOW_CACHED_READBACK_MEMORY))
{
type_index = GetMemoryType(
bits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, true,
is_coherent);
if (type_index)
return type_index.value();
}
// Optimal config uses cached+coherent.
type_index =
GetMemoryType(bits,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
true, is_coherent);
if (type_index)
return type_index.value();
// Otherwise, prefer cached over coherent if we must choose one.
type_index =
GetMemoryType(bits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
false, is_coherent);
if (type_index)
return type_index.value();
WARN_LOG_FMT(VIDEO, "Vulkan: Failed to find a cached memory type for readbacks, this will affect "
"performance.");
type_index = GetMemoryType(bits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, false, is_coherent);
*is_coherent = false;
if (type_index)
return type_index.value();
// We should have at least one host visible memory type...
PanicAlertFmt("Unable to get memory type for upload.");
return 0;
}
bool VulkanContext::SupportsDeviceExtension(const char* name) const bool VulkanContext::SupportsDeviceExtension(const char* name) const
{ {
return std::any_of(m_device_extensions.begin(), m_device_extensions.end(), return std::any_of(m_device_extensions.begin(), m_device_extensions.end(),

View File

@ -26,7 +26,7 @@ public:
// Helper method to create a Vulkan instance. // Helper method to create a Vulkan instance.
static VkInstance CreateVulkanInstance(WindowSystemType wstype, bool enable_debug_report, static VkInstance CreateVulkanInstance(WindowSystemType wstype, bool enable_debug_report,
bool enable_validation_layer); bool enable_validation_layer, u32* out_vk_api_version);
// Returns a list of Vulkan-compatible GPUs. // Returns a list of Vulkan-compatible GPUs.
using GPUList = std::vector<VkPhysicalDevice>; using GPUList = std::vector<VkPhysicalDevice>;
@ -47,7 +47,7 @@ public:
// been called for the specified VideoConfig. // been called for the specified VideoConfig.
static std::unique_ptr<VulkanContext> Create(VkInstance instance, VkPhysicalDevice gpu, static std::unique_ptr<VulkanContext> Create(VkInstance instance, VkPhysicalDevice gpu,
VkSurfaceKHR surface, bool enable_debug_reports, VkSurfaceKHR surface, bool enable_debug_reports,
bool enable_validation_layer); bool enable_validation_layer, u32 api_version);
// Enable/disable debug message runtime. // Enable/disable debug message runtime.
bool EnableDebugReports(); bool EnableDebugReports();
@ -98,14 +98,6 @@ public:
return m_device_properties.limits.bufferImageGranularity; return m_device_properties.limits.bufferImageGranularity;
} }
float GetMaxSamplerAnisotropy() const { return m_device_properties.limits.maxSamplerAnisotropy; } float GetMaxSamplerAnisotropy() const { return m_device_properties.limits.maxSamplerAnisotropy; }
// Finds a memory type index for the specified memory properties and the bits returned by
// vkGetImageMemoryRequirements
std::optional<u32> GetMemoryType(u32 bits, VkMemoryPropertyFlags properties, bool strict,
bool* is_coherent = nullptr);
// Finds a memory type for upload or readback buffers.
u32 GetUploadMemoryType(u32 bits, bool* is_coherent = nullptr);
u32 GetReadbackMemoryType(u32 bits, bool* is_coherent = nullptr);
// Returns true if the specified extension is supported and enabled. // Returns true if the specified extension is supported and enabled.
bool SupportsDeviceExtension(const char* name) const; bool SupportsDeviceExtension(const char* name) const;
@ -113,6 +105,8 @@ public:
// Returns true if exclusive fullscreen is supported for the given surface. // Returns true if exclusive fullscreen is supported for the given surface.
bool SupportsExclusiveFullscreen(const WindowSystemInfo& wsi, VkSurfaceKHR surface); bool SupportsExclusiveFullscreen(const WindowSystemInfo& wsi, VkSurfaceKHR surface);
VmaAllocator GetMemoryAllocator() const { return m_allocator; }
#ifdef WIN32 #ifdef WIN32
// Returns the platform-specific exclusive fullscreen structure. // Returns the platform-specific exclusive fullscreen structure.
VkSurfaceFullScreenExclusiveWin32InfoEXT VkSurfaceFullScreenExclusiveWin32InfoEXT
@ -127,10 +121,12 @@ private:
bool CreateDevice(VkSurfaceKHR surface, bool enable_validation_layer); bool CreateDevice(VkSurfaceKHR surface, bool enable_validation_layer);
void InitDriverDetails(); void InitDriverDetails();
void PopulateShaderSubgroupSupport(); void PopulateShaderSubgroupSupport();
bool CreateAllocator(u32 vk_api_version);
VkInstance m_instance = VK_NULL_HANDLE; VkInstance m_instance = VK_NULL_HANDLE;
VkPhysicalDevice m_physical_device = VK_NULL_HANDLE; VkPhysicalDevice m_physical_device = VK_NULL_HANDLE;
VkDevice m_device = VK_NULL_HANDLE; VkDevice m_device = VK_NULL_HANDLE;
VmaAllocator m_allocator = VK_NULL_HANDLE;
VkQueue m_graphics_queue = VK_NULL_HANDLE; VkQueue m_graphics_queue = VK_NULL_HANDLE;
u32 m_graphics_queue_family_index = 0; u32 m_graphics_queue_family_index = 0;

View File

@ -37,6 +37,7 @@ VULKAN_INSTANCE_ENTRY_POINT(vkGetPhysicalDeviceSurfaceSupportKHR, false)
VULKAN_INSTANCE_ENTRY_POINT(vkGetPhysicalDeviceSurfaceCapabilitiesKHR, false) VULKAN_INSTANCE_ENTRY_POINT(vkGetPhysicalDeviceSurfaceCapabilitiesKHR, false)
VULKAN_INSTANCE_ENTRY_POINT(vkGetPhysicalDeviceSurfaceFormatsKHR, false) VULKAN_INSTANCE_ENTRY_POINT(vkGetPhysicalDeviceSurfaceFormatsKHR, false)
VULKAN_INSTANCE_ENTRY_POINT(vkGetPhysicalDeviceSurfacePresentModesKHR, false) VULKAN_INSTANCE_ENTRY_POINT(vkGetPhysicalDeviceSurfacePresentModesKHR, false)
VULKAN_INSTANCE_ENTRY_POINT(vkGetPhysicalDeviceMemoryProperties2, false)
#if defined(VK_USE_PLATFORM_WIN32_KHR) #if defined(VK_USE_PLATFORM_WIN32_KHR)
VULKAN_INSTANCE_ENTRY_POINT(vkCreateWin32SurfaceKHR, false) VULKAN_INSTANCE_ENTRY_POINT(vkCreateWin32SurfaceKHR, false)
@ -192,6 +193,10 @@ VULKAN_DEVICE_ENTRY_POINT(vkDestroySwapchainKHR, false)
VULKAN_DEVICE_ENTRY_POINT(vkGetSwapchainImagesKHR, false) VULKAN_DEVICE_ENTRY_POINT(vkGetSwapchainImagesKHR, false)
VULKAN_DEVICE_ENTRY_POINT(vkAcquireNextImageKHR, false) VULKAN_DEVICE_ENTRY_POINT(vkAcquireNextImageKHR, false)
VULKAN_DEVICE_ENTRY_POINT(vkQueuePresentKHR, false) VULKAN_DEVICE_ENTRY_POINT(vkQueuePresentKHR, false)
VULKAN_DEVICE_ENTRY_POINT(vkGetBufferMemoryRequirements2, false)
VULKAN_DEVICE_ENTRY_POINT(vkGetImageMemoryRequirements2, false)
VULKAN_DEVICE_ENTRY_POINT(vkBindBufferMemory2, false)
VULKAN_DEVICE_ENTRY_POINT(vkBindImageMemory2, false)
#ifdef SUPPORTS_VULKAN_EXCLUSIVE_FULLSCREEN #ifdef SUPPORTS_VULKAN_EXCLUSIVE_FULLSCREEN
VULKAN_DEVICE_ENTRY_POINT(vkAcquireFullScreenExclusiveModeEXT, false) VULKAN_DEVICE_ENTRY_POINT(vkAcquireFullScreenExclusiveModeEXT, false)

View File

@ -1,6 +1,7 @@
// Copyright 2016 Dolphin Emulator Project // Copyright 2016 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later // SPDX-License-Identifier: GPL-2.0-or-later
#define VMA_IMPLEMENTATION
#include "VideoBackends/Vulkan/VulkanLoader.h" #include "VideoBackends/Vulkan/VulkanLoader.h"
#include <atomic> #include <atomic>

View File

@ -37,6 +37,42 @@
#undef VULKAN_INSTANCE_ENTRY_POINT #undef VULKAN_INSTANCE_ENTRY_POINT
#undef VULKAN_MODULE_ENTRY_POINT #undef VULKAN_MODULE_ENTRY_POINT
// Include vma allocator globally since including it before the vulkan headers causes
// errors
#ifdef _MSVC_LANG
#pragma warning(push, 4)
#pragma warning(disable : 4189) // local variable is initialized but not referenced
#endif // #ifdef _MSVC_LANG
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wunused-variable"
#endif // #ifdef __clang__
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-variable"
#endif // #ifdef __GNUC__
#define VMA_VULKAN_VERSION 1001000
#define VMA_STATIC_VULKAN_FUNCTIONS 1
#define VMA_DYNAMIC_VULKAN_FUNCTIONS 0
#undef VK_NO_PROTOTYPES
#include "vk_mem_alloc.h"
#ifdef _MSVC_LANG
#pragma warning(pop)
#endif // #ifdef _MSVC_LANG
#ifdef __clang__
#pragma clang diagnostic pop
#endif // #ifdef __clang__
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif // #ifdef __GNUC__
#include "Common/Logging/Log.h" #include "Common/Logging/Log.h"
namespace Vulkan namespace Vulkan

View File

@ -14,6 +14,7 @@
<AdditionalIncludeDirectories>$(ExternalsDir)OpenAL\include;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories> <AdditionalIncludeDirectories>$(ExternalsDir)OpenAL\include;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
<AdditionalIncludeDirectories>$(ExternalsDir)rangeset\include;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories> <AdditionalIncludeDirectories>$(ExternalsDir)rangeset\include;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
<AdditionalIncludeDirectories>$(ExternalsDir)Vulkan\include;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories> <AdditionalIncludeDirectories>$(ExternalsDir)Vulkan\include;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
<AdditionalIncludeDirectories>$(ExternalsDir)VulkanMemoryAllocator\include;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
<AdditionalIncludeDirectories>$(ExternalsDir)WIL\include;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories> <AdditionalIncludeDirectories>$(ExternalsDir)WIL\include;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
<!--WIL doesn't have it's own vcxproj/exports, and no externals reference WIL, so this is fine to define only for Dolphin--> <!--WIL doesn't have it's own vcxproj/exports, and no externals reference WIL, so this is fine to define only for Dolphin-->
<PreprocessorDefinitions>WIL_SUPPRESS_EXCEPTIONS;%(PreprocessorDefinitions)</PreprocessorDefinitions> <PreprocessorDefinitions>WIL_SUPPRESS_EXCEPTIONS;%(PreprocessorDefinitions)</PreprocessorDefinitions>