dolphin/Source/Core/Common/Crypto/SHA1.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

405 lines
12 KiB
C++
Raw Normal View History

// Copyright 2017 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "SHA1.h"
#include <array>
#include <memory>
#include <mbedtls/sha1.h>
#include "Common/Assert.h"
#include "Common/CPUDetect.h"
#include "Common/CommonTypes.h"
#include "Common/Swap.h"
#ifdef _MSC_VER
#include <intrin.h>
#else
#ifdef _M_X86_64
#include <immintrin.h>
#elif defined(_M_ARM_64)
#include <arm_acle.h>
#include <arm_neon.h>
#endif
#endif
#ifdef _MSC_VER
#define ATTRIBUTE_TARGET(x)
#else
#define ATTRIBUTE_TARGET(x) [[gnu::target(x)]]
#endif
namespace Common::SHA1
{
class ContextMbed final : public Context
{
public:
ContextMbed()
{
mbedtls_sha1_init(&ctx);
ASSERT(!mbedtls_sha1_starts_ret(&ctx));
}
~ContextMbed() { mbedtls_sha1_free(&ctx); }
virtual void Update(const u8* msg, size_t len) override
{
ASSERT(!mbedtls_sha1_update_ret(&ctx, msg, len));
}
virtual Digest Finish() override
{
Digest digest;
ASSERT(!mbedtls_sha1_finish_ret(&ctx, digest.data()));
return digest;
}
virtual bool HwAccelerated() const override { return false; }
private:
mbedtls_sha1_context ctx{};
};
class BlockContext : public Context
{
protected:
static constexpr size_t BLOCK_LEN = 64;
static constexpr u32 K[4]{0x5a827999, 0x6ed9eba1, 0x8f1bbcdc, 0xca62c1d6};
static constexpr u32 H[5]{0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0};
virtual void ProcessBlock(const u8* msg) = 0;
virtual Digest GetDigest() = 0;
virtual void Update(const u8* msg, size_t len) override
{
if (len == 0)
return;
msg_len += len;
if (block_used)
{
if (block_used + len >= block.size())
{
size_t rem = block.size() - block_used;
std::memcpy(&block[block_used], msg, rem);
ProcessBlock(&block[0]);
block_used = 0;
msg += rem;
len -= rem;
}
else
{
std::memcpy(&block[block_used], msg, len);
block_used += len;
return;
}
}
while (len >= BLOCK_LEN)
{
ProcessBlock(msg);
msg += BLOCK_LEN;
len -= BLOCK_LEN;
}
if (len)
{
std::memcpy(&block[0], msg, len);
block_used = len;
}
}
virtual Digest Finish() override
{
// block_used is guaranteed < BLOCK_LEN
block[block_used++] = 0x80;
constexpr size_t MSG_LEN_POS = BLOCK_LEN - sizeof(u64);
if (block_used > MSG_LEN_POS)
{
// Pad current block and process it
std::memset(&block[block_used], 0, BLOCK_LEN - block_used);
ProcessBlock(&block[0]);
// Pad a new block
std::memset(&block[0], 0, MSG_LEN_POS);
}
else
{
// Pad current block
std::memset(&block[block_used], 0, MSG_LEN_POS - block_used);
}
Common::BigEndianValue<u64> msg_bitlen(msg_len * 8);
std::memcpy(&block[MSG_LEN_POS], &msg_bitlen, sizeof(msg_bitlen));
ProcessBlock(&block[0]);
return GetDigest();
}
alignas(64) std::array<u8, BLOCK_LEN> block{};
size_t block_used{};
size_t msg_len{};
};
template <typename ValueType, size_t Size>
class CyclicArray
{
public:
inline ValueType operator[](size_t i) const { return data[i % Size]; }
inline ValueType& operator[](size_t i) { return data[i % Size]; }
constexpr size_t size() { return Size; }
private:
std::array<ValueType, Size> data;
};
#ifdef _M_X86_64
// Uses the dedicated SHA1 instructions. Normal SSE(AVX*) would be needed for parallel
// multi-message processing. While Dolphin could gain from such implementation, it requires the
// calling code to be modified and/or making the SHA1 implementation asynchronous so it can
// optimistically batch.
class ContextX64SHA1 final : public BlockContext
{
public:
ContextX64SHA1()
{
state[0] = _mm_set_epi32(H[0], H[1], H[2], H[3]);
state[1] = _mm_set_epi32(H[4], 0, 0, 0);
}
private:
struct XmmReg
{
// Allows aliasing attributes to be respected in the
// face of templates.
__m128i data;
XmmReg& operator=(const __m128i& d)
{
data = d;
return *this;
}
operator __m128i() const { return data; }
};
using WorkBlock = CyclicArray<XmmReg, 4>;
ATTRIBUTE_TARGET("ssse3")
static inline __m128i byterev_16B(__m128i x)
{
return _mm_shuffle_epi8(x, _mm_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15));
}
template <size_t I>
ATTRIBUTE_TARGET("sha")
static inline __m128i MsgSchedule(WorkBlock* wblock)
{
auto& w = *wblock;
// Update and return this location
auto& wx = w[I];
// Do all the xors and rol(x,1) required for 4 rounds of msg schedule
wx = _mm_sha1msg1_epu32(wx, w[I + 1]);
wx = _mm_xor_si128(wx, w[I + 2]);
wx = _mm_sha1msg2_epu32(wx, w[I + 3]);
return wx;
}
ATTRIBUTE_TARGET("sha")
virtual void ProcessBlock(const u8* msg) override
{
// There are 80 rounds with 4 bytes per round, giving 0x140 byte work space, but we can keep
// active state in just 0x40 bytes.
// see FIPS 180-4 6.1.3 Alternate Method for Computing a SHA-1 Message Digest
WorkBlock w;
auto msg_block = (const __m128i*)msg;
for (size_t i = 0; i < w.size(); i++)
w[i] = byterev_16B(_mm_loadu_si128(&msg_block[i]));
// 0: abcd, 1: e
auto abcde = state;
// Not sure of a (non-ugly) way to have constant-evaluated for-loop, so just rely on inlining.
// Problem is that sha1rnds4 requires imm8 arg, and first/last rounds have different behavior.
// clang-format off
// E0 += MSG0, special case of "nexte", can do normal add
abcde[1] = _mm_sha1rnds4_epu32(abcde[0], _mm_add_epi32(abcde[1], w[0]), 0);
abcde[0] = _mm_sha1rnds4_epu32(abcde[1], _mm_sha1nexte_epu32(abcde[0], w[1]), 0);
abcde[1] = _mm_sha1rnds4_epu32(abcde[0], _mm_sha1nexte_epu32(abcde[1], w[2]), 0);
abcde[0] = _mm_sha1rnds4_epu32(abcde[1], _mm_sha1nexte_epu32(abcde[0], w[3]), 0);
abcde[1] = _mm_sha1rnds4_epu32(abcde[0], _mm_sha1nexte_epu32(abcde[1], MsgSchedule<4>(&w)), 0);
abcde[0] = _mm_sha1rnds4_epu32(abcde[1], _mm_sha1nexte_epu32(abcde[0], MsgSchedule<5>(&w)), 1);
abcde[1] = _mm_sha1rnds4_epu32(abcde[0], _mm_sha1nexte_epu32(abcde[1], MsgSchedule<6>(&w)), 1);
abcde[0] = _mm_sha1rnds4_epu32(abcde[1], _mm_sha1nexte_epu32(abcde[0], MsgSchedule<7>(&w)), 1);
abcde[1] = _mm_sha1rnds4_epu32(abcde[0], _mm_sha1nexte_epu32(abcde[1], MsgSchedule<8>(&w)), 1);
abcde[0] = _mm_sha1rnds4_epu32(abcde[1], _mm_sha1nexte_epu32(abcde[0], MsgSchedule<9>(&w)), 1);
abcde[1] = _mm_sha1rnds4_epu32(abcde[0], _mm_sha1nexte_epu32(abcde[1], MsgSchedule<10>(&w)), 2);
abcde[0] = _mm_sha1rnds4_epu32(abcde[1], _mm_sha1nexte_epu32(abcde[0], MsgSchedule<11>(&w)), 2);
abcde[1] = _mm_sha1rnds4_epu32(abcde[0], _mm_sha1nexte_epu32(abcde[1], MsgSchedule<12>(&w)), 2);
abcde[0] = _mm_sha1rnds4_epu32(abcde[1], _mm_sha1nexte_epu32(abcde[0], MsgSchedule<13>(&w)), 2);
abcde[1] = _mm_sha1rnds4_epu32(abcde[0], _mm_sha1nexte_epu32(abcde[1], MsgSchedule<14>(&w)), 2);
abcde[0] = _mm_sha1rnds4_epu32(abcde[1], _mm_sha1nexte_epu32(abcde[0], MsgSchedule<15>(&w)), 3);
abcde[1] = _mm_sha1rnds4_epu32(abcde[0], _mm_sha1nexte_epu32(abcde[1], MsgSchedule<16>(&w)), 3);
abcde[0] = _mm_sha1rnds4_epu32(abcde[1], _mm_sha1nexte_epu32(abcde[0], MsgSchedule<17>(&w)), 3);
abcde[1] = _mm_sha1rnds4_epu32(abcde[0], _mm_sha1nexte_epu32(abcde[1], MsgSchedule<18>(&w)), 3);
abcde[0] = _mm_sha1rnds4_epu32(abcde[1], _mm_sha1nexte_epu32(abcde[0], MsgSchedule<19>(&w)), 3);
// state += abcde
state[1] = _mm_sha1nexte_epu32(abcde[1], state[1]);
state[0] = _mm_add_epi32(abcde[0], state[0]);
// clang-format on
}
virtual Digest GetDigest() override
{
Digest digest;
_mm_storeu_si128((__m128i*)&digest[0], byterev_16B(state[0]));
u32 hi = _mm_cvtsi128_si32(byterev_16B(state[1]));
std::memcpy(&digest[sizeof(__m128i)], &hi, sizeof(hi));
return digest;
}
virtual bool HwAccelerated() const override { return true; }
std::array<XmmReg, 2> state{};
};
#endif
#ifdef _M_ARM_64
class ContextNeon final : public BlockContext
{
public:
ContextNeon()
{
state.abcd = vld1q_u32(&H[0]);
state.e = H[4];
}
private:
using WorkBlock = CyclicArray<uint32x4_t, 4>;
struct State
{
// ARM thought they were being clever by exposing e as u32, but it actually makes non-asm
// implementations pretty annoying/makes compiler's life needlessly difficult.
uint32x4_t abcd{};
u32 e{};
};
static inline uint32x4_t MsgSchedule(WorkBlock* wblock, size_t i)
{
auto& w = *wblock;
// Update and return this location
auto& wx = w[0 + i];
wx = vsha1su0q_u32(wx, w[1 + i], w[2 + i]);
wx = vsha1su1q_u32(wx, w[3 + i]);
return wx;
}
template <size_t Func>
static inline constexpr uint32x4_t f(State state, uint32x4_t w)
{
const auto wk = vaddq_u32(w, vdupq_n_u32(K[Func]));
if constexpr (Func == 0)
return vsha1cq_u32(state.abcd, state.e, wk);
if constexpr (Func == 1 || Func == 3)
return vsha1pq_u32(state.abcd, state.e, wk);
if constexpr (Func == 2)
return vsha1mq_u32(state.abcd, state.e, wk);
}
template <size_t Func>
static inline constexpr State FourRounds(State state, uint32x4_t w)
{
return {f<Func>(state, w), vsha1h_u32(vgetq_lane_u32(state.abcd, 0))};
}
virtual void ProcessBlock(const u8* msg) override
{
WorkBlock w;
for (size_t i = 0; i < w.size(); i++)
w[i] = vreinterpretq_u32_u8(vrev32q_u8(vld1q_u8(&msg[sizeof(uint32x4_t) * i])));
std::array<State, 2> states{state};
// Fashioned to look like x64 impl.
// In each case the goal is to have compiler inline + unroll everything.
states[1] = FourRounds<0>(states[0], w[0]);
states[0] = FourRounds<0>(states[1], w[1]);
states[1] = FourRounds<0>(states[0], w[2]);
states[0] = FourRounds<0>(states[1], w[3]);
states[1] = FourRounds<0>(states[0], MsgSchedule(&w, 4));
states[0] = FourRounds<1>(states[1], MsgSchedule(&w, 5));
states[1] = FourRounds<1>(states[0], MsgSchedule(&w, 6));
states[0] = FourRounds<1>(states[1], MsgSchedule(&w, 7));
states[1] = FourRounds<1>(states[0], MsgSchedule(&w, 8));
states[0] = FourRounds<1>(states[1], MsgSchedule(&w, 9));
states[1] = FourRounds<2>(states[0], MsgSchedule(&w, 10));
states[0] = FourRounds<2>(states[1], MsgSchedule(&w, 11));
states[1] = FourRounds<2>(states[0], MsgSchedule(&w, 12));
states[0] = FourRounds<2>(states[1], MsgSchedule(&w, 13));
states[1] = FourRounds<2>(states[0], MsgSchedule(&w, 14));
states[0] = FourRounds<3>(states[1], MsgSchedule(&w, 15));
states[1] = FourRounds<3>(states[0], MsgSchedule(&w, 16));
states[0] = FourRounds<3>(states[1], MsgSchedule(&w, 17));
states[1] = FourRounds<3>(states[0], MsgSchedule(&w, 18));
states[0] = FourRounds<3>(states[1], MsgSchedule(&w, 19));
state = {vaddq_u32(state.abcd, states[0].abcd), state.e + states[0].e};
}
virtual Digest GetDigest() override
{
Digest digest;
vst1q_u8(&digest[0], vrev32q_u8(vreinterpretq_u8_u32(state.abcd)));
u32 e = Common::FromBigEndian(state.e);
std::memcpy(&digest[sizeof(state.abcd)], &e, sizeof(e));
return digest;
}
virtual bool HwAccelerated() const override { return true; }
State state;
};
#endif
std::unique_ptr<Context> CreateContext()
{
if (cpu_info.bSHA1)
{
#ifdef _M_X86_64
// Note: As of mid 2022, > 99% of CPUs reporting to Steam survey have SSSE3, ~40% have SHA.
// Seems unlikely we'll see any cpus supporting SHA but not SSSE3 (in the foreseeable future at
// least).
if (cpu_info.bSSSE3)
return std::make_unique<ContextX64SHA1>();
#elif defined(_M_ARM_64)
return std::make_unique<ContextNeon>();
#endif
}
return std::make_unique<ContextMbed>();
}
Digest CalculateDigest(const u8* msg, size_t len)
{
auto ctx = CreateContext();
ctx->Update(msg, len);
return ctx->Finish();
}
std::string DigestToString(const Digest& digest)
{
static constexpr std::array<char, 16> lookup = {'0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'A', 'B', 'C', 'D', 'E', 'F'};
std::string hash;
hash.reserve(digest.size() * 2);
for (size_t i = 0; i < digest.size(); ++i)
{
const u8 upper = static_cast<u8>((digest[i] >> 4) & 0xf);
const u8 lower = static_cast<u8>(digest[i] & 0xf);
hash.push_back(lookup[upper]);
hash.push_back(lookup[lower]);
}
return hash;
}
} // namespace Common::SHA1