dolphin/Source/Plugins/Plugin_VideoOGL/Src/PixelShaderManager.cpp

580 lines
21 KiB
C++
Raw Normal View History

// Copyright (C) 2003-2008 Dolphin Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/
#include "Globals.h"
#include <cmath>
#include "Common.h"
#include "Render.h"
#include "VertexShader.h"
#include "PixelShaderManager.h"
#include "PixelShader.h"
PixelShaderMngr::PSCache PixelShaderMngr::pshaders;
FRAGMENTSHADER* PixelShaderMngr::pShaderLast = NULL;
PixelShaderMngr::PIXELSHADERUID PixelShaderMngr::s_curuid;
static int s_nMaxPixelInstructions;
static int s_nColorsChanged[2]; // 0 - regular colors, 1 - k colors
static int s_nTexDimsChanged[2], s_nIndTexMtxChanged = 0; //min, max
static bool s_bAlphaChanged, s_bZBiasChanged, s_bIndTexScaleChanged;
static float lastRGBAfull[2][4][4] = {0};
static u32 lastAlpha = 0;
static u32 lastTexDims[8]={0};
static u32 lastZBias = 0;
// lower byte describes if a texture is nonpow2 or pow2
// next byte describes whether the repeat wrap mode is enabled for the s channel
// next byte is for t channel
u32 s_texturemask = 0;
static int maptocoord[8]; // indexed by texture map, holds the texcoord associated with the map
static u32 maptocoord_mask=0;
static GLuint s_ColorMatrixProgram=0;
void PixelShaderMngr::SetPSConstant4f(int const_number, float f1, float f2, float f3, float f4) {
glProgramEnvParameter4fARB(GL_FRAGMENT_PROGRAM_ARB, const_number, f1, f2, f3, f4);
}
void PixelShaderMngr::SetPSConstant4fv(int const_number, const float *f) {
glProgramEnvParameter4fvARB(GL_FRAGMENT_PROGRAM_ARB, const_number, f);
}
void PixelShaderMngr::Init()
{
s_nColorsChanged[0] = s_nColorsChanged[1] = 0;
s_nTexDimsChanged[0] = s_nTexDimsChanged[1] = -1;
s_nIndTexMtxChanged = 15;
s_bAlphaChanged = s_bZBiasChanged = s_bIndTexScaleChanged = true;
GL_REPORT_ERRORD();
for(int i = 0; i < 8; ++i) maptocoord[i] = -1;
maptocoord_mask = 0;
memset(lastRGBAfull, 0, sizeof(lastRGBAfull));
glGetProgramivARB(GL_FRAGMENT_PROGRAM_ARB, GL_MAX_PROGRAM_NATIVE_ALU_INSTRUCTIONS_ARB, (GLint *)&s_nMaxPixelInstructions);
int maxinst, maxattribs;
glGetProgramivARB(GL_FRAGMENT_PROGRAM_ARB, GL_MAX_PROGRAM_NATIVE_INSTRUCTIONS_ARB, (GLint *)&maxinst);
glGetProgramivARB(GL_FRAGMENT_PROGRAM_ARB, GL_MAX_PROGRAM_NATIVE_ATTRIBS_ARB, (GLint *)&maxattribs);
ERROR_LOG("pixel max_alu=%d, max_inst=%d, max_attrib=%d\n", s_nMaxPixelInstructions, maxinst, maxattribs);
char pmatrixprog[1024];
sprintf(pmatrixprog, "!!ARBfp1.0"
"TEMP R0;\n"
"TEMP R1;\n"
"TEX R0, fragment.texcoord[0], texture[0], RECT;\n"
"DP4 R1.w, R0, program.env[%d];\n"
"DP4 R1.z, R0, program.env[%d];\n"
"DP4 R1.x, R0, program.env[%d];\n"
"DP4 R1.y, R0, program.env[%d];\n"
"ADD result.color, R1, program.env[%d];\n"
"END\n", C_COLORMATRIX+3, C_COLORMATRIX+2, C_COLORMATRIX, C_COLORMATRIX+1, C_COLORMATRIX+4);
glGenProgramsARB( 1, &s_ColorMatrixProgram );
glBindProgramARB( GL_FRAGMENT_PROGRAM_ARB, s_ColorMatrixProgram );
glProgramStringARB( GL_FRAGMENT_PROGRAM_ARB, GL_PROGRAM_FORMAT_ASCII_ARB, (GLsizei)strlen(pmatrixprog), pmatrixprog);
GLenum err=GL_NO_ERROR;
GL_REPORT_ERROR();
if( err != GL_NO_ERROR ) {
ERROR_LOG("Failed to create color matrix fragment program\n");
SAFE_RELEASE_PROG(s_ColorMatrixProgram);
}
}
void PixelShaderMngr::Shutdown()
{
SAFE_RELEASE_PROG(s_ColorMatrixProgram);
PSCache::iterator iter = pshaders.begin();
for (;iter!=pshaders.end();iter++)
iter->second.Destroy();
pshaders.clear();
}
FRAGMENTSHADER* PixelShaderMngr::GetShader()
{
DVSTARTPROFILE();
PIXELSHADERUID uid;
GetPixelShaderId(uid);
PSCache::iterator iter = pshaders.find(uid);
if (iter != pshaders.end()) {
iter->second.frameCount=frameCount;
PSCacheEntry &entry = iter->second;
if (&entry.shader != pShaderLast)
{
pShaderLast = &entry.shader;
}
return pShaderLast;
}
PSCacheEntry& newentry = pshaders[uid];
char *code = GeneratePixelShader(s_texturemask,
Renderer::GetZBufferTarget() != 0,
Renderer::GetRenderMode() != Renderer::RM_Normal);
if (!code || !CompilePixelShader(newentry.shader, code)) {
ERROR_LOG("failed to create pixel shader\n");
return NULL;
}
//Make an entry in the table
newentry.frameCount=frameCount;
pShaderLast = &newentry.shader;
INCSTAT(stats.numPixelShadersCreated);
SETSTAT(stats.numPixelShadersAlive, pshaders.size());
return pShaderLast;
}
void PixelShaderMngr::Cleanup()
{
PSCache::iterator iter = pshaders.begin();
while(iter != pshaders.end()) {
PSCacheEntry &entry = iter->second;
if (entry.frameCount<frameCount-200) {
entry.Destroy();
#ifdef _WIN32
iter = pshaders.erase(iter);
#else
pshaders.erase(iter++); // (this is gcc standard!)
#endif
}
else
iter++;
}
SETSTAT(stats.numPixelShadersAlive,(int)pshaders.size());
}
bool PixelShaderMngr::CompilePixelShader(FRAGMENTSHADER& ps, const char* pstrprogram)
{
CGerror cgerr = cgGetError();
char stropt[64];
sprintf(stropt, "MaxLocalParams=32,NumInstructionSlots=%d", s_nMaxPixelInstructions);
#ifdef _WIN32
const char* opts[] = {"-profileopts",stropt,"-O2","-q",NULL};
#else
const char* opts[] = {"-profileopts",stropt,"-q",NULL};
#endif
CGprogram tempprog = cgCreateProgram(g_cgcontext, CG_SOURCE, pstrprogram, g_cgfProf, "main", opts);
if (!cgIsProgram(tempprog) || cgGetError() != CG_NO_ERROR) {
ERROR_LOG("Failed to create ps %s:\n", cgGetLastListing(g_cgcontext));
ERROR_LOG(pstrprogram);
return false;
}
char* pcompiledprog = (char*)cgGetProgramString(tempprog, CG_COMPILED_PROGRAM);
char* plocal = strstr(pcompiledprog, "program.local");
while( plocal != NULL ) {
const char* penv = " program.env";
memcpy(plocal, penv, 13);
plocal = strstr(plocal+13, "program.local");
}
if( Renderer::IsUsingATIDrawBuffers() ) {
// sometimes compilation can use ARB_draw_buffers, which would fail for ATI cards
char* poptions = strstr(pcompiledprog, "ARB_draw_buffers");
if( poptions != NULL ) {
poptions[0] = 'A';
poptions[1] = 'T';
poptions[2] = 'I';
}
}
//ERROR_LOG(pcompiledprog);
//ERROR_LOG(pstrprogram);
glGenProgramsARB( 1, &ps.glprogid );
glBindProgramARB( GL_FRAGMENT_PROGRAM_ARB, ps.glprogid );
glProgramStringARB( GL_FRAGMENT_PROGRAM_ARB, GL_PROGRAM_FORMAT_ASCII_ARB, (GLsizei)strlen(pcompiledprog), pcompiledprog);
GLenum err = GL_NO_ERROR;
GL_REPORT_ERROR();
if( err != GL_NO_ERROR ) {
ERROR_LOG(pstrprogram);
ERROR_LOG(pcompiledprog);
}
cgDestroyProgram(tempprog);
#ifdef _DEBUG
ps.strprog = pstrprogram;
#endif
return true;
}
void PixelShaderMngr::SetConstants(FRAGMENTSHADER& ps)
{
for(int i = 0; i < 2; ++i) {
if( s_nColorsChanged[i] ) {
int baseind = i?C_KCOLORS:C_COLORS;
for(int j = 0; j < 4; ++j) {
if( s_nColorsChanged[i] & (1<<j) ) {
SetPSConstant4fv(baseind+j, &lastRGBAfull[i][j][0]);
}
}
s_nColorsChanged[i] = 0;
}
}
u32 newmask = 0;
for(u32 i = 0; i < bpmem.genMode.numtevstages+1; ++i) {
if( bpmem.tevorders[i/2].getEnable(i&1) ) {
int texmap = bpmem.tevorders[i/2].getTexMap(i&1);
maptocoord[texmap] = bpmem.tevorders[i/2].getTexCoord(i&1);
newmask |= 1<<texmap;
SetTexDimsChanged(i);
}
}
if( maptocoord_mask != newmask ) {
u32 changes = maptocoord_mask ^ newmask;
for(int i = 0; i < 8; ++i) {
if( changes&(1<<i) ) {
SetTexDimsChanged(i);
}
if( !(newmask & (1<<i)) ) {
maptocoord[i] = -1;
}
}
maptocoord_mask = newmask;
}
if( s_nTexDimsChanged[0] >= 0 ) {
float fdims[4];
for(int i = s_nTexDimsChanged[0]; i <= s_nTexDimsChanged[1]; ++i) {
if( s_texturemask & (1<<i) ) {
if( maptocoord[i] >= 0 ) {
TCoordInfo& tc = bpmem.texcoords[maptocoord[i]];
fdims[0] = (float)(lastTexDims[i]&0xffff);
fdims[1] = (float)((lastTexDims[i]>>16)&0xfff);
fdims[2] = (float)(tc.s.scale_minus_1+1)/(float)(lastTexDims[i]&0xffff);
fdims[3] = (float)(tc.t.scale_minus_1+1)/(float)((lastTexDims[i]>>16)&0xfff);
}
else {
fdims[0] = (float)(lastTexDims[i]&0xffff);
fdims[1] = (float)((lastTexDims[i]>>16)&0xfff);
fdims[2] = 1.0f;
fdims[3] = 1.0f;
}
}
else {
if( maptocoord[i] >= 0 ) {
TCoordInfo& tc = bpmem.texcoords[maptocoord[i]];
fdims[0] = (float)(tc.s.scale_minus_1+1)/(float)(lastTexDims[i]&0xffff);
fdims[1] = (float)(tc.t.scale_minus_1+1)/(float)((lastTexDims[i]>>16)&0xfff);
fdims[2] = 1.0f/(float)(tc.s.scale_minus_1+1);
fdims[3] = 1.0f/(float)(tc.t.scale_minus_1+1);
}
else {
fdims[0] = 1.0f;
fdims[1] = 1.0f;
fdims[2] = 1.0f/(float)(lastTexDims[i]&0xffff);
fdims[3] = 1.0f/(float)((lastTexDims[i]>>16)&0xfff);
}
}
PRIM_LOG("texdims%d: %f %f %f %f\n", i, fdims[0], fdims[1], fdims[2], fdims[3]);
SetPSConstant4fv(C_TEXDIMS + i, fdims);
}
s_nTexDimsChanged[0] = s_nTexDimsChanged[1] = -1;
}
if( s_bAlphaChanged ) {
SetPSConstant4f(C_ALPHA, (lastAlpha&0xff)/255.0f, ((lastAlpha>>8)&0xff)/255.0f, 0, ((lastAlpha>>16)&0xff)/255.0f);
}
if( s_bZBiasChanged ) {
u32 bits;
float ffrac = 255.0f/256.0f;
float ftemp[4];
switch(bpmem.ztex2.type) {
case 0:
bits = 8;
ftemp[0] = ffrac/(256.0f*256.0f); ftemp[1] = ffrac/256.0f; ftemp[2] = ffrac; ftemp[3] = 0;
break;
case 1:
bits = 16;
ftemp[0] = 0; ftemp[1] = ffrac/(256.0f*256.0f); ftemp[2] = ffrac/256.0f; ftemp[3] = ffrac;
break;
case 2:
bits = 24;
ftemp[0] = ffrac/(256.0f*256.0f); ftemp[1] = ffrac/256.0f; ftemp[2] = ffrac; ftemp[3] = 0;
break;
}
//ERROR_LOG("pixel=%x,%x, bias=%x\n", bpmem.zcontrol.pixel_format, bpmem.ztex2.type, lastZBias);
SetPSConstant4fv(C_ZBIAS, ftemp);
SetPSConstant4f(C_ZBIAS+1, 0, 0, 0, (float)( (((int)lastZBias<<8)>>8))/16777216.0f);
}
// indirect incoming texture scales, update all!
if( s_bIndTexScaleChanged ) {
float f[8];
for(u32 i = 0; i < bpmem.genMode.numindstages; ++i) {
int srctexmap = bpmem.tevindref.getTexMap(i);
int texcoord = bpmem.tevindref.getTexCoord(i);
TCoordInfo& tc = bpmem.texcoords[texcoord];
f[2*i] = bpmem.texscale[i/2].getScaleS(i&1) * (float)(tc.s.scale_minus_1+1) / (float)(lastTexDims[srctexmap]&0xffff);
f[2*i+1] = bpmem.texscale[i/2].getScaleT(i&1) * (float)(tc.t.scale_minus_1+1) / (float)((lastTexDims[srctexmap]>>16)&0xfff);
PRIM_LOG("tex indscale%d: %f %f\n", i, f[2*i], f[2*i+1]);
}
SetPSConstant4fv(C_INDTEXSCALE, f);
if( bpmem.genMode.numindstages > 2 )
SetPSConstant4fv(C_INDTEXSCALE+1, &f[4]);
s_bIndTexScaleChanged = false;
}
if( s_nIndTexMtxChanged ) {
for(int i = 0; i < 3; ++i) {
if( s_nIndTexMtxChanged & (1<<i) ) {
int scale = ((u32)bpmem.indmtx[i].col0.s0<<0)|((u32)bpmem.indmtx[i].col1.s1<<2)|((u32)bpmem.indmtx[i].col2.s2<<4);
float fscale = powf(2.0f,(float)(scale-17)) / 1024.0f;
// xyz - static matrix
//TODO w - dynamic matrix scale / 256...... somehow / 4 works better
SetPSConstant4f(C_INDTEXMTX+2*i,
bpmem.indmtx[i].col0.ma * fscale, bpmem.indmtx[i].col1.mc * fscale, bpmem.indmtx[i].col2.me * fscale, fscale * 256.0f);
SetPSConstant4f(C_INDTEXMTX+2*i+1,
bpmem.indmtx[i].col0.mb * fscale, bpmem.indmtx[i].col1.md * fscale, bpmem.indmtx[i].col2.mf * fscale, fscale * 256.0f);
PRIM_LOG("indmtx%d: scale=%f, mat=(%f %f %f; %f %f %f)\n", i,
1024.0f*fscale, bpmem.indmtx[i].col0.ma * fscale, bpmem.indmtx[i].col1.mc * fscale, bpmem.indmtx[i].col2.me * fscale,
bpmem.indmtx[i].col0.mb * fscale, bpmem.indmtx[i].col1.md * fscale, bpmem.indmtx[i].col2.mf * fscale, fscale);
}
}
s_nIndTexMtxChanged = 0;
}
}
void PixelShaderMngr::SetColorChanged(int type, int num)
{
int r=bpmem.tevregs[num].low.a, a=bpmem.tevregs[num].low.b;
int b=bpmem.tevregs[num].high.a, g=bpmem.tevregs[num].high.b;
float* pf = &lastRGBAfull[type][num][0];
pf[0] = (float)r/255.0f;
pf[1] = (float)g/255.0f;
pf[2] = (float)b/255.0f;
pf[3] = (float)a/255.0f;
s_nColorsChanged[type] |= 1 << num;
PRIM_LOG("pixel %scolor%d: %f %f %f %f\n", type?"k":"", num, pf[0], pf[1], pf[2], pf[3]);
}
void PixelShaderMngr::SetAlpha(const AlphaFunc& alpha)
{
if( (alpha.hex&0xffff) != lastAlpha ) {
lastAlpha = (lastAlpha&~0xffff)|(alpha.hex&0xffff);
s_bAlphaChanged = true;
}
}
void PixelShaderMngr::SetDestAlpha(const ConstantAlpha& alpha)
{
if( alpha.alpha != (lastAlpha>>16) ) {
lastAlpha = (lastAlpha&~0xff0000)|((alpha.hex&0xff)<<16);
s_bAlphaChanged = true;
}
}
void PixelShaderMngr::SetTexDims(int texmapid, u32 width, u32 height, u32 wraps, u32 wrapt)
{
u32 wh = width|(height<<16)|(wraps<<28)|(wrapt<<30);
if( lastTexDims[texmapid] != wh ) {
lastTexDims[texmapid] = wh;
if( s_nTexDimsChanged[0] == -1 ) {
s_nTexDimsChanged[0] = s_nTexDimsChanged[1] = texmapid;
}
else {
if( s_nTexDimsChanged[0] > texmapid ) s_nTexDimsChanged[0] = texmapid;
else if( s_nTexDimsChanged[1] < texmapid ) s_nTexDimsChanged[1] = texmapid;
}
}
}
void PixelShaderMngr::SetZTetureBias(u32 bias)
{
if( lastZBias != bias ) {
s_bZBiasChanged = true;
lastZBias = bias;
}
}
void PixelShaderMngr::SetIndTexScaleChanged()
{
s_bIndTexScaleChanged = true;
}
void PixelShaderMngr::SetIndMatrixChanged(int matrixidx)
{
s_nIndTexMtxChanged |= 1 << matrixidx;
}
void PixelShaderMngr::SetGenModeChanged()
{
}
void PixelShaderMngr::SetTevCombinerChanged(int id)
{
}
void PixelShaderMngr::SetTevKSelChanged(int id)
{
}
void PixelShaderMngr::SetTevOrderChanged(int id)
{
}
void PixelShaderMngr::SetTevIndirectChanged(int id)
{
}
void PixelShaderMngr::SetZTetureOpChanged()
{
s_bZBiasChanged = true;
}
void PixelShaderMngr::SetTexturesUsed(u32 nonpow2tex)
{
if( s_texturemask != nonpow2tex ) {
u32 mask = s_texturemask ^ nonpow2tex;
for(int i = 0; i < 8; ++i) {
if( mask & (0x10101<<i) ) {
if( s_nTexDimsChanged[0] > i ) s_nTexDimsChanged[0] = i;
else if( s_nTexDimsChanged[1] < i ) s_nTexDimsChanged[1] = i;
}
}
s_texturemask = nonpow2tex;
}
}
void PixelShaderMngr::SetTexDimsChanged(int texmapid)
{
if( s_nTexDimsChanged[0] > texmapid ) s_nTexDimsChanged[0] = texmapid;
else if( s_nTexDimsChanged[1] < texmapid ) s_nTexDimsChanged[1] = texmapid;
SetIndTexScaleChanged();
}
void PixelShaderMngr::SetColorMatrix(const float* pmatrix, const float* pfConstAdd)
{
SetPSConstant4fv(C_COLORMATRIX, pmatrix);
SetPSConstant4fv(C_COLORMATRIX+1, pmatrix+4);
SetPSConstant4fv(C_COLORMATRIX+2, pmatrix+8);
SetPSConstant4fv(C_COLORMATRIX+3, pmatrix+12);
SetPSConstant4fv(C_COLORMATRIX+4, pfConstAdd);
}
GLuint PixelShaderMngr::GetColorMatrixProgram()
{
return s_ColorMatrixProgram;
}
void PixelShaderMngr::GetPixelShaderId(PixelShaderMngr::PIXELSHADERUID& uid)
{
u32 projtexcoords = 0;
for (u32 i = 0; i < bpmem.genMode.numtevstages+1; i++) {
if( bpmem.tevorders[i/2].getEnable(i&1) ) {
int texcoord = bpmem.tevorders[i/2].getTexCoord(i&1);
if( xfregs.texcoords[texcoord].texmtxinfo.projection )
projtexcoords |= 1<<texcoord;
}
}
u32 zbufrender = (Renderer::GetZBufferTarget()&&bpmem.zmode.updateenable)?1:0;
u32 zBufRenderToCol0 = Renderer::GetRenderMode()!=Renderer::RM_Normal;
uid.values[0] = (u32)bpmem.genMode.numtevstages|((u32)bpmem.genMode.numindstages<<4)|((u32)bpmem.genMode.numtexgens<<7)
|((u32)bpmem.dstalpha.enable<<11)|((u32)((bpmem.alphaFunc.hex>>16)&0xff)<<12)|(projtexcoords<<20)|((u32)bpmem.ztex2.op<<28)
|(zbufrender<<30)|(zBufRenderToCol0<<31);
s_curuid.values[0] = (s_curuid.values[0]&~0x0ff00000)|(projtexcoords<<20);
// swap table
for(int i = 0; i < 8; i += 2)
((u8*)&uid.values[1])[i/2] = (bpmem.tevksel[i].hex&0xf)|((bpmem.tevksel[i+1].hex&0xf)<<4);
uid.values[2] = s_texturemask;
int hdr = 3;
u32* pcurvalue = &uid.values[hdr];
for(u32 i = 0; i < bpmem.genMode.numtevstages+1; ++i) {
TevStageCombiner::ColorCombiner &cc = bpmem.combiners[i].colorC;
TevStageCombiner::AlphaCombiner &ac = bpmem.combiners[i].alphaC;
u32 val0 = cc.hex&0xffffff;
u32 val1 = ac.hex&0xffffff;
val0 |= bpmem.tevksel[i/2].getKC(i&1)<<24;
val1 |= bpmem.tevksel[i/2].getKA(i&1)<<24;
pcurvalue[0] = val0;
pcurvalue[1] = val1;
pcurvalue+=2;
}
for(u32 i = 0; i < (bpmem.genMode.numtevstages+1)/2; ++i) {
u32 val0, val1;
if( bpmem.tevorders[i].hex&0x40 ) val0 = bpmem.tevorders[i].hex&0x3ff;
else val0 = bpmem.tevorders[i].hex&0x380;
if( bpmem.tevorders[i].hex&0x40000 ) val1 = (bpmem.tevorders[i].hex&0x3ff000)>>12;
else val1 = (bpmem.tevorders[i].hex&0x380000)>>12;
switch(i % 3) {
case 0: pcurvalue[0] = val0|(val1<<10); break;
case 1: pcurvalue[0] |= val0<<20; pcurvalue[1] = val1; pcurvalue++; break;
case 2: pcurvalue[1] |= (val0<<10)|(val1<<20); pcurvalue++; break;
}
}
if( (bpmem.genMode.numtevstages+1)&1 ) { // odd
u32 val0;
if( bpmem.tevorders[bpmem.genMode.numtevstages/2].hex&0x40 ) val0 = bpmem.tevorders[bpmem.genMode.numtevstages/2].hex&0x3ff;
else val0 = bpmem.tevorders[bpmem.genMode.numtevstages/2].hex&0x380;
switch(bpmem.genMode.numtevstages % 3) {
case 0: pcurvalue[0] = val0; break;
case 1: pcurvalue[0] |= val0<<20; break;
case 2: pcurvalue[1] |= (val0<<10); pcurvalue++; break;
}
}
if( (bpmem.genMode.numtevstages % 3) != 2 )
++pcurvalue;
uid.tevstages = (u32)(pcurvalue-&uid.values[0]-hdr);
for(u32 i = 0; i < bpmem.genMode.numindstages; ++i) {
u32 val = bpmem.tevind[i].hex&0x1fffff; // 21 bits
switch(i%3) {
case 0: pcurvalue[0] = val; break;
case 1: pcurvalue[0] |= val<<21; pcurvalue[1] = val>>11; ++pcurvalue; break;
case 2: pcurvalue[0] |= val<<10; ++pcurvalue; break;
}
}
uid.indstages = (u32)(pcurvalue-&uid.values[0]-2-uid.tevstages);
}