dolphin/Source/Core/Common/x64Emitter.cpp

1808 lines
53 KiB
C++
Raw Normal View History

// Copyright 2013 Dolphin Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
2013-10-26 09:55:41 +00:00
#include <cinttypes>
#include "Common/Common.h"
#include "Common/CPUDetect.h"
#include "Common/Log.h"
#include "Common/x64Emitter.h"
namespace Gen
{
// TODO(ector): Add EAX special casing, for ever so slightly smaller code.
struct NormalOpDef
{
u8 toRm8, toRm32, fromRm8, fromRm32, imm8, imm32, simm8, ext;
};
static const NormalOpDef nops[11] =
{
{0x00, 0x01, 0x02, 0x03, 0x80, 0x81, 0x83, 0}, //ADD
{0x10, 0x11, 0x12, 0x13, 0x80, 0x81, 0x83, 2}, //ADC
{0x28, 0x29, 0x2A, 0x2B, 0x80, 0x81, 0x83, 5}, //SUB
{0x18, 0x19, 0x1A, 0x1B, 0x80, 0x81, 0x83, 3}, //SBB
{0x20, 0x21, 0x22, 0x23, 0x80, 0x81, 0x83, 4}, //AND
{0x08, 0x09, 0x0A, 0x0B, 0x80, 0x81, 0x83, 1}, //OR
{0x30, 0x31, 0x32, 0x33, 0x80, 0x81, 0x83, 6}, //XOR
{0x88, 0x89, 0x8A, 0x8B, 0xC6, 0xC7, 0xCC, 0}, //MOV
{0x84, 0x85, 0x84, 0x85, 0xF6, 0xF7, 0xCC, 0}, //TEST (to == from)
{0x38, 0x39, 0x3A, 0x3B, 0x80, 0x81, 0x83, 7}, //CMP
{0x86, 0x87, 0x86, 0x87, 0xCC, 0xCC, 0xCC, 7}, //XCHG
};
enum NormalSSEOps
{
sseCMP = 0xC2,
sseADD = 0x58, //ADD
sseSUB = 0x5C, //SUB
sseAND = 0x54, //AND
sseANDN = 0x55, //ANDN
sseOR = 0x56,
sseXOR = 0x57,
sseMUL = 0x59, //MUL
sseDIV = 0x5E, //DIV
sseMIN = 0x5D, //MIN
sseMAX = 0x5F, //MAX
sseCOMIS = 0x2F, //COMIS
sseUCOMIS = 0x2E, //UCOMIS
sseSQRT = 0x51, //SQRT
sseRSQRT = 0x52, //RSQRT (NO DOUBLE PRECISION!!!)
sseMOVAPfromRM = 0x28, //MOVAP from RM
sseMOVAPtoRM = 0x29, //MOVAP to RM
sseMOVUPfromRM = 0x10, //MOVUP from RM
sseMOVUPtoRM = 0x11, //MOVUP to RM
sseMASKMOVDQU = 0xF7,
sseLDDQU = 0xF0,
sseSHUF = 0xC6,
sseMOVNTDQ = 0xE7,
sseMOVNTP = 0x2B,
};
void XEmitter::SetCodePtr(u8 *ptr)
{
code = ptr;
}
const u8 *XEmitter::GetCodePtr() const
{
return code;
}
u8 *XEmitter::GetWritableCodePtr()
{
return code;
}
void XEmitter::ReserveCodeSpace(int bytes)
{
for (int i = 0; i < bytes; i++)
*code++ = 0xCC;
}
const u8 *XEmitter::AlignCode4()
{
int c = int((u64)code & 3);
if (c)
ReserveCodeSpace(4-c);
return code;
}
const u8 *XEmitter::AlignCode16()
{
int c = int((u64)code & 15);
if (c)
ReserveCodeSpace(16-c);
return code;
}
const u8 *XEmitter::AlignCodePage()
{
int c = int((u64)code & 4095);
if (c)
ReserveCodeSpace(4096-c);
return code;
}
void XEmitter::WriteModRM(int mod, int reg, int rm)
{
Write8((u8)((mod << 6) | ((reg & 7) << 3) | (rm & 7)));
}
void XEmitter::WriteSIB(int scale, int index, int base)
{
Write8((u8)((scale << 6) | ((index & 7) << 3) | (base & 7)));
}
void OpArg::WriteRex(XEmitter *emit, int opBits, int bits, int customOp) const
{
if (customOp == -1) customOp = operandReg;
#if _M_X86_64
u8 op = 0x40;
// REX.W (whether operation is a 64-bit operation)
if (opBits == 64) op |= 8;
// REX.R (whether ModR/M reg field refers to R8-R15.
if (customOp & 8) op |= 4;
// REX.X (whether ModR/M SIB index field refers to R8-R15)
if (indexReg & 8) op |= 2;
// REX.B (whether ModR/M rm or SIB base or opcode reg field refers to R8-R15)
if (offsetOrBaseReg & 8) op |= 1;
// Write REX if wr have REX bits to write, or if the operation accesses
// SIL, DIL, BPL, or SPL.
if (op != 0x40 ||
(scale == SCALE_NONE && bits == 8 && (offsetOrBaseReg & 0x10c) == 4) ||
(opBits == 8 && (customOp & 0x10c) == 4)) {
emit->Write8(op);
// Check the operation doesn't access AH, BH, CH, or DH.
_dbg_assert_(DYNA_REC, (offsetOrBaseReg & 0x100) == 0);
_dbg_assert_(DYNA_REC, (customOp & 0x100) == 0);
}
#else
// Make sure we don't perform a 64-bit operation.
_dbg_assert_(DYNA_REC, opBits != 64);
// Make sure the operation doesn't access R8-R15 registers.
_dbg_assert_(DYNA_REC, (customOp & 8) == 0);
_dbg_assert_(DYNA_REC, (indexReg & 8) == 0);
_dbg_assert_(DYNA_REC, (offsetOrBaseReg & 8) == 0);
// Make sure the operation doesn't access SIL, DIL, BPL, or SPL.
_dbg_assert_(DYNA_REC, opBits != 8 || (customOp & 0x10c) != 4);
_dbg_assert_(DYNA_REC, scale != SCALE_NONE || bits != 8 || (offsetOrBaseReg & 0x10c) != 4);
#endif
}
void OpArg::WriteVex(XEmitter* emit, int size, int packed, Gen::X64Reg regOp1, Gen::X64Reg regOp2) const
{
int R = !(regOp1 & 8);
int X = !(indexReg & 8);
int B = !(offsetOrBaseReg & 8);
// not so sure about this one...
int W = 0;
// aka map_select in AMD manuals
// only support VEX opcode map 1 for now (analog to secondary opcode map)
int mmmmm = 1;
int vvvv = (regOp2 == X64Reg::INVALID_REG) ? 0xf : (regOp2 ^ 0xf);
int L = size == 256;
int pp = (packed << 1) | (size == 64);
// do we need any VEX fields that only appear in the three-byte form?
if (X == 1 && B == 1 && W == 0 && mmmmm == 1)
{
u8 RvvvvLpp = (R << 7) | (vvvv << 3) | (L << 1) | pp;
emit->Write8(0xC5);
emit->Write8(RvvvvLpp);
}
else
{
u8 RXBmmmmm = (R << 7) | (X << 6) | (B << 5) | mmmmm;
u8 WvvvvLpp = (W << 7) | (vvvv << 3) | (L << 1) | pp;
emit->Write8(0xC4);
emit->Write8(RXBmmmmm);
emit->Write8(WvvvvLpp);
}
}
void OpArg::WriteRest(XEmitter *emit, int extraBytes, X64Reg _operandReg,
bool warn_64bit_offset) const
{
if (_operandReg == 0xff)
_operandReg = (X64Reg)this->operandReg;
int mod = 0;
int ireg = indexReg;
bool SIB = false;
int _offsetOrBaseReg = this->offsetOrBaseReg;
if (scale == SCALE_RIP) //Also, on 32-bit, just an immediate address
{
// Oh, RIP addressing.
_offsetOrBaseReg = 5;
emit->WriteModRM(0, _operandReg, _offsetOrBaseReg);
//TODO : add some checks
#if _M_X86_64
u64 ripAddr = (u64)emit->GetCodePtr() + 4 + extraBytes;
s64 distance = (s64)offset - (s64)ripAddr;
_assert_msg_(DYNA_REC,
(distance < 0x80000000LL &&
distance >= -0x80000000LL) ||
!warn_64bit_offset,
"WriteRest: op out of range (0x%" PRIx64 " uses 0x%" PRIx64 ")",
ripAddr, offset);
s32 offs = (s32)distance;
emit->Write32((u32)offs);
#else
emit->Write32((u32)offset);
#endif
return;
}
if (scale == 0)
{
// Oh, no memory, Just a reg.
mod = 3; //11
}
else if (scale >= 1)
{
//Ah good, no scaling.
if (scale == SCALE_ATREG && !((_offsetOrBaseReg & 7) == 4 || (_offsetOrBaseReg & 7) == 5))
{
//Okay, we're good. No SIB necessary.
int ioff = (int)offset;
if (ioff == 0)
{
mod = 0;
}
else if (ioff<-128 || ioff>127)
{
mod = 2; //32-bit displacement
}
else
{
mod = 1; //8-bit displacement
}
}
else if (scale >= SCALE_NOBASE_2 && scale <= SCALE_NOBASE_8)
{
SIB = true;
mod = 0;
_offsetOrBaseReg = 5;
}
else //if (scale != SCALE_ATREG)
{
if ((_offsetOrBaseReg & 7) == 4) //this would occupy the SIB encoding :(
{
//So we have to fake it with SIB encoding :(
SIB = true;
}
if (scale >= SCALE_1 && scale < SCALE_ATREG)
{
SIB = true;
}
if (scale == SCALE_ATREG && ((_offsetOrBaseReg & 7) == 4))
{
SIB = true;
ireg = _offsetOrBaseReg;
}
//Okay, we're fine. Just disp encoding.
//We need displacement. Which size?
int ioff = (int)(s64)offset;
if (ioff < -128 || ioff > 127)
{
mod = 2; //32-bit displacement
}
else
{
mod = 1; //8-bit displacement
}
}
}
// Okay. Time to do the actual writing
// ModRM byte:
int oreg = _offsetOrBaseReg;
if (SIB)
oreg = 4;
// TODO(ector): WTF is this if about? I don't remember writing it :-)
//if (RIP)
// oreg = 5;
emit->WriteModRM(mod, _operandReg&7, oreg&7);
if (SIB)
{
//SIB byte
int ss;
switch (scale)
{
case SCALE_NONE: _offsetOrBaseReg = 4; ss = 0; break; //RSP
case SCALE_1: ss = 0; break;
case SCALE_2: ss = 1; break;
case SCALE_4: ss = 2; break;
case SCALE_8: ss = 3; break;
case SCALE_NOBASE_2: ss = 1; break;
case SCALE_NOBASE_4: ss = 2; break;
case SCALE_NOBASE_8: ss = 3; break;
case SCALE_ATREG: ss = 0; break;
default: _assert_msg_(DYNA_REC, 0, "Invalid scale for SIB byte"); ss = 0; break;
}
emit->Write8((u8)((ss << 6) | ((ireg&7)<<3) | (_offsetOrBaseReg&7)));
}
if (mod == 1) //8-bit disp
{
emit->Write8((u8)(s8)(s32)offset);
}
else if (mod == 2 || (scale >= SCALE_NOBASE_2 && scale <= SCALE_NOBASE_8)) //32-bit disp
{
emit->Write32((u32)offset);
}
}
// W = operand extended width (1 if 64-bit)
// R = register# upper bit
// X = scale amnt upper bit
// B = base register# upper bit
void XEmitter::Rex(int w, int r, int x, int b)
{
w = w ? 1 : 0;
r = r ? 1 : 0;
x = x ? 1 : 0;
b = b ? 1 : 0;
u8 rx = (u8)(0x40 | (w << 3) | (r << 2) | (x << 1) | (b));
if (rx != 0x40)
Write8(rx);
}
void XEmitter::JMP(const u8 *addr, bool force5Bytes)
{
u64 fn = (u64)addr;
if (!force5Bytes)
{
s64 distance = (s64)(fn - ((u64)code + 2));
_assert_msg_(DYNA_REC, distance >= -0x80 && distance < 0x80,
"Jump target too far away, needs force5Bytes = true");
//8 bits will do
Write8(0xEB);
Write8((u8)(s8)distance);
}
else
{
s64 distance = (s64)(fn - ((u64)code + 5));
_assert_msg_(DYNA_REC,
distance >= -0x80000000LL && distance < 0x80000000LL,
"Jump target too far away, needs indirect register");
Write8(0xE9);
Write32((u32)(s32)distance);
}
}
void XEmitter::JMPptr(const OpArg &arg2)
{
OpArg arg = arg2;
if (arg.IsImm()) _assert_msg_(DYNA_REC, 0, "JMPptr - Imm argument");
arg.operandReg = 4;
arg.WriteRex(this, 0, 0);
Write8(0xFF);
arg.WriteRest(this);
}
//Can be used to trap other processors, before overwriting their code
// not used in dolphin
void XEmitter::JMPself()
{
Write8(0xEB);
Write8(0xFE);
}
void XEmitter::CALLptr(OpArg arg)
{
if (arg.IsImm()) _assert_msg_(DYNA_REC, 0, "CALLptr - Imm argument");
arg.operandReg = 2;
arg.WriteRex(this, 0, 0);
Write8(0xFF);
arg.WriteRest(this);
}
void XEmitter::CALL(const void *fnptr)
{
u64 distance = u64(fnptr) - (u64(code) + 5);
_assert_msg_(DYNA_REC,
distance < 0x0000000080000000ULL ||
distance >= 0xFFFFFFFF80000000ULL,
"CALL out of range (%p calls %p)", code, fnptr);
Write8(0xE8);
Write32(u32(distance));
}
FixupBranch XEmitter::J(bool force5bytes)
{
FixupBranch branch;
branch.type = force5bytes ? 1 : 0;
branch.ptr = code + (force5bytes ? 5 : 2);
if (!force5bytes)
{
//8 bits will do
Write8(0xEB);
Write8(0);
}
else
{
Write8(0xE9);
Write32(0);
}
return branch;
}
FixupBranch XEmitter::J_CC(CCFlags conditionCode, bool force5bytes)
{
FixupBranch branch;
branch.type = force5bytes ? 1 : 0;
branch.ptr = code + (force5bytes ? 6 : 2);
if (!force5bytes)
{
//8 bits will do
Write8(0x70 + conditionCode);
Write8(0);
}
else
{
Write8(0x0F);
Write8(0x80 + conditionCode);
Write32(0);
}
return branch;
}
void XEmitter::J_CC(CCFlags conditionCode, const u8 * addr, bool force5Bytes)
{
u64 fn = (u64)addr;
if (!force5Bytes)
{
s64 distance = (s64)(fn - ((u64)code + 2));
_assert_msg_(DYNA_REC, distance >= -0x80 && distance < 0x80, "Jump target too far away, needs force5Bytes = true");
//8 bits will do
Write8(0x70 + conditionCode);
Write8((u8)(s8)distance);
}
else
{
s64 distance = (s64)(fn - ((u64)code + 6));
_assert_msg_(DYNA_REC,
distance >= -0x80000000LL && distance < 0x80000000LL,
"Jump target too far away, needs indirect register");
Write8(0x0F);
Write8(0x80 + conditionCode);
Write32((u32)(s32)distance);
}
}
void XEmitter::SetJumpTarget(const FixupBranch &branch)
{
if (branch.type == 0)
{
s64 distance = (s64)(code - branch.ptr);
_assert_msg_(DYNA_REC, distance >= -0x80 && distance < 0x80, "Jump target too far away, needs force5Bytes = true");
branch.ptr[-1] = (u8)(s8)distance;
}
else if (branch.type == 1)
{
s64 distance = (s64)(code - branch.ptr);
_assert_msg_(DYNA_REC, distance >= -0x80000000LL && distance < 0x80000000LL, "Jump target too far away, needs indirect register");
((s32*)branch.ptr)[-1] = (s32)distance;
}
}
// INC/DEC considered harmful on newer CPUs due to partial flag set.
// Use ADD, SUB instead.
/*
void XEmitter::INC(int bits, OpArg arg)
{
if (arg.IsImm()) _assert_msg_(DYNA_REC, 0, "INC - Imm argument");
arg.operandReg = 0;
if (bits == 16) {Write8(0x66);}
arg.WriteRex(this, bits, bits);
Write8(bits == 8 ? 0xFE : 0xFF);
arg.WriteRest(this);
}
void XEmitter::DEC(int bits, OpArg arg)
{
if (arg.IsImm()) _assert_msg_(DYNA_REC, 0, "DEC - Imm argument");
arg.operandReg = 1;
if (bits == 16) {Write8(0x66);}
arg.WriteRex(this, bits, bits);
Write8(bits == 8 ? 0xFE : 0xFF);
arg.WriteRest(this);
}
*/
//Single byte opcodes
//There is no PUSHAD/POPAD in 64-bit mode.
void XEmitter::INT3() {Write8(0xCC);}
void XEmitter::RET() {Write8(0xC3);}
void XEmitter::RET_FAST() {Write8(0xF3); Write8(0xC3);} //two-byte return (rep ret) - recommended by AMD optimization manual for the case of jumping to a ret
2014-04-23 19:15:09 +00:00
// The first sign of decadence: optimized NOPs.
void XEmitter::NOP(size_t size)
{
_dbg_assert_(DYNA_REC, (int)size > 0);
2014-04-23 19:15:09 +00:00
while (true)
{
switch (size)
{
case 0:
return;
case 1:
Write8(0x90);
2014-04-23 19:15:09 +00:00
return;
case 2:
Write8(0x66); Write8(0x90);
return;
case 3:
Write8(0x0F); Write8(0x1F); Write8(0x00);
return;
case 4:
Write8(0x0F); Write8(0x1F); Write8(0x40); Write8(0x00);
return;
case 5:
Write8(0x0F); Write8(0x1F); Write8(0x44); Write8(0x00);
Write8(0x00);
return;
case 6:
Write8(0x66); Write8(0x0F); Write8(0x1F); Write8(0x44);
Write8(0x00); Write8(0x00);
return;
case 7:
Write8(0x0F); Write8(0x1F); Write8(0x80); Write8(0x00);
Write8(0x00); Write8(0x00); Write8(0x00);
return;
case 8:
Write8(0x0F); Write8(0x1F); Write8(0x84); Write8(0x00);
Write8(0x00); Write8(0x00); Write8(0x00); Write8(0x00);
return;
case 9:
Write8(0x66); Write8(0x0F); Write8(0x1F); Write8(0x84);
Write8(0x00); Write8(0x00); Write8(0x00); Write8(0x00);
Write8(0x00);
return;
case 10:
Write8(0x66); Write8(0x66); Write8(0x0F); Write8(0x1F);
Write8(0x84); Write8(0x00); Write8(0x00); Write8(0x00);
Write8(0x00); Write8(0x00);
return;
default:
// Even though x86 instructions are allowed to be up to 15 bytes long,
// AMD advises against using NOPs longer than 11 bytes because they
// carry a performance penalty on CPUs older than AMD family 16h.
Write8(0x66); Write8(0x66); Write8(0x66); Write8(0x0F);
Write8(0x1F); Write8(0x84); Write8(0x00); Write8(0x00);
Write8(0x00); Write8(0x00); Write8(0x00);
size -= 11;
continue;
}
}
}
void XEmitter::PAUSE() {Write8(0xF3); NOP();} //use in tight spinloops for energy saving on some cpu
void XEmitter::CLC() {Write8(0xF8);} //clear carry
void XEmitter::CMC() {Write8(0xF5);} //flip carry
void XEmitter::STC() {Write8(0xF9);} //set carry
//TODO: xchg ah, al ???
void XEmitter::XCHG_AHAL()
{
Write8(0x86);
Write8(0xe0);
// alt. 86 c4
}
//These two can not be executed on early Intel 64-bit CPU:s, only on AMD!
void XEmitter::LAHF() {Write8(0x9F);}
void XEmitter::SAHF() {Write8(0x9E);}
void XEmitter::PUSHF() {Write8(0x9C);}
void XEmitter::POPF() {Write8(0x9D);}
void XEmitter::LFENCE() {Write8(0x0F); Write8(0xAE); Write8(0xE8);}
void XEmitter::MFENCE() {Write8(0x0F); Write8(0xAE); Write8(0xF0);}
void XEmitter::SFENCE() {Write8(0x0F); Write8(0xAE); Write8(0xF8);}
void XEmitter::WriteSimple1Byte(int bits, u8 byte, X64Reg reg)
{
if (bits == 16) {Write8(0x66);}
Rex(bits == 64, 0, 0, (int)reg >> 3);
Write8(byte + ((int)reg & 7));
}
void XEmitter::WriteSimple2Byte(int bits, u8 byte1, u8 byte2, X64Reg reg)
{
if (bits == 16) {Write8(0x66);}
Rex(bits==64, 0, 0, (int)reg >> 3);
Write8(byte1);
Write8(byte2 + ((int)reg & 7));
}
void XEmitter::CWD(int bits)
{
if (bits == 16) {Write8(0x66);}
Rex(bits == 64, 0, 0, 0);
Write8(0x99);
}
void XEmitter::CBW(int bits)
{
if (bits == 8) {Write8(0x66);}
Rex(bits == 32, 0, 0, 0);
Write8(0x98);
}
//Simple opcodes
//push/pop do not need wide to be 64-bit
void XEmitter::PUSH(X64Reg reg) {WriteSimple1Byte(32, 0x50, reg);}
void XEmitter::POP(X64Reg reg) {WriteSimple1Byte(32, 0x58, reg);}
void XEmitter::PUSH(int bits, const OpArg &reg)
{
if (reg.IsSimpleReg())
PUSH(reg.GetSimpleReg());
else if (reg.IsImm())
{
switch (reg.GetImmBits())
{
case 8:
Write8(0x6A);
Write8((u8)(s8)reg.offset);
break;
case 16:
Write8(0x66);
Write8(0x68);
Write16((u16)(s16)(s32)reg.offset);
break;
case 32:
Write8(0x68);
Write32((u32)reg.offset);
break;
default:
_assert_msg_(DYNA_REC, 0, "PUSH - Bad imm bits");
break;
}
}
else
{
if (bits == 16)
Write8(0x66);
reg.WriteRex(this, bits, bits);
Write8(0xFF);
reg.WriteRest(this, 0, (X64Reg)6);
}
}
void XEmitter::POP(int /*bits*/, const OpArg &reg)
{
if (reg.IsSimpleReg())
POP(reg.GetSimpleReg());
else
INT3();
}
void XEmitter::BSWAP(int bits, X64Reg reg)
{
if (bits >= 32)
{
WriteSimple2Byte(bits, 0x0F, 0xC8, reg);
}
else if (bits == 16)
{
ROL(16, R(reg), Imm8(8));
}
else if (bits == 8)
{
// Do nothing - can't bswap a single byte...
}
else
{
_assert_msg_(DYNA_REC, 0, "BSWAP - Wrong number of bits");
}
}
// Undefined opcode - reserved
// If we ever need a way to always cause a non-breakpoint hard exception...
void XEmitter::UD2()
{
Write8(0x0F);
Write8(0x0B);
}
void XEmitter::PREFETCH(PrefetchLevel level, OpArg arg)
{
if (arg.IsImm()) _assert_msg_(DYNA_REC, 0, "PREFETCH - Imm argument");;
arg.operandReg = (u8)level;
arg.WriteRex(this, 0, 0);
Write8(0x0F);
Write8(0x18);
arg.WriteRest(this);
}
void XEmitter::SETcc(CCFlags flag, OpArg dest)
{
if (dest.IsImm()) _assert_msg_(DYNA_REC, 0, "SETcc - Imm argument");
dest.operandReg = 0;
dest.WriteRex(this, 0, 0);
Write8(0x0F);
Write8(0x90 + (u8)flag);
dest.WriteRest(this);
}
void XEmitter::CMOVcc(int bits, X64Reg dest, OpArg src, CCFlags flag)
{
if (src.IsImm()) _assert_msg_(DYNA_REC, 0, "CMOVcc - Imm argument");
src.operandReg = dest;
src.WriteRex(this, bits, bits);
Write8(0x0F);
Write8(0x40 + (u8)flag);
src.WriteRest(this);
}
void XEmitter::WriteMulDivType(int bits, OpArg src, int ext)
{
if (src.IsImm()) _assert_msg_(DYNA_REC, 0, "WriteMulDivType - Imm argument");
src.operandReg = ext;
if (bits == 16) Write8(0x66);
src.WriteRex(this, bits, bits);
if (bits == 8)
{
Write8(0xF6);
}
else
{
Write8(0xF7);
}
src.WriteRest(this);
}
void XEmitter::MUL(int bits, OpArg src) {WriteMulDivType(bits, src, 4);}
void XEmitter::DIV(int bits, OpArg src) {WriteMulDivType(bits, src, 6);}
void XEmitter::IMUL(int bits, OpArg src) {WriteMulDivType(bits, src, 5);}
void XEmitter::IDIV(int bits, OpArg src) {WriteMulDivType(bits, src, 7);}
void XEmitter::NEG(int bits, OpArg src) {WriteMulDivType(bits, src, 3);}
void XEmitter::NOT(int bits, OpArg src) {WriteMulDivType(bits, src, 2);}
void XEmitter::WriteBitSearchType(int bits, X64Reg dest, OpArg src, u8 byte2)
{
if (src.IsImm()) _assert_msg_(DYNA_REC, 0, "WriteBitSearchType - Imm argument");
src.operandReg = (u8)dest;
if (bits == 16) Write8(0x66);
src.WriteRex(this, bits, bits);
Write8(0x0F);
Write8(byte2);
src.WriteRest(this);
}
void XEmitter::MOVNTI(int bits, OpArg dest, X64Reg src)
{
if (bits <= 16) _assert_msg_(DYNA_REC, 0, "MOVNTI - bits<=16");
WriteBitSearchType(bits, src, dest, 0xC3);
}
void XEmitter::BSF(int bits, X64Reg dest, OpArg src) {WriteBitSearchType(bits,dest,src,0xBC);} //bottom bit to top bit
void XEmitter::BSR(int bits, X64Reg dest, OpArg src) {WriteBitSearchType(bits,dest,src,0xBD);} //top bit to bottom bit
void XEmitter::MOVSX(int dbits, int sbits, X64Reg dest, OpArg src)
{
if (src.IsImm()) _assert_msg_(DYNA_REC, 0, "MOVSX - Imm argument");
if (dbits == sbits) {
MOV(dbits, R(dest), src);
return;
}
src.operandReg = (u8)dest;
if (dbits == 16) Write8(0x66);
src.WriteRex(this, dbits, sbits);
if (sbits == 8)
{
Write8(0x0F);
Write8(0xBE);
}
else if (sbits == 16)
{
Write8(0x0F);
Write8(0xBF);
}
else if (sbits == 32 && dbits == 64)
{
Write8(0x63);
}
else
{
Crash();
}
src.WriteRest(this);
}
void XEmitter::MOVZX(int dbits, int sbits, X64Reg dest, OpArg src)
{
if (src.IsImm()) _assert_msg_(DYNA_REC, 0, "MOVZX - Imm argument");
if (dbits == sbits) {
MOV(dbits, R(dest), src);
return;
}
src.operandReg = (u8)dest;
if (dbits == 16) Write8(0x66);
//the 32bit result is automatically zero extended to 64bit
src.WriteRex(this, dbits == 64 ? 32 : dbits, sbits);
if (sbits == 8)
{
Write8(0x0F);
Write8(0xB6);
}
else if (sbits == 16)
{
Write8(0x0F);
Write8(0xB7);
}
else if (sbits == 32 && dbits == 64)
{
Write8(0x8B);
}
else
{
Crash();
}
src.WriteRest(this);
}
2014-03-16 02:43:12 +00:00
void XEmitter::MOVBE(int bits, const OpArg& dest, const OpArg& src)
{
_assert_msg_(DYNA_REC, cpu_info.bMOVBE, "Generating MOVBE on a system that does not support it.");
if (bits == 8)
{
MOV(bits, dest, src);
return;
}
if (bits == 16)
Write8(0x66);
if (dest.IsSimpleReg())
{
_assert_msg_(DYNA_REC, !src.IsSimpleReg() && !src.IsImm(), "MOVBE: Loading from !mem");
src.WriteRex(this, bits, bits, dest.GetSimpleReg());
Write8(0x0F); Write8(0x38); Write8(0xF0);
src.WriteRest(this, 0, dest.GetSimpleReg());
}
else if (src.IsSimpleReg())
{
_assert_msg_(DYNA_REC, !dest.IsSimpleReg() && !dest.IsImm(), "MOVBE: Storing to !mem");
dest.WriteRex(this, bits, bits, src.GetSimpleReg());
Write8(0x0F); Write8(0x38); Write8(0xF1);
dest.WriteRest(this, 0, src.GetSimpleReg());
}
else
{
_assert_msg_(DYNA_REC, 0, "MOVBE: Not loading or storing to mem");
}
}
void XEmitter::LEA(int bits, X64Reg dest, OpArg src)
{
if (src.IsImm()) _assert_msg_(DYNA_REC, 0, "LEA - Imm argument");
src.operandReg = (u8)dest;
if (bits == 16) Write8(0x66); //TODO: performance warning
src.WriteRex(this, bits, bits);
Write8(0x8D);
src.WriteRest(this, 0, (X64Reg)0xFF, bits == 64);
}
//shift can be either imm8 or cl
void XEmitter::WriteShift(int bits, OpArg dest, OpArg &shift, int ext)
{
bool writeImm = false;
if (dest.IsImm())
{
_assert_msg_(DYNA_REC, 0, "WriteShift - can't shift imms");
}
if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) || (shift.IsImm() && shift.GetImmBits() != 8))
{
_assert_msg_(DYNA_REC, 0, "WriteShift - illegal argument");
}
dest.operandReg = ext;
if (bits == 16) Write8(0x66);
dest.WriteRex(this, bits, bits, 0);
if (shift.GetImmBits() == 8)
{
//ok an imm
u8 imm = (u8)shift.offset;
if (imm == 1)
{
Write8(bits == 8 ? 0xD0 : 0xD1);
}
else
{
writeImm = true;
Write8(bits == 8 ? 0xC0 : 0xC1);
}
}
else
{
Write8(bits == 8 ? 0xD2 : 0xD3);
}
dest.WriteRest(this, writeImm ? 1 : 0);
if (writeImm)
Write8((u8)shift.offset);
}
// large rotates and shift are slower on intel than amd
// intel likes to rotate by 1, and the op is smaller too
void XEmitter::ROL(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 0);}
void XEmitter::ROR(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 1);}
void XEmitter::RCL(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 2);}
void XEmitter::RCR(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 3);}
void XEmitter::SHL(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 4);}
void XEmitter::SHR(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 5);}
void XEmitter::SAR(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 7);}
// index can be either imm8 or register, don't use memory destination because it's slow
void XEmitter::WriteBitTest(int bits, OpArg &dest, OpArg &index, int ext)
{
if (dest.IsImm())
{
_assert_msg_(DYNA_REC, 0, "WriteBitTest - can't test imms");
}
if ((index.IsImm() && index.GetImmBits() != 8))
{
_assert_msg_(DYNA_REC, 0, "WriteBitTest - illegal argument");
}
if (bits == 16) Write8(0x66);
if (index.IsImm())
{
dest.WriteRex(this, bits, bits);
Write8(0x0F); Write8(0xBA);
dest.WriteRest(this, 1, (X64Reg)ext);
Write8((u8)index.offset);
}
else
{
X64Reg operand = index.GetSimpleReg();
dest.WriteRex(this, bits, bits, operand);
Write8(0x0F); Write8(0x83 + 8*ext);
dest.WriteRest(this, 1, operand);
}
}
void XEmitter::BT(int bits, OpArg dest, OpArg index) {WriteBitTest(bits, dest, index, 4);}
void XEmitter::BTS(int bits, OpArg dest, OpArg index) {WriteBitTest(bits, dest, index, 5);}
void XEmitter::BTR(int bits, OpArg dest, OpArg index) {WriteBitTest(bits, dest, index, 6);}
void XEmitter::BTC(int bits, OpArg dest, OpArg index) {WriteBitTest(bits, dest, index, 7);}
//shift can be either imm8 or cl
void XEmitter::SHRD(int bits, OpArg dest, OpArg src, OpArg shift)
{
if (dest.IsImm())
{
_assert_msg_(DYNA_REC, 0, "SHRD - can't use imms as destination");
}
if (!src.IsSimpleReg())
{
_assert_msg_(DYNA_REC, 0, "SHRD - must use simple register as source");
}
if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) || (shift.IsImm() && shift.GetImmBits() != 8))
{
_assert_msg_(DYNA_REC, 0, "SHRD - illegal shift");
}
if (bits == 16) Write8(0x66);
X64Reg operand = src.GetSimpleReg();
dest.WriteRex(this, bits, bits, operand);
if (shift.GetImmBits() == 8)
{
Write8(0x0F); Write8(0xAC);
dest.WriteRest(this, 1, operand);
Write8((u8)shift.offset);
}
else
{
Write8(0x0F); Write8(0xAD);
dest.WriteRest(this, 0, operand);
}
}
void XEmitter::SHLD(int bits, OpArg dest, OpArg src, OpArg shift)
{
if (dest.IsImm())
{
_assert_msg_(DYNA_REC, 0, "SHLD - can't use imms as destination");
}
if (!src.IsSimpleReg())
{
_assert_msg_(DYNA_REC, 0, "SHLD - must use simple register as source");
}
if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) || (shift.IsImm() && shift.GetImmBits() != 8))
{
_assert_msg_(DYNA_REC, 0, "SHLD - illegal shift");
}
if (bits == 16) Write8(0x66);
X64Reg operand = src.GetSimpleReg();
dest.WriteRex(this, bits, bits, operand);
if (shift.GetImmBits() == 8)
{
Write8(0x0F); Write8(0xA4);
dest.WriteRest(this, 1, operand);
Write8((u8)shift.offset);
}
else
{
Write8(0x0F); Write8(0xA5);
dest.WriteRest(this, 0, operand);
}
}
void OpArg::WriteSingleByteOp(XEmitter *emit, u8 op, X64Reg _operandReg, int bits)
{
if (bits == 16)
emit->Write8(0x66);
this->operandReg = (u8)_operandReg;
WriteRex(emit, bits, bits);
emit->Write8(op);
WriteRest(emit);
}
//operand can either be immediate or register
void OpArg::WriteNormalOp(XEmitter *emit, bool toRM, NormalOp op, const OpArg &operand, int bits) const
{
X64Reg _operandReg = (X64Reg)this->operandReg;
if (IsImm())
{
_assert_msg_(DYNA_REC, 0, "WriteNormalOp - Imm argument, wrong order");
}
if (bits == 16)
emit->Write8(0x66);
int immToWrite = 0;
if (operand.IsImm())
{
_operandReg = (X64Reg)0;
WriteRex(emit, bits, bits);
if (!toRM)
{
_assert_msg_(DYNA_REC, 0, "WriteNormalOp - Writing to Imm (!toRM)");
}
if (operand.scale == SCALE_IMM8 && bits == 8)
{
emit->Write8(nops[op].imm8);
immToWrite = 8;
}
else if ((operand.scale == SCALE_IMM16 && bits == 16) ||
(operand.scale == SCALE_IMM32 && bits == 32) ||
(operand.scale == SCALE_IMM32 && bits == 64))
{
emit->Write8(nops[op].imm32);
immToWrite = bits == 16 ? 16 : 32;
}
else if ((operand.scale == SCALE_IMM8 && bits == 16) ||
(operand.scale == SCALE_IMM8 && bits == 32) ||
(operand.scale == SCALE_IMM8 && bits == 64))
{
emit->Write8(nops[op].simm8);
immToWrite = 8;
}
else if (operand.scale == SCALE_IMM64 && bits == 64)
{
if (op == nrmMOV)
{
emit->Write8(0xB8 + (offsetOrBaseReg & 7));
emit->Write64((u64)operand.offset);
return;
}
_assert_msg_(DYNA_REC, 0, "WriteNormalOp - Only MOV can take 64-bit imm");
}
else
{
_assert_msg_(DYNA_REC, 0, "WriteNormalOp - Unhandled case");
}
_operandReg = (X64Reg)nops[op].ext; //pass extension in REG of ModRM
}
else
{
_operandReg = (X64Reg)operand.offsetOrBaseReg;
WriteRex(emit, bits, bits, _operandReg);
// mem/reg or reg/reg op
if (toRM)
{
emit->Write8(bits == 8 ? nops[op].toRm8 : nops[op].toRm32);
// _assert_msg_(DYNA_REC, code[-1] != 0xCC, "ARGH4");
}
else
{
emit->Write8(bits == 8 ? nops[op].fromRm8 : nops[op].fromRm32);
// _assert_msg_(DYNA_REC, code[-1] != 0xCC, "ARGH5");
}
}
WriteRest(emit, immToWrite>>3, _operandReg);
switch (immToWrite)
{
case 0:
break;
case 8:
emit->Write8((u8)operand.offset);
break;
case 16:
emit->Write16((u16)operand.offset);
break;
case 32:
emit->Write32((u32)operand.offset);
break;
default:
_assert_msg_(DYNA_REC, 0, "WriteNormalOp - Unhandled case");
}
}
void XEmitter::WriteNormalOp(XEmitter *emit, int bits, NormalOp op, const OpArg &a1, const OpArg &a2)
{
if (a1.IsImm())
{
//Booh! Can't write to an imm
_assert_msg_(DYNA_REC, 0, "WriteNormalOp - a1 cannot be imm");
return;
}
if (a2.IsImm())
{
a1.WriteNormalOp(emit, true, op, a2, bits);
}
else
{
if (a1.IsSimpleReg())
{
a2.WriteNormalOp(emit, false, op, a1, bits);
}
else
{
a1.WriteNormalOp(emit, true, op, a2, bits);
}
}
}
void XEmitter::ADD (int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(this, bits, nrmADD, a1, a2);}
void XEmitter::ADC (int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(this, bits, nrmADC, a1, a2);}
void XEmitter::SUB (int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(this, bits, nrmSUB, a1, a2);}
void XEmitter::SBB (int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(this, bits, nrmSBB, a1, a2);}
void XEmitter::AND (int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(this, bits, nrmAND, a1, a2);}
void XEmitter::OR (int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(this, bits, nrmOR , a1, a2);}
void XEmitter::XOR (int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(this, bits, nrmXOR, a1, a2);}
void XEmitter::MOV (int bits, const OpArg &a1, const OpArg &a2)
{
#ifdef _DEBUG
_assert_msg_(DYNA_REC, !a1.IsSimpleReg() || !a2.IsSimpleReg() || a1.GetSimpleReg() != a2.GetSimpleReg(), "Redundant MOV @ %p - bug in JIT?",
code);
#endif
WriteNormalOp(this, bits, nrmMOV, a1, a2);
}
void XEmitter::TEST(int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(this, bits, nrmTEST, a1, a2);}
void XEmitter::CMP (int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(this, bits, nrmCMP, a1, a2);}
void XEmitter::XCHG(int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(this, bits, nrmXCHG, a1, a2);}
void XEmitter::IMUL(int bits, X64Reg regOp, OpArg a1, OpArg a2)
{
if (bits == 8) {
_assert_msg_(DYNA_REC, 0, "IMUL - illegal bit size!");
return;
}
if (a1.IsImm()) {
_assert_msg_(DYNA_REC, 0, "IMUL - second arg cannot be imm!");
return;
}
if (!a2.IsImm())
{
_assert_msg_(DYNA_REC, 0, "IMUL - third arg must be imm!");
return;
}
if (bits == 16)
Write8(0x66);
a1.WriteRex(this, bits, bits, regOp);
if (a2.GetImmBits() == 8) {
Write8(0x6B);
a1.WriteRest(this, 1, regOp);
Write8((u8)a2.offset);
} else {
Write8(0x69);
if (a2.GetImmBits() == 16 && bits == 16) {
a1.WriteRest(this, 2, regOp);
Write16((u16)a2.offset);
} else if (a2.GetImmBits() == 32 &&
(bits == 32 || bits == 64)) {
a1.WriteRest(this, 4, regOp);
Write32((u32)a2.offset);
} else {
_assert_msg_(DYNA_REC, 0, "IMUL - unhandled case!");
}
}
}
void XEmitter::IMUL(int bits, X64Reg regOp, OpArg a)
{
if (bits == 8) {
_assert_msg_(DYNA_REC, 0, "IMUL - illegal bit size!");
return;
}
if (a.IsImm())
{
IMUL(bits, regOp, R(regOp), a) ;
return;
}
if (bits == 16)
Write8(0x66);
a.WriteRex(this, bits, bits, regOp);
Write8(0x0F);
Write8(0xAF);
a.WriteRest(this, 0, regOp);
}
void XEmitter::WriteSSEOp(int size, u8 sseOp, bool packed, X64Reg regOp, OpArg arg, int extrabytes)
{
if (size == 64 && packed)
Write8(0x66); //this time, override goes upwards
if (!packed)
Write8(size == 64 ? 0xF2 : 0xF3);
arg.operandReg = regOp;
arg.WriteRex(this, 0, 0);
Write8(0x0F);
Write8(sseOp);
arg.WriteRest(this, extrabytes);
}
void XEmitter::WriteAVXOp(int size, u8 sseOp, bool packed, X64Reg regOp, OpArg arg, int extrabytes)
{
WriteAVXOp(size, sseOp, packed, regOp, X64Reg::INVALID_REG, arg, extrabytes);
}
void XEmitter::WriteAVXOp(int size, u8 sseOp, bool packed, X64Reg regOp1, X64Reg regOp2, OpArg arg, int extrabytes)
{
arg.WriteVex(this, size, packed, regOp1, regOp2);
Write8(sseOp);
arg.WriteRest(this, extrabytes, regOp1);
}
void XEmitter::MOVD_xmm(X64Reg dest, const OpArg &arg) {WriteSSEOp(64, 0x6E, true, dest, arg, 0);}
void XEmitter::MOVD_xmm(const OpArg &arg, X64Reg src) {WriteSSEOp(64, 0x7E, true, src, arg, 0);}
void XEmitter::MOVQ_xmm(X64Reg dest, OpArg arg) {
#if _M_X86_64
// Alternate encoding
// This does not display correctly in MSVC's debugger, it thinks it's a MOVD
arg.operandReg = dest;
Write8(0x66);
arg.WriteRex(this, 64, 0);
Write8(0x0f);
Write8(0x6E);
arg.WriteRest(this, 0);
#else
arg.operandReg = dest;
Write8(0xF3);
Write8(0x0f);
Write8(0x7E);
arg.WriteRest(this, 0);
#endif
}
void XEmitter::MOVQ_xmm(OpArg arg, X64Reg src) {
if (arg.IsSimpleReg())
PanicAlert("Emitter: MOVQ_xmm doesn't support single registers as destination");
if (src > 7)
{
// Alternate encoding
// This does not display correctly in MSVC's debugger, it thinks it's a MOVD
arg.operandReg = src;
Write8(0x66);
arg.WriteRex(this, 64, 0);
Write8(0x0f);
Write8(0x7E);
arg.WriteRest(this, 0);
} else {
arg.operandReg = src;
arg.WriteRex(this, 0, 0);
Write8(0x66);
Write8(0x0f);
Write8(0xD6);
arg.WriteRest(this, 0);
}
}
void XEmitter::WriteMXCSR(OpArg arg, int ext)
{
if (arg.IsImm() || arg.IsSimpleReg())
_assert_msg_(DYNA_REC, 0, "MXCSR - invalid operand");
arg.operandReg = ext;
arg.WriteRex(this, 0, 0);
Write8(0x0F);
Write8(0xAE);
arg.WriteRest(this);
}
void XEmitter::STMXCSR(OpArg memloc) {WriteMXCSR(memloc, 3);}
void XEmitter::LDMXCSR(OpArg memloc) {WriteMXCSR(memloc, 2);}
void XEmitter::MOVNTDQ(OpArg arg, X64Reg regOp) {WriteSSEOp(64, sseMOVNTDQ, true, regOp, arg);}
void XEmitter::MOVNTPS(OpArg arg, X64Reg regOp) {WriteSSEOp(32, sseMOVNTP, true, regOp, arg);}
void XEmitter::MOVNTPD(OpArg arg, X64Reg regOp) {WriteSSEOp(64, sseMOVNTP, true, regOp, arg);}
void XEmitter::ADDSS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseADD, false, regOp, arg);}
void XEmitter::ADDSD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseADD, false, regOp, arg);}
void XEmitter::SUBSS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseSUB, false, regOp, arg);}
void XEmitter::SUBSD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseSUB, false, regOp, arg);}
void XEmitter::CMPSS(X64Reg regOp, OpArg arg, u8 compare) {WriteSSEOp(32, sseCMP, false, regOp, arg,1); Write8(compare);}
void XEmitter::CMPSD(X64Reg regOp, OpArg arg, u8 compare) {WriteSSEOp(64, sseCMP, false, regOp, arg,1); Write8(compare);}
void XEmitter::MULSS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseMUL, false, regOp, arg);}
void XEmitter::MULSD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseMUL, false, regOp, arg);}
void XEmitter::DIVSS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseDIV, false, regOp, arg);}
void XEmitter::DIVSD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseDIV, false, regOp, arg);}
void XEmitter::MINSS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseMIN, false, regOp, arg);}
void XEmitter::MINSD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseMIN, false, regOp, arg);}
void XEmitter::MAXSS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseMAX, false, regOp, arg);}
void XEmitter::MAXSD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseMAX, false, regOp, arg);}
void XEmitter::SQRTSS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseSQRT, false, regOp, arg);}
void XEmitter::SQRTSD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseSQRT, false, regOp, arg);}
void XEmitter::RSQRTSS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseRSQRT, false, regOp, arg);}
void XEmitter::ADDPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseADD, true, regOp, arg);}
void XEmitter::ADDPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseADD, true, regOp, arg);}
void XEmitter::SUBPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseSUB, true, regOp, arg);}
void XEmitter::SUBPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseSUB, true, regOp, arg);}
void XEmitter::CMPPS(X64Reg regOp, OpArg arg, u8 compare) {WriteSSEOp(32, sseCMP, true, regOp, arg,1); Write8(compare);}
void XEmitter::CMPPD(X64Reg regOp, OpArg arg, u8 compare) {WriteSSEOp(64, sseCMP, true, regOp, arg,1); Write8(compare);}
void XEmitter::ANDPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseAND, true, regOp, arg);}
void XEmitter::ANDPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseAND, true, regOp, arg);}
void XEmitter::ANDNPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseANDN, true, regOp, arg);}
void XEmitter::ANDNPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseANDN, true, regOp, arg);}
void XEmitter::ORPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseOR, true, regOp, arg);}
void XEmitter::ORPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseOR, true, regOp, arg);}
void XEmitter::XORPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseXOR, true, regOp, arg);}
void XEmitter::XORPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseXOR, true, regOp, arg);}
void XEmitter::MULPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseMUL, true, regOp, arg);}
void XEmitter::MULPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseMUL, true, regOp, arg);}
void XEmitter::DIVPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseDIV, true, regOp, arg);}
void XEmitter::DIVPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseDIV, true, regOp, arg);}
void XEmitter::MINPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseMIN, true, regOp, arg);}
void XEmitter::MINPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseMIN, true, regOp, arg);}
void XEmitter::MAXPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseMAX, true, regOp, arg);}
void XEmitter::MAXPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseMAX, true, regOp, arg);}
void XEmitter::SQRTPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseSQRT, true, regOp, arg);}
void XEmitter::SQRTPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseSQRT, true, regOp, arg);}
void XEmitter::RSQRTPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseRSQRT, true, regOp, arg);}
void XEmitter::SHUFPS(X64Reg regOp, OpArg arg, u8 shuffle) {WriteSSEOp(32, sseSHUF, true, regOp, arg,1); Write8(shuffle);}
void XEmitter::SHUFPD(X64Reg regOp, OpArg arg, u8 shuffle) {WriteSSEOp(64, sseSHUF, true, regOp, arg,1); Write8(shuffle);}
void XEmitter::COMISS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseCOMIS, true, regOp, arg);} //weird that these should be packed
void XEmitter::COMISD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseCOMIS, true, regOp, arg);} //ordered
void XEmitter::UCOMISS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseUCOMIS, true, regOp, arg);} //unordered
void XEmitter::UCOMISD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseUCOMIS, true, regOp, arg);}
void XEmitter::MOVAPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseMOVAPfromRM, true, regOp, arg);}
void XEmitter::MOVAPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseMOVAPfromRM, true, regOp, arg);}
void XEmitter::MOVAPS(OpArg arg, X64Reg regOp) {WriteSSEOp(32, sseMOVAPtoRM, true, regOp, arg);}
void XEmitter::MOVAPD(OpArg arg, X64Reg regOp) {WriteSSEOp(64, sseMOVAPtoRM, true, regOp, arg);}
void XEmitter::MOVUPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseMOVUPfromRM, true, regOp, arg);}
void XEmitter::MOVUPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseMOVUPfromRM, true, regOp, arg);}
void XEmitter::MOVUPS(OpArg arg, X64Reg regOp) {WriteSSEOp(32, sseMOVUPtoRM, true, regOp, arg);}
void XEmitter::MOVUPD(OpArg arg, X64Reg regOp) {WriteSSEOp(64, sseMOVUPtoRM, true, regOp, arg);}
void XEmitter::MOVSS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseMOVUPfromRM, false, regOp, arg);}
void XEmitter::MOVSD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseMOVUPfromRM, false, regOp, arg);}
void XEmitter::MOVSS(OpArg arg, X64Reg regOp) {WriteSSEOp(32, sseMOVUPtoRM, false, regOp, arg);}
void XEmitter::MOVSD(OpArg arg, X64Reg regOp) {WriteSSEOp(64, sseMOVUPtoRM, false, regOp, arg);}
void XEmitter::CVTPS2PD(X64Reg regOp, OpArg arg) {WriteSSEOp(32, 0x5A, true, regOp, arg);}
void XEmitter::CVTPD2PS(X64Reg regOp, OpArg arg) {WriteSSEOp(64, 0x5A, true, regOp, arg);}
void XEmitter::CVTSD2SS(X64Reg regOp, OpArg arg) {WriteSSEOp(64, 0x5A, false, regOp, arg);}
void XEmitter::CVTSS2SD(X64Reg regOp, OpArg arg) {WriteSSEOp(32, 0x5A, false, regOp, arg);}
void XEmitter::CVTSD2SI(X64Reg regOp, OpArg arg) {WriteSSEOp(64, 0x2D, false, regOp, arg);}
void XEmitter::CVTDQ2PD(X64Reg regOp, OpArg arg) {WriteSSEOp(32, 0xE6, false, regOp, arg);}
void XEmitter::CVTDQ2PS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, 0x5B, true, regOp, arg);}
void XEmitter::CVTPD2DQ(X64Reg regOp, OpArg arg) {WriteSSEOp(64, 0xE6, false, regOp, arg);}
void XEmitter::CVTPS2DQ(X64Reg regOp, OpArg arg) {WriteSSEOp(64, 0x5B, true, regOp, arg);}
void XEmitter::CVTTSS2SI(X64Reg xregdest, OpArg arg) {WriteSSEOp(32, 0x2C, false, xregdest, arg);}
void XEmitter::CVTTPS2DQ(X64Reg xregdest, OpArg arg) {WriteSSEOp(32, 0x5B, false, xregdest, arg);}
void XEmitter::MASKMOVDQU(X64Reg dest, X64Reg src) {WriteSSEOp(64, sseMASKMOVDQU, true, dest, R(src));}
void XEmitter::MOVMSKPS(X64Reg dest, OpArg arg) {WriteSSEOp(32, 0x50, true, dest, arg);}
void XEmitter::MOVMSKPD(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x50, true, dest, arg);}
void XEmitter::LDDQU(X64Reg dest, OpArg arg) {WriteSSEOp(64, sseLDDQU, false, dest, arg);} // For integer data only
// THESE TWO ARE UNTESTED.
void XEmitter::UNPCKLPS(X64Reg dest, OpArg arg) {WriteSSEOp(32, 0x14, true, dest, arg);}
void XEmitter::UNPCKHPS(X64Reg dest, OpArg arg) {WriteSSEOp(32, 0x15, true, dest, arg);}
void XEmitter::UNPCKLPD(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x14, true, dest, arg);}
void XEmitter::UNPCKHPD(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x15, true, dest, arg);}
void XEmitter::MOVDDUP(X64Reg regOp, OpArg arg)
{
if (cpu_info.bSSE3)
{
WriteSSEOp(64, 0x12, false, regOp, arg); //SSE3 movddup
}
else
{
// Simulate this instruction with SSE2 instructions
if (!arg.IsSimpleReg(regOp))
MOVSD(regOp, arg);
UNPCKLPD(regOp, R(regOp));
}
}
//There are a few more left
// Also some integer instructions are missing
void XEmitter::PACKSSDW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x6B, true, dest, arg);}
void XEmitter::PACKSSWB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x63, true, dest, arg);}
//void PACKUSDW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x66, true, dest, arg);} // WRONG
void XEmitter::PACKUSWB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x67, true, dest, arg);}
void XEmitter::PUNPCKLBW(X64Reg dest, const OpArg &arg) {WriteSSEOp(64, 0x60, true, dest, arg);}
void XEmitter::PUNPCKLWD(X64Reg dest, const OpArg &arg) {WriteSSEOp(64, 0x61, true, dest, arg);}
void XEmitter::PUNPCKLDQ(X64Reg dest, const OpArg &arg) {WriteSSEOp(64, 0x62, true, dest, arg);}
//void PUNPCKLQDQ(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x60, true, dest, arg);}
void XEmitter::PSRLW(X64Reg reg, int shift) {
WriteSSEOp(64, 0x71, true, (X64Reg)2, R(reg));
Write8(shift);
}
void XEmitter::PSRLD(X64Reg reg, int shift) {
WriteSSEOp(64, 0x72, true, (X64Reg)2, R(reg));
Write8(shift);
}
void XEmitter::PSRLQ(X64Reg reg, int shift) {
WriteSSEOp(64, 0x73, true, (X64Reg)2, R(reg));
Write8(shift);
}
void XEmitter::PSRLQ(X64Reg reg, OpArg arg) {
WriteSSEOp(64, 0xd3, true, reg, arg);
}
void XEmitter::PSLLW(X64Reg reg, int shift) {
WriteSSEOp(64, 0x71, true, (X64Reg)6, R(reg));
Write8(shift);
}
void XEmitter::PSLLD(X64Reg reg, int shift) {
WriteSSEOp(64, 0x72, true, (X64Reg)6, R(reg));
Write8(shift);
}
void XEmitter::PSLLQ(X64Reg reg, int shift) {
WriteSSEOp(64, 0x73, true, (X64Reg)6, R(reg));
Write8(shift);
}
// WARNING not REX compatible
void XEmitter::PSRAW(X64Reg reg, int shift) {
if (reg > 7)
PanicAlert("The PSRAW-emitter does not support regs above 7");
Write8(0x66);
Write8(0x0f);
Write8(0x71);
Write8(0xE0 | reg);
Write8(shift);
}
// WARNING not REX compatible
void XEmitter::PSRAD(X64Reg reg, int shift) {
if (reg > 7)
PanicAlert("The PSRAD-emitter does not support regs above 7");
Write8(0x66);
Write8(0x0f);
Write8(0x72);
Write8(0xE0 | reg);
Write8(shift);
}
void XEmitter::PSHUFB(X64Reg dest, OpArg arg) {
if (!cpu_info.bSSSE3) {
PanicAlert("Trying to use PSHUFB on a system that doesn't support it. Bad programmer.");
}
Write8(0x66);
arg.operandReg = dest;
arg.WriteRex(this, 0, 0);
Write8(0x0f);
Write8(0x38);
Write8(0x00);
arg.WriteRest(this);
}
void XEmitter::PTEST(X64Reg dest, OpArg arg) {
if (!cpu_info.bSSE4_1) {
PanicAlert("Trying to use PTEST on a system that doesn't support it. Nobody hears your screams.");
}
Write8(0x66);
Write8(0x0f);
Write8(0x38);
Write8(0x17);
arg.operandReg = dest;
arg.WriteRest(this);
}
void XEmitter::PAND(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xDB, true, dest, arg);}
void XEmitter::PANDN(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xDF, true, dest, arg);}
void XEmitter::PXOR(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xEF, true, dest, arg);}
void XEmitter::POR(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xEB, true, dest, arg);}
void XEmitter::PADDB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xFC, true, dest, arg);}
void XEmitter::PADDW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xFD, true, dest, arg);}
void XEmitter::PADDD(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xFE, true, dest, arg);}
void XEmitter::PADDQ(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xD4, true, dest, arg);}
void XEmitter::PADDSB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xEC, true, dest, arg);}
void XEmitter::PADDSW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xED, true, dest, arg);}
void XEmitter::PADDUSB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xDC, true, dest, arg);}
void XEmitter::PADDUSW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xDD, true, dest, arg);}
void XEmitter::PSUBB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xF8, true, dest, arg);}
void XEmitter::PSUBW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xF9, true, dest, arg);}
void XEmitter::PSUBD(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xFA, true, dest, arg);}
void XEmitter::PSUBQ(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xFB, true, dest, arg);}
void XEmitter::PSUBSB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xE8, true, dest, arg);}
void XEmitter::PSUBSW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xE9, true, dest, arg);}
void XEmitter::PSUBUSB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xD8, true, dest, arg);}
void XEmitter::PSUBUSW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xD9, true, dest, arg);}
void XEmitter::PAVGB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xE0, true, dest, arg);}
void XEmitter::PAVGW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xE3, true, dest, arg);}
void XEmitter::PCMPEQB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x74, true, dest, arg);}
void XEmitter::PCMPEQW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x75, true, dest, arg);}
void XEmitter::PCMPEQD(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x76, true, dest, arg);}
void XEmitter::PCMPGTB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x64, true, dest, arg);}
void XEmitter::PCMPGTW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x65, true, dest, arg);}
void XEmitter::PCMPGTD(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x66, true, dest, arg);}
void XEmitter::PEXTRW(X64Reg dest, OpArg arg, u8 subreg) {WriteSSEOp(64, 0xC5, true, dest, arg); Write8(subreg);}
void XEmitter::PINSRW(X64Reg dest, OpArg arg, u8 subreg) {WriteSSEOp(64, 0xC4, true, dest, arg); Write8(subreg);}
void XEmitter::PMADDWD(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xF5, true, dest, arg); }
void XEmitter::PSADBW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xF6, true, dest, arg);}
void XEmitter::PMAXSW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xEE, true, dest, arg); }
void XEmitter::PMAXUB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xDE, true, dest, arg); }
void XEmitter::PMINSW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xEA, true, dest, arg); }
void XEmitter::PMINUB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xDA, true, dest, arg); }
void XEmitter::PMOVMSKB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xD7, true, dest, arg); }
void XEmitter::PSHUFLW(X64Reg regOp, OpArg arg, u8 shuffle) {WriteSSEOp(64, 0x70, false, regOp, arg, 1); Write8(shuffle);}
// VEX
void XEmitter::VADDSD(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(64, sseADD, false, regOp1, regOp2, arg);}
void XEmitter::VSUBSD(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(64, sseSUB, false, regOp1, regOp2, arg);}
void XEmitter::VMULSD(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(64, sseMUL, false, regOp1, regOp2, arg);}
void XEmitter::VDIVSD(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(64, sseDIV, false, regOp1, regOp2, arg);}
void XEmitter::VSQRTSD(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(64, sseSQRT, false, regOp1, regOp2, arg);}
void XEmitter::VPAND(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(64, sseAND, false, regOp1, regOp2, arg);}
void XEmitter::VPANDN(X64Reg regOp1, X64Reg regOp2, OpArg arg) {WriteAVXOp(64, sseANDN, false, regOp1, regOp2, arg);}
// Prefixes
void XEmitter::LOCK() { Write8(0xF0); }
void XEmitter::REP() { Write8(0xF3); }
void XEmitter::REPNE() { Write8(0xF2); }
void XEmitter::FWAIT()
{
Write8(0x9B);
}
// TODO: make this more generic
void XEmitter::WriteFloatLoadStore(int bits, FloatOp op, OpArg arg)
{
int mf = 0;
switch (bits) {
case 32: mf = 0; break;
case 64: mf = 2; break;
default: _assert_msg_(DYNA_REC, 0, "WriteFloatLoadStore: bits is not 32 or 64");
}
Write8(0xd9 | (mf << 1));
// x87 instructions use the reg field of the ModR/M byte as opcode:
arg.WriteRest(this, 0, (X64Reg) op);
}
void XEmitter::FLD(int bits, OpArg src) {WriteFloatLoadStore(bits, floatLD, src);}
void XEmitter::FST(int bits, OpArg dest) {WriteFloatLoadStore(bits, floatST, dest);}
void XEmitter::FSTP(int bits, OpArg dest) {WriteFloatLoadStore(bits, floatSTP, dest);}
void XEmitter::FNSTSW_AX() { Write8(0xDF); Write8(0xE0); }
void XEmitter::RTDSC() { Write8(0x0F); Write8(0x31); }
// helper routines for setting pointers
void XEmitter::CallCdeclFunction3(void* fnptr, u32 arg0, u32 arg1, u32 arg2)
{
using namespace Gen;
#if _M_X86_64
#ifdef _MSC_VER
MOV(32, R(RCX), Imm32(arg0));
MOV(32, R(RDX), Imm32(arg1));
MOV(32, R(R8), Imm32(arg2));
CALL(fnptr);
#else
MOV(32, R(RDI), Imm32(arg0));
MOV(32, R(RSI), Imm32(arg1));
MOV(32, R(RDX), Imm32(arg2));
CALL(fnptr);
#endif
#else
ABI_AlignStack(3 * 4);
PUSH(32, Imm32(arg2));
PUSH(32, Imm32(arg1));
PUSH(32, Imm32(arg0));
CALL(fnptr);
#ifdef _WIN32
// don't inc stack
#else
ABI_RestoreStack(3 * 4);
#endif
#endif
}
void XEmitter::CallCdeclFunction4(void* fnptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3)
{
using namespace Gen;
#if _M_X86_64
#ifdef _MSC_VER
MOV(32, R(RCX), Imm32(arg0));
MOV(32, R(RDX), Imm32(arg1));
MOV(32, R(R8), Imm32(arg2));
MOV(32, R(R9), Imm32(arg3));
CALL(fnptr);
#else
MOV(32, R(RDI), Imm32(arg0));
MOV(32, R(RSI), Imm32(arg1));
MOV(32, R(RDX), Imm32(arg2));
MOV(32, R(RCX), Imm32(arg3));
CALL(fnptr);
#endif
#else
ABI_AlignStack(4 * 4);
PUSH(32, Imm32(arg3));
PUSH(32, Imm32(arg2));
PUSH(32, Imm32(arg1));
PUSH(32, Imm32(arg0));
CALL(fnptr);
#ifdef _WIN32
// don't inc stack
#else
ABI_RestoreStack(4 * 4);
#endif
#endif
}
void XEmitter::CallCdeclFunction5(void* fnptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4)
{
using namespace Gen;
#if _M_X86_64
#ifdef _MSC_VER
MOV(32, R(RCX), Imm32(arg0));
MOV(32, R(RDX), Imm32(arg1));
MOV(32, R(R8), Imm32(arg2));
MOV(32, R(R9), Imm32(arg3));
MOV(32, MDisp(RSP, 0x20), Imm32(arg4));
CALL(fnptr);
#else
MOV(32, R(RDI), Imm32(arg0));
MOV(32, R(RSI), Imm32(arg1));
MOV(32, R(RDX), Imm32(arg2));
MOV(32, R(RCX), Imm32(arg3));
MOV(32, R(R8), Imm32(arg4));
CALL(fnptr);
#endif
#else
ABI_AlignStack(5 * 4);
PUSH(32, Imm32(arg4));
PUSH(32, Imm32(arg3));
PUSH(32, Imm32(arg2));
PUSH(32, Imm32(arg1));
PUSH(32, Imm32(arg0));
CALL(fnptr);
#ifdef _WIN32
// don't inc stack
#else
ABI_RestoreStack(5 * 4);
#endif
#endif
}
void XEmitter::CallCdeclFunction6(void* fnptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4, u32 arg5)
{
using namespace Gen;
#if _M_X86_64
#ifdef _MSC_VER
MOV(32, R(RCX), Imm32(arg0));
MOV(32, R(RDX), Imm32(arg1));
MOV(32, R(R8), Imm32(arg2));
MOV(32, R(R9), Imm32(arg3));
MOV(32, MDisp(RSP, 0x20), Imm32(arg4));
MOV(32, MDisp(RSP, 0x28), Imm32(arg5));
CALL(fnptr);
#else
MOV(32, R(RDI), Imm32(arg0));
MOV(32, R(RSI), Imm32(arg1));
MOV(32, R(RDX), Imm32(arg2));
MOV(32, R(RCX), Imm32(arg3));
MOV(32, R(R8), Imm32(arg4));
MOV(32, R(R9), Imm32(arg5));
CALL(fnptr);
#endif
#else
ABI_AlignStack(6 * 4);
PUSH(32, Imm32(arg5));
PUSH(32, Imm32(arg4));
PUSH(32, Imm32(arg3));
PUSH(32, Imm32(arg2));
PUSH(32, Imm32(arg1));
PUSH(32, Imm32(arg0));
CALL(fnptr);
#ifdef _WIN32
// don't inc stack
#else
ABI_RestoreStack(6 * 4);
#endif
#endif
}
#if _M_X86_64
// See header
void XEmitter::___CallCdeclImport3(void* impptr, u32 arg0, u32 arg1, u32 arg2) {
MOV(32, R(RCX), Imm32(arg0));
MOV(32, R(RDX), Imm32(arg1));
MOV(32, R(R8), Imm32(arg2));
CALLptr(M(impptr));
}
void XEmitter::___CallCdeclImport4(void* impptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3) {
MOV(32, R(RCX), Imm32(arg0));
MOV(32, R(RDX), Imm32(arg1));
MOV(32, R(R8), Imm32(arg2));
MOV(32, R(R9), Imm32(arg3));
CALLptr(M(impptr));
}
void XEmitter::___CallCdeclImport5(void* impptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4) {
MOV(32, R(RCX), Imm32(arg0));
MOV(32, R(RDX), Imm32(arg1));
MOV(32, R(R8), Imm32(arg2));
MOV(32, R(R9), Imm32(arg3));
MOV(32, MDisp(RSP, 0x20), Imm32(arg4));
CALLptr(M(impptr));
}
void XEmitter::___CallCdeclImport6(void* impptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4, u32 arg5) {
MOV(32, R(RCX), Imm32(arg0));
MOV(32, R(RDX), Imm32(arg1));
MOV(32, R(R8), Imm32(arg2));
MOV(32, R(R9), Imm32(arg3));
MOV(32, MDisp(RSP, 0x20), Imm32(arg4));
MOV(32, MDisp(RSP, 0x28), Imm32(arg5));
CALLptr(M(impptr));
}
#endif
}