dolphin/Source/Plugins/Plugin_VideoOGL/Src/VertexLoader.cpp

1160 lines
42 KiB
C++
Raw Normal View History

// Copyright (C) 2003-2008 Dolphin Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/
#include "Globals.h"
#include <fstream>
#include <assert.h>
#include "x64Emitter.h"
#include "Render.h"
#include "VertexLoader.h"
#include "BPStructs.h"
#include "DataReader.h"
#include "VertexShaderManager.h"
#include "PixelShaderManager.h"
#include "TextureMngr.h"
#include "MemoryUtil.h"
#include <fstream>
#define MAX_BUFFER_SIZE 0x4000
// internal state for loading vertices
static u32 s_prevvbstride, s_prevcomponents; // previous state set
static u8 *s_pBaseBufferPointer = NULL;
static GLuint s_vboBuffers[0x40] = {0};
static int s_nCurVBOIndex = 0; // current free buffer
static GLenum s_prevprimitive = 0; // current primitive type
static vector< pair<int, int> > s_vStoredPrimitives; // every element, mode and count to be passed to glDrawArrays
static void (*fnSetupVertexPointers)() = NULL;
//these don't need to be saved
float posScale;
float tcScale[8];
int colElements[2];
float tcScaleU[8];
float tcScaleV[8];
int tcIndex;
int colIndex;
#ifndef _WIN32
#undef inline
#define inline
#endif
inline u8 ReadBuffer8()
{
return g_pDataReader->Read8();
}
inline u16 ReadBuffer16()
{
//PowerPC byte ordering :(
return g_pDataReader->Read16();
}
inline u32 ReadBuffer32()
{
//PowerPC byte ordering :(
return g_pDataReader->Read32();
}
inline float ReadBuffer32F()
{
u32 temp = g_pDataReader->Read32();
return *(float*)(&temp);
}
// ==============================================================================
// Direct
// ==============================================================================
static u8 s_curposmtx, s_curtexmtx[8];
static int s_texmtxwrite = 0, s_texmtxread = 0;
void LOADERDECL PosMtx_ReadDirect_UByte(void* _p)
{
s_curposmtx = ReadBuffer8()&0x3f;
PRIM_LOG("posmtx: %d, ", s_curposmtx);
}
void LOADERDECL PosMtx_Write(void* _p)
{
*VertexManager::s_pCurBufferPointer++ = s_curposmtx;
//*VertexManager::s_pCurBufferPointer++ = 0;
//*VertexManager::s_pCurBufferPointer++ = 0;
//*VertexManager::s_pCurBufferPointer++ = 0;
}
void LOADERDECL TexMtx_ReadDirect_UByte(void* _p)
{
s_curtexmtx[s_texmtxread] = ReadBuffer8()&0x3f;
PRIM_LOG("texmtx%d: %d, ", s_texmtxread, s_curtexmtx[s_texmtxread]);
s_texmtxread++;
}
void LOADERDECL TexMtx_Write_Float(void* _p)
{
*(float*)VertexManager::s_pCurBufferPointer = (float)s_curtexmtx[s_texmtxwrite++];
VertexManager::s_pCurBufferPointer += 4;
}
void LOADERDECL TexMtx_Write_Float2(void* _p)
{
((float*)VertexManager::s_pCurBufferPointer)[0] = 0;
((float*)VertexManager::s_pCurBufferPointer)[1] = (float)s_curtexmtx[s_texmtxwrite++];
VertexManager::s_pCurBufferPointer += 8;
}
void LOADERDECL TexMtx_Write_Short3(void* _p)
{
((s16*)VertexManager::s_pCurBufferPointer)[0] = 0;
((s16*)VertexManager::s_pCurBufferPointer)[1] = 0;
((s16*)VertexManager::s_pCurBufferPointer)[2] = s_curtexmtx[s_texmtxwrite++];
VertexManager::s_pCurBufferPointer += 6;
}
#include "VertexLoader_Position.h"
#include "VertexLoader_Normal.h"
#include "VertexLoader_Color.h"
#include "VertexLoader_TextCoord.h"
VertexLoader g_VertexLoaders[8];
#define COMPILED_CODE_SIZE 4096
VertexLoader::VertexLoader()
{
m_numPipelineStates = 0;
m_VertexSize = 0;
m_AttrDirty = 2;
VertexLoader_Normal::Init();
m_compiledCode = (u8 *)AllocateExecutableMemory(COMPILED_CODE_SIZE);
if (m_compiledCode) {
memset(m_compiledCode, 0, COMPILED_CODE_SIZE);
}
}
VertexLoader::~VertexLoader()
{
FreeMemoryPages(m_compiledCode, COMPILED_CODE_SIZE);
}
int VertexLoader::ComputeVertexSize()
{
if (m_AttrDirty < 2) {
if (m_VtxDesc.Hex0 == VertexManager::GetVtxDesc().Hex0 && (m_VtxDesc.Hex1&1)==(VertexManager::GetVtxDesc().Hex1&1))
return m_VertexSize;
m_VtxDesc.Hex = VertexManager::GetVtxDesc().Hex;
}
else {
// set anyway
m_VtxDesc.Hex = VertexManager::GetVtxDesc().Hex;
}
if( fnSetupVertexPointers != NULL && fnSetupVertexPointers == (void (*)())(void*)m_compiledCode )
VertexManager::Flush();
m_AttrDirty = 1;
m_VertexSize = 0;
// Position Matrix Index
if (m_VtxDesc.PosMatIdx)
m_VertexSize += 1;
// Texture matrix indices
if (m_VtxDesc.Tex0MatIdx) {m_VertexSize+=1; }
if (m_VtxDesc.Tex1MatIdx) {m_VertexSize+=1; }
if (m_VtxDesc.Tex2MatIdx) {m_VertexSize+=1; }
if (m_VtxDesc.Tex3MatIdx) {m_VertexSize+=1; }
if (m_VtxDesc.Tex4MatIdx) {m_VertexSize+=1; }
if (m_VtxDesc.Tex5MatIdx) {m_VertexSize+=1; }
if (m_VtxDesc.Tex6MatIdx) {m_VertexSize+=1; }
if (m_VtxDesc.Tex7MatIdx) {m_VertexSize+=1; }
switch (m_VtxDesc.Position) {
case NOT_PRESENT: {_assert_("Vertex descriptor without position!");} break;
case DIRECT:
{
switch (m_VtxAttr.PosFormat) {
case FORMAT_UBYTE:
case FORMAT_BYTE: m_VertexSize += m_VtxAttr.PosElements?3:2; break;
case FORMAT_USHORT:
case FORMAT_SHORT: m_VertexSize += m_VtxAttr.PosElements?6:4; break;
case FORMAT_FLOAT: m_VertexSize += m_VtxAttr.PosElements?12:8; break;
default: _assert_(0); break;
}
}
break;
case INDEX8:
m_VertexSize+=1;
break;
case INDEX16:
m_VertexSize+=2;
break;
}
if (m_VtxDesc.Normal != NOT_PRESENT)
m_VertexSize += VertexLoader_Normal::GetSize(m_VtxDesc.Normal, m_VtxAttr.NormalFormat, m_VtxAttr.NormalElements);
// Colors
int col[2] = {m_VtxDesc.Color0, m_VtxDesc.Color1};
for (int i = 0; i < 2; i++) {
switch (col[i])
{
case NOT_PRESENT:
break;
case DIRECT:
switch (m_VtxAttr.color[i].Comp)
{
case FORMAT_16B_565: m_VertexSize+=2; break;
case FORMAT_24B_888: m_VertexSize+=3; break;
case FORMAT_32B_888x: m_VertexSize+=4; break;
case FORMAT_16B_4444: m_VertexSize+=2; break;
case FORMAT_24B_6666: m_VertexSize+=3; break;
case FORMAT_32B_8888: m_VertexSize+=4; break;
default: _assert_(0); break;
}
break;
case INDEX8:
m_VertexSize+=1;
break;
case INDEX16:
m_VertexSize+=2;
break;
}
}
// TextureCoord
int tc[8] = {
m_VtxDesc.Tex0Coord, m_VtxDesc.Tex1Coord, m_VtxDesc.Tex2Coord, m_VtxDesc.Tex3Coord,
m_VtxDesc.Tex4Coord, m_VtxDesc.Tex5Coord, m_VtxDesc.Tex6Coord, m_VtxDesc.Tex7Coord,
};
for (int i = 0; i < 8; i++) {
switch (tc[i]) {
case NOT_PRESENT:
break;
case DIRECT:
{
switch (m_VtxAttr.texCoord[i].Format)
{
case FORMAT_UBYTE:
case FORMAT_BYTE: m_VertexSize += m_VtxAttr.texCoord[i].Elements?2:1; break;
case FORMAT_USHORT:
case FORMAT_SHORT: m_VertexSize += m_VtxAttr.texCoord[i].Elements?4:2; break;
case FORMAT_FLOAT: m_VertexSize += m_VtxAttr.texCoord[i].Elements?8:4; break;
default: _assert_(0); break;
}
}
break;
case INDEX8:
m_VertexSize+=1;
break;
case INDEX16:
m_VertexSize+=2;
break;
}
}
return m_VertexSize;
}
// Note the use of CallCdeclFunction3I etc.
// This is a horrible hack that is necessary because Opengl32.dll is based way, way above the 32-bit address space
// that is within reach of a CALL, and just doing &fn gives us these high uncallable addresses. So we want to grab
// the function pointers from the import table instead.
// This problem does not apply to glew functions, only core opengl32 functions.
DECLARE_IMPORT(glNormalPointer);
DECLARE_IMPORT(glVertexPointer);
DECLARE_IMPORT(glColorPointer);
DECLARE_IMPORT(glTexCoordPointer);
void VertexLoader::ProcessFormat()
{
using namespace Gen;
//_assert_( VertexManager::s_pCurBufferPointer == s_pBaseBufferPointer );
if (!m_AttrDirty ) {
if (m_VtxDesc.Hex0 == VertexManager::GetVtxDesc().Hex0 && (m_VtxDesc.Hex1&1)==(VertexManager::GetVtxDesc().Hex1&1))
// same
return;
m_VtxDesc.Hex = VertexManager::GetVtxDesc().Hex;
}
else {
// set anyway
m_VtxDesc.Hex = VertexManager::GetVtxDesc().Hex;
m_AttrDirty = 0;
}
DVSTARTPROFILE();
// Reset pipeline
m_VBStridePad = 0;
m_VBVertexStride = 0;
m_numPipelineStates = 0;
m_components = 0;
// m_VBVertexStride for texmtx and posmtx is computed later when writing
// Position Matrix Index
if (m_VtxDesc.PosMatIdx) {
m_PipelineStates[m_numPipelineStates++] = PosMtx_ReadDirect_UByte;
m_components |= VB_HAS_POSMTXIDX;
}
if (m_VtxDesc.Tex0MatIdx) {m_components|=VB_HAS_TEXMTXIDX0; WriteCall(TexMtx_ReadDirect_UByte); }
if (m_VtxDesc.Tex1MatIdx) {m_components|=VB_HAS_TEXMTXIDX1; WriteCall(TexMtx_ReadDirect_UByte); }
if (m_VtxDesc.Tex2MatIdx) {m_components|=VB_HAS_TEXMTXIDX2; WriteCall(TexMtx_ReadDirect_UByte); }
if (m_VtxDesc.Tex3MatIdx) {m_components|=VB_HAS_TEXMTXIDX3; WriteCall(TexMtx_ReadDirect_UByte); }
if (m_VtxDesc.Tex4MatIdx) {m_components|=VB_HAS_TEXMTXIDX4; WriteCall(TexMtx_ReadDirect_UByte); }
if (m_VtxDesc.Tex5MatIdx) {m_components|=VB_HAS_TEXMTXIDX5; WriteCall(TexMtx_ReadDirect_UByte); }
if (m_VtxDesc.Tex6MatIdx) {m_components|=VB_HAS_TEXMTXIDX6; WriteCall(TexMtx_ReadDirect_UByte); }
if (m_VtxDesc.Tex7MatIdx) {m_components|=VB_HAS_TEXMTXIDX7; WriteCall(TexMtx_ReadDirect_UByte); }
// Position
if (m_VtxDesc.Position != NOT_PRESENT)
m_VBVertexStride += 12;
switch (m_VtxDesc.Position) {
case NOT_PRESENT: {_assert_msg_(0,"Vertex descriptor without position!","WTF?");} break;
case DIRECT:
{
switch (m_VtxAttr.PosFormat) {
case FORMAT_UBYTE: WriteCall(Pos_ReadDirect_UByte); break;
case FORMAT_BYTE: WriteCall(Pos_ReadDirect_Byte); break;
case FORMAT_USHORT: WriteCall(Pos_ReadDirect_UShort); break;
case FORMAT_SHORT: WriteCall(Pos_ReadDirect_Short); break;
case FORMAT_FLOAT: WriteCall(Pos_ReadDirect_Float); break;
default: _assert_(0); break;
}
}
break;
case INDEX8:
switch (m_VtxAttr.PosFormat) {
case FORMAT_UBYTE: WriteCall(Pos_ReadIndex8_UByte); break; //WTF?
case FORMAT_BYTE: WriteCall(Pos_ReadIndex8_Byte); break;
case FORMAT_USHORT: WriteCall(Pos_ReadIndex8_UShort); break;
case FORMAT_SHORT: WriteCall(Pos_ReadIndex8_Short); break;
case FORMAT_FLOAT: WriteCall(Pos_ReadIndex8_Float); break;
default: _assert_(0); break;
}
break;
case INDEX16:
switch (m_VtxAttr.PosFormat) {
case FORMAT_UBYTE: WriteCall(Pos_ReadIndex16_UByte); break;
case FORMAT_BYTE: WriteCall(Pos_ReadIndex16_Byte); break;
case FORMAT_USHORT: WriteCall(Pos_ReadIndex16_UShort); break;
case FORMAT_SHORT: WriteCall(Pos_ReadIndex16_Short); break;
case FORMAT_FLOAT: WriteCall(Pos_ReadIndex16_Float); break;
default: _assert_(0); break;
}
break;
}
// Normals
if (m_VtxDesc.Normal != NOT_PRESENT) {
VertexLoader_Normal::index3 = m_VtxAttr.NormalIndex3 ? true : false;
unsigned int uSize = VertexLoader_Normal::GetSize(m_VtxDesc.Normal, m_VtxAttr.NormalFormat, m_VtxAttr.NormalElements);
TPipelineFunction pFunc = VertexLoader_Normal::GetFunction(m_VtxDesc.Normal, m_VtxAttr.NormalFormat, m_VtxAttr.NormalElements);
if (pFunc == 0)
{
char temp[256];
sprintf(temp,"%i %i %i", m_VtxDesc.Normal, m_VtxAttr.NormalFormat, m_VtxAttr.NormalElements);
SysMessage("VertexLoader_Normal::GetFunction returned zero!");
}
WriteCall(pFunc);
int sizePro=0;
switch (m_VtxAttr.NormalFormat)
{
case FORMAT_UBYTE: sizePro=1; break;
case FORMAT_BYTE: sizePro=1; break;
case FORMAT_USHORT: sizePro=2; break;
case FORMAT_SHORT: sizePro=2; break;
case FORMAT_FLOAT: sizePro=4; break;
default: _assert_(0); break;
}
m_VBVertexStride += sizePro * 3 * (m_VtxAttr.NormalElements?3:1);
int m_numNormals = (m_VtxAttr.NormalElements==1) ? NRM_THREE : NRM_ONE;
m_components |= VB_HAS_NRM0;
if (m_numNormals == NRM_THREE)
m_components |= VB_HAS_NRM1 | VB_HAS_NRM2;
}
// Colors
int col[2] = {m_VtxDesc.Color0, m_VtxDesc.Color1};
for (int i = 0; i < 2; i++) {
SetupColor(i,col[i], m_VtxAttr.color[i].Comp, m_VtxAttr.color[i].Elements);
if (col[i] != NOT_PRESENT )
m_VBVertexStride+=4;
}
// TextureCoord
int tc[8] = {
m_VtxDesc.Tex0Coord, m_VtxDesc.Tex1Coord, m_VtxDesc.Tex2Coord, m_VtxDesc.Tex3Coord,
m_VtxDesc.Tex4Coord, m_VtxDesc.Tex5Coord, m_VtxDesc.Tex6Coord, m_VtxDesc.Tex7Coord,
};
// Texture matrix indices (remove if corresponding texture coordinate isn't enabled)
for (int i = 0; i < 8; i++) {
SetupTexCoord(i, tc[i], m_VtxAttr.texCoord[i].Format, m_VtxAttr.texCoord[i].Elements, m_VtxAttr.texCoord[i].Frac);
if( m_components&(VB_HAS_TEXMTXIDX0<<i) ) {
if (tc[i] != NOT_PRESENT) {
// if texmtx is included, texcoord will always be 3 floats, z will be the texmtx index
WriteCall(m_VtxAttr.texCoord[i].Elements ? TexMtx_Write_Float : TexMtx_Write_Float2);
m_VBVertexStride += 12;
}
else {
WriteCall(TexMtx_Write_Short3);
m_VBVertexStride += 6; // still include the texture coordinate, but this time as 6 bytes
m_components |= VB_HAS_UV0 << i; // have to include since using now
}
}
else {
if (tc[i] != NOT_PRESENT)
m_VBVertexStride += 4 * (m_VtxAttr.texCoord[i].Elements?2:1);
}
if (tc[i] == NOT_PRESENT) {
// if there's more tex coords later, have to write a dummy call
int j = i+1;
for(; j < 8; ++j) {
if( tc[j] != NOT_PRESENT ) {
WriteCall(TexCoord_Read_Dummy); // important to get indices right!
break;
}
}
if( j == 8 && !((m_components&VB_HAS_TEXMTXIDXALL)&(VB_HAS_TEXMTXIDXALL<<(i+1))) ) // no more tex coords and tex matrices, so exit loop
break;
}
}
if( m_VtxDesc.PosMatIdx ) {
WriteCall(PosMtx_Write);
m_VBVertexStride += 1;
}
if( m_VBVertexStride & 3 ) {
// make sure all strides are at least divisible by 4 (some gfx cards experience a 3x speed boost)
m_VBStridePad = 4 - (m_VBVertexStride&3);
m_VBVertexStride += m_VBStridePad;
}
// compile the pointer set function
SetCodePtr(m_compiledCode);
Util::EmitPrologue(6);
//INT3();
int offset = 0;
// Position
if (m_VtxDesc.Position != NOT_PRESENT) {
CallCdeclFunction4_I(glVertexPointer, 3, GL_FLOAT, m_VBVertexStride, offset);
offset += 12;
}
// Normals
if (m_VtxDesc.Normal != NOT_PRESENT) {
switch (m_VtxAttr.NormalFormat) {
case FORMAT_UBYTE:
case FORMAT_BYTE:
CallCdeclFunction3_I(glNormalPointer, GL_BYTE, m_VBVertexStride, offset); offset += 3;
if (m_VtxAttr.NormalElements) {
CallCdeclFunction6((void *)glVertexAttribPointer, SHADER_NORM1_ATTRIB,3,GL_BYTE, GL_TRUE, m_VBVertexStride, offset); offset += 3;
CallCdeclFunction6((void *)glVertexAttribPointer, SHADER_NORM2_ATTRIB,3,GL_BYTE, GL_TRUE, m_VBVertexStride, offset); offset += 3;
}
break;
case FORMAT_USHORT:
case FORMAT_SHORT:
CallCdeclFunction3_I(glNormalPointer, GL_SHORT, m_VBVertexStride, offset); offset += 6;
if (m_VtxAttr.NormalElements) {
CallCdeclFunction6((void *)glVertexAttribPointer, SHADER_NORM1_ATTRIB,3,GL_SHORT, GL_TRUE, m_VBVertexStride, offset); offset += 6;
CallCdeclFunction6((void *)glVertexAttribPointer, SHADER_NORM2_ATTRIB,3,GL_SHORT, GL_TRUE, m_VBVertexStride, offset); offset += 6;
}
break;
case FORMAT_FLOAT:
CallCdeclFunction3_I(glNormalPointer, GL_FLOAT, m_VBVertexStride, offset); offset += 12;
if (m_VtxAttr.NormalElements) {
CallCdeclFunction6((void *)glVertexAttribPointer, SHADER_NORM1_ATTRIB,3,GL_FLOAT, GL_TRUE, m_VBVertexStride, offset); offset += 12;
CallCdeclFunction6((void *)glVertexAttribPointer, SHADER_NORM2_ATTRIB,3,GL_FLOAT, GL_TRUE, m_VBVertexStride, offset); offset += 12;
}
break;
default: _assert_(0); break;
}
}
for (int i = 0; i < 2; i++) {
if (col[i] != NOT_PRESENT ) {
if (i)
CallCdeclFunction4((void *)glSecondaryColorPointer, 4, GL_UNSIGNED_BYTE, m_VBVertexStride, offset);
else
CallCdeclFunction4_I(glColorPointer, 4, GL_UNSIGNED_BYTE, m_VBVertexStride, offset);
offset += 4;
}
}
// TextureCoord
for (int i = 0; i < 8; i++) {
if (tc[i] != NOT_PRESENT || (m_components&(VB_HAS_TEXMTXIDX0<<i)) ) {
int id = GL_TEXTURE0+i;
#ifdef _M_X64
#ifdef _MSC_VER
MOV(32, R(RCX), Imm32(id));
CALL((void *)glClientActiveTexture);
#else
MOV(32, R(RDI), Imm32(id));
CALL((void *)glClientActiveTexture);
#endif
#else
PUSH(32, Imm32(id));
CALL((void *)glClientActiveTexture);
// don't inc stack
#endif
if( m_components&(VB_HAS_TEXMTXIDX0<<i) ) {
if( tc[i] != NOT_PRESENT ) {
CallCdeclFunction4_I(glTexCoordPointer, 3, GL_FLOAT, m_VBVertexStride, offset);
offset += 12;
}
else {
CallCdeclFunction4_I(glTexCoordPointer, 3, GL_SHORT, m_VBVertexStride, offset);
offset += 6;
}
}
else {
CallCdeclFunction4_I(glTexCoordPointer, m_VtxAttr.texCoord[i].Elements?2:1, GL_FLOAT, m_VBVertexStride, offset);
offset += 4 * (m_VtxAttr.texCoord[i].Elements?2:1);
}
}
}
if (m_VtxDesc.PosMatIdx) {
CallCdeclFunction6((void *)glVertexAttribPointer, SHADER_POSMTX_ATTRIB,1,GL_UNSIGNED_BYTE, GL_FALSE, m_VBVertexStride, offset);
offset += 1;
}
_assert_(offset+m_VBStridePad == m_VBVertexStride);
Util::EmitEpilogue(6);
if (Gen::GetCodePtr()-(u8*)m_compiledCode > COMPILED_CODE_SIZE)
{
assert(0);
Crash();
}
SetCodePtr(0);
}
void VertexLoader::PrepareRun()
{
posScale = VertexManager::shiftLookup[m_VtxAttr.PosFrac];
if( m_components & VB_HAS_UVALL ) {
for (int i = 0; i < 8; i++) {
tcScaleU[i] = VertexManager::shiftLookup[m_VtxAttr.texCoord[i].Frac];
tcScaleV[i] = VertexManager::shiftLookup[m_VtxAttr.texCoord[i].Frac];
}
}
for (int i = 0; i < 2; i++)
colElements[i] = m_VtxAttr.color[i].Elements;
}
void VertexLoader::SetupColor(int num, int mode, int format, int elements)
{
// if COL0 not present, then embed COL1 into COL0
if( num == 1 && !(m_components & VB_HAS_COL0) ) num = 0;
m_components |= VB_HAS_COL0 << num;
switch (mode)
{
case NOT_PRESENT:
m_components &= ~(VB_HAS_COL0 << num);
break;
case DIRECT:
switch (format)
{
case FORMAT_16B_565: WriteCall(Color_ReadDirect_16b_565); break;
case FORMAT_24B_888: WriteCall(Color_ReadDirect_24b_888); break;
case FORMAT_32B_888x: WriteCall(Color_ReadDirect_32b_888x); break;
case FORMAT_16B_4444: WriteCall(Color_ReadDirect_16b_4444); break;
case FORMAT_24B_6666: WriteCall(Color_ReadDirect_24b_6666); break;
case FORMAT_32B_8888: WriteCall(Color_ReadDirect_32b_8888); break;
default: _assert_(0); break;
}
break;
case INDEX8:
switch (format)
{
case FORMAT_16B_565: WriteCall(Color_ReadIndex8_16b_565); break;
case FORMAT_24B_888: WriteCall(Color_ReadIndex8_24b_888); break;
case FORMAT_32B_888x: WriteCall(Color_ReadIndex8_32b_888x); break;
case FORMAT_16B_4444: WriteCall(Color_ReadIndex8_16b_4444); break;
case FORMAT_24B_6666: WriteCall(Color_ReadIndex8_24b_6666); break;
case FORMAT_32B_8888: WriteCall(Color_ReadIndex8_32b_8888); break;
default: _assert_(0); break;
}
break;
case INDEX16:
switch (format)
{
case FORMAT_16B_565: WriteCall(Color_ReadIndex16_16b_565); break;
case FORMAT_24B_888: WriteCall(Color_ReadIndex16_24b_888); break;
case FORMAT_32B_888x: WriteCall(Color_ReadIndex16_32b_888x); break;
case FORMAT_16B_4444: WriteCall(Color_ReadIndex16_16b_4444); break;
case FORMAT_24B_6666: WriteCall(Color_ReadIndex16_24b_6666); break;
case FORMAT_32B_8888: WriteCall(Color_ReadIndex16_32b_8888); break;
default: _assert_(0); break;
}
break;
}
}
void VertexLoader::SetupTexCoord(int num, int mode, int format, int elements, int _iFrac)
{
m_components |= VB_HAS_UV0 << num;
switch (mode)
{
case NOT_PRESENT:
m_components &= ~(VB_HAS_UV0 << num);
break;
case DIRECT:
switch (format)
{
case FORMAT_UBYTE: WriteCall(elements?TexCoord_ReadDirect_UByte2:TexCoord_ReadDirect_UByte1); break;
case FORMAT_BYTE: WriteCall(elements?TexCoord_ReadDirect_Byte2:TexCoord_ReadDirect_Byte1); break;
case FORMAT_USHORT: WriteCall(elements?TexCoord_ReadDirect_UShort2:TexCoord_ReadDirect_UShort1); break;
case FORMAT_SHORT: WriteCall(elements?TexCoord_ReadDirect_Short2:TexCoord_ReadDirect_Short1); break;
case FORMAT_FLOAT: WriteCall(elements?TexCoord_ReadDirect_Float2:TexCoord_ReadDirect_Float1); break;
default: _assert_(0); break;
}
break;
case INDEX8:
switch (format)
{
case FORMAT_UBYTE: WriteCall(elements?TexCoord_ReadIndex8_UByte2:TexCoord_ReadIndex8_UByte1); break;
case FORMAT_BYTE: WriteCall(elements?TexCoord_ReadIndex8_Byte2:TexCoord_ReadIndex8_Byte1); break;
case FORMAT_USHORT: WriteCall(elements?TexCoord_ReadIndex8_UShort2:TexCoord_ReadIndex8_UShort1); break;
case FORMAT_SHORT: WriteCall(elements?TexCoord_ReadIndex8_Short2:TexCoord_ReadIndex8_Short1); break;
case FORMAT_FLOAT: WriteCall(elements?TexCoord_ReadIndex8_Float2:TexCoord_ReadIndex8_Float1); break;
default: _assert_(0); break;
}
break;
case INDEX16:
switch (format)
{
case FORMAT_UBYTE: WriteCall(elements?TexCoord_ReadIndex16_UByte2:TexCoord_ReadIndex16_UByte1); break;
case FORMAT_BYTE: WriteCall(elements?TexCoord_ReadIndex16_Byte2:TexCoord_ReadIndex16_Byte1); break;
case FORMAT_USHORT: WriteCall(elements?TexCoord_ReadIndex16_UShort2:TexCoord_ReadIndex16_UShort1); break;
case FORMAT_SHORT: WriteCall(elements?TexCoord_ReadIndex16_Short2:TexCoord_ReadIndex16_Short1); break;
case FORMAT_FLOAT: WriteCall(elements?TexCoord_ReadIndex16_Float2:TexCoord_ReadIndex16_Float1); break;
default: _assert_(0);
}
break;
}
}
void VertexLoader::WriteCall(void (LOADERDECL *func)(void *))
{
m_PipelineStates[m_numPipelineStates++] = func;;
}
void VertexLoader::RunVertices(int primitive, int count)
{
if( count <= 0 )
return;
if( fnSetupVertexPointers != NULL && fnSetupVertexPointers != (void (*)())(void*)m_compiledCode )
VertexManager::Flush();
if( bpmem.genMode.cullmode == 3 && primitive < 5) {
// if cull mode is none, ignore triangles and quads
g_pDataReader->Skip(count*m_VertexSize);
return;
}
DVSTARTPROFILE();
ProcessFormat();
fnSetupVertexPointers = (void (*)())(void*)m_compiledCode;
if (s_prevcomponents != m_components) {
VertexManager::Flush();
// matrices
if ((m_components & VB_HAS_POSMTXIDX) != (s_prevcomponents&VB_HAS_POSMTXIDX)) {
if (m_components & VB_HAS_POSMTXIDX)
glEnableVertexAttribArray(SHADER_POSMTX_ATTRIB);
else
glDisableVertexAttribArray(SHADER_POSMTX_ATTRIB);
}
// normals
if ((m_components & VB_HAS_NRM0) != (s_prevcomponents&VB_HAS_NRM0)) {
if (m_components & VB_HAS_NRM0)
glEnableClientState(GL_NORMAL_ARRAY);
else
glDisableClientState(GL_NORMAL_ARRAY);
}
if ((m_components & VB_HAS_NRM1) != (s_prevcomponents&VB_HAS_NRM1)) {
if (m_components & VB_HAS_NRM1) {
glEnableVertexAttribArray(SHADER_NORM1_ATTRIB);
glEnableVertexAttribArray(SHADER_NORM2_ATTRIB);
}
else {
glDisableVertexAttribArray(SHADER_NORM1_ATTRIB);
glDisableVertexAttribArray(SHADER_NORM2_ATTRIB);
}
}
// color
for(int i = 0; i < 2; ++i) {
if ( (m_components & (VB_HAS_COL0 << i)) != (s_prevcomponents & (VB_HAS_COL0 << i)) ) {
if (m_components & (VB_HAS_COL0 << 0))
glEnableClientState(i?GL_SECONDARY_COLOR_ARRAY:GL_COLOR_ARRAY);
else
glDisableClientState(i?GL_SECONDARY_COLOR_ARRAY:GL_COLOR_ARRAY);
}
}
// tex
for (int i = 0; i < 8; ++i) {
if ((m_components&(VB_HAS_UV0<<i)) != (s_prevcomponents&(VB_HAS_UV0<<i))) {
glClientActiveTexture(GL_TEXTURE0+i);
if (m_components&(VB_HAS_UV0<<i))
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
else
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
}
}
s_prevcomponents = m_components;
s_prevvbstride = m_VBVertexStride;
}
PrepareRun();
// if strips or fans, make sure all vertices can fit in buffer, otherwise flush
int granularity = 1;
switch(primitive) {
case 3: // strip
case 4: // fan
if( VertexManager::GetRemainingSize() < 3*m_VBVertexStride )
VertexManager::Flush();
break;
case 6: // line strip
if( VertexManager::GetRemainingSize() < 2*m_VBVertexStride )
VertexManager::Flush();
break;
case 0: // quads
granularity = 4;
break;
case 2: // tris
granularity = 3;
break;
case 5: // lines
granularity = 2;
break;
}
int startv = 0, extraverts = 0;
for (int v = 0; v < count; v++) {
if( (v % granularity) == 0 ) {
if (VertexManager::GetRemainingSize() < granularity*m_VBVertexStride) {
u8* plastptr = VertexManager::s_pCurBufferPointer;
if( v-startv > 0 )
VertexManager::AddVertices(primitive, v-startv+extraverts);
VertexManager::Flush();
switch( primitive ) {
case 3: // triangle strip, copy last two vertices
// a little trick since we have to keep track of signs
if( v & 1 ) {
memcpy_gc(VertexManager::s_pCurBufferPointer, plastptr-2*m_VBVertexStride, m_VBVertexStride);
memcpy_gc(VertexManager::s_pCurBufferPointer+m_VBVertexStride, plastptr-m_VBVertexStride*2, 2*m_VBVertexStride);
VertexManager::s_pCurBufferPointer += m_VBVertexStride*3;
extraverts = 3;
}
else {
memcpy_gc(VertexManager::s_pCurBufferPointer, plastptr-m_VBVertexStride*2, m_VBVertexStride*2);
VertexManager::s_pCurBufferPointer += m_VBVertexStride*2;
extraverts = 2;
}
break;
case 4: // tri fan, copy first and last vert
memcpy_gc(VertexManager::s_pCurBufferPointer, plastptr-m_VBVertexStride*(v-startv+extraverts), m_VBVertexStride);
VertexManager::s_pCurBufferPointer += m_VBVertexStride;
memcpy_gc(VertexManager::s_pCurBufferPointer, plastptr-m_VBVertexStride, m_VBVertexStride);
VertexManager::s_pCurBufferPointer += m_VBVertexStride;
extraverts = 2;
break;
case 6: // line strip
memcpy_gc(VertexManager::s_pCurBufferPointer, plastptr-m_VBVertexStride, m_VBVertexStride);
VertexManager::s_pCurBufferPointer += m_VBVertexStride;
extraverts = 1;
break;
default:
extraverts = 0;
}
startv = v;
}
}
tcIndex = 0;
colIndex = 0;
s_texmtxwrite = s_texmtxread = 0;
for (int i = 0; i < m_numPipelineStates; i++)
m_PipelineStates[i](&m_VtxAttr);
VertexManager::s_pCurBufferPointer += m_VBStridePad;
PRIM_LOG("\n");
}
if( startv < count )
VertexManager::AddVertices(primitive, count-startv+extraverts);
}
///////////////////
// VertexManager //
///////////////////
TVtxDesc VertexManager::s_GlobalVtxDesc;
u8* VertexManager::s_pCurBufferPointer=NULL;
float VertexManager::shiftLookup[32];
const GLenum c_primitiveType[8] =
{
GL_QUADS,
0, //nothing
GL_TRIANGLES,
GL_TRIANGLE_STRIP,
GL_TRIANGLE_FAN,
GL_LINES,
GL_LINE_STRIP,
GL_POINTS
};
bool VertexManager::Init()
{
Destroy();
s_GlobalVtxDesc.Hex = 0;
s_prevcomponents = 0;
s_prevvbstride = 12; // just pos
s_prevprimitive = 0;
s_pBaseBufferPointer = (u8*)_aligned_malloc(MAX_BUFFER_SIZE, 256);
s_pCurBufferPointer = s_pBaseBufferPointer;
for (int i = 0; i < ARRAYSIZE(shiftLookup); i++)
shiftLookup[i] = 1.0f / float(1 << i);
s_nCurVBOIndex = 0;
glGenBuffers(ARRAYSIZE(s_vboBuffers), s_vboBuffers);
for (int i = 0; i < ARRAYSIZE(s_vboBuffers); ++i) {
glBindBuffer(GL_ARRAY_BUFFER, s_vboBuffers[i]);
glBufferData(GL_ARRAY_BUFFER, MAX_BUFFER_SIZE, NULL, GL_STREAM_DRAW);
}
glEnableClientState(GL_VERTEX_ARRAY);
fnSetupVertexPointers = NULL;
GL_REPORT_ERRORD();
return true;
}
void VertexManager::Destroy()
{
_aligned_free(s_pBaseBufferPointer); s_pBaseBufferPointer = s_pCurBufferPointer = NULL;
glDeleteBuffers(ARRAYSIZE(s_vboBuffers), s_vboBuffers);
memset(s_vboBuffers, 0, sizeof(s_vboBuffers));
s_vStoredPrimitives.resize(0);
s_nCurVBOIndex = 0;
ResetBuffer();
}
void VertexManager::ResetBuffer()
{
s_nCurVBOIndex = (s_nCurVBOIndex+1)%ARRAYSIZE(s_vboBuffers);
s_pCurBufferPointer = s_pBaseBufferPointer;
s_vStoredPrimitives.resize(0);
}
void VertexManager::ResetComponents()
{
s_prevcomponents = 0;
s_prevvbstride = 12; // just pos
s_prevprimitive = 0;
glDisableVertexAttribArray(SHADER_POSMTX_ATTRIB);
glDisableClientState(GL_NORMAL_ARRAY);
glDisableVertexAttribArray(SHADER_NORM1_ATTRIB);
glDisableVertexAttribArray(SHADER_NORM2_ATTRIB);
glDisableClientState(GL_COLOR_ARRAY);
glDisableClientState(GL_SECONDARY_COLOR_ARRAY);
for (int i = 0; i < 8; ++i) glDisableClientState(GL_TEXTURE_COORD_ARRAY);
}
int VertexManager::GetRemainingSize()
{
return MAX_BUFFER_SIZE - (int)(s_pCurBufferPointer-s_pBaseBufferPointer);
}
void VertexManager::AddVertices(int primitive, int numvertices)
{
_assert_( numvertices > 0 );
ADDSTAT(stats.thisFrame.numPrims, numvertices);
s_vStoredPrimitives.push_back(pair<int, int>(c_primitiveType[primitive], numvertices));
static const char *sprims[8] = {"quads", "nothing", "tris", "tstrip", "tfan", "lines", "lstrip", "points"};
PRIM_LOG("prim: %s, c=%d\n", sprims[primitive], numvertices);
}
void VertexManager::Flush()
{
if (s_vStoredPrimitives.size() == 0)
return;
_assert_( fnSetupVertexPointers != NULL );
_assert_( s_pCurBufferPointer != s_pBaseBufferPointer );
#ifdef _DEBUG
PRIM_LOG("frame%d:\ncomps=0x%x, texgen=%d, numchan=%d, dualtex=%d, ztex=%d, proj=%d, cole=%d, alpe=%d, ze=%d\n", g_Config.iSaveTargetId, s_prevcomponents, xfregs.numTexGens,
xfregs.nNumChans, (int)xfregs.bEnableDualTexTransform, bpmem.ztex2.op, VertexShaderMngr::rawProjection[6]==0,
bpmem.blendmode.colorupdate, bpmem.blendmode.alphaupdate, bpmem.zmode.updateenable);
for(int i = 0; i < xfregs.nNumChans; ++i) {
LitChannel* ch = &xfregs.colChans[i].color;
PRIM_LOG("colchan%d: matsrc=%d, light=0x%x, ambsrc=%d, diffunc=%d, attfunc=%d\n", i, ch->matsource, ch->GetFullLightMask(), ch->ambsource, ch->diffusefunc, ch->attnfunc);
ch = &xfregs.colChans[i].alpha;
PRIM_LOG("alpchan%d: matsrc=%d, light=0x%x, ambsrc=%d, diffunc=%d, attfunc=%d\n", i, ch->matsource, ch->GetFullLightMask(), ch->ambsource, ch->diffusefunc, ch->attnfunc);
}
for(int i = 0; i < xfregs.numTexGens; ++i) {
TexMtxInfo tinfo = xfregs.texcoords[i].texmtxinfo;
if( tinfo.texgentype != XF_TEXGEN_EMBOSS_MAP ) tinfo.hex &= 0x7ff;
if( tinfo.texgentype != XF_TEXGEN_REGULAR ) tinfo.projection = 0;
PRIM_LOG("txgen%d: proj=%d, input=%d, gentype=%d, srcrow=%d, embsrc=%d, emblght=%d, postmtx=%d, postnorm=%d\n",
i, tinfo.projection, tinfo.inputform, tinfo.texgentype, tinfo.sourcerow, tinfo.embosssourceshift, tinfo.embosslightshift,
xfregs.texcoords[i].postmtxinfo.index, xfregs.texcoords[i].postmtxinfo.normalize);
}
PRIM_LOG("pixel: tev=%d, ind=%d, texgen=%d, dstalpha=%d, alphafunc=0x%x\n", bpmem.genMode.numtevstages+1, bpmem.genMode.numindstages,
bpmem.genMode.numtexgens, (u32)bpmem.dstalpha.enable, (bpmem.alphaFunc.hex>>16)&0xff);
#endif
DVSTARTPROFILE();
GL_REPORT_ERRORD();
glBindBuffer(GL_ARRAY_BUFFER, s_vboBuffers[s_nCurVBOIndex]);
glBufferData(GL_ARRAY_BUFFER, s_pCurBufferPointer-s_pBaseBufferPointer, s_pBaseBufferPointer, GL_STREAM_DRAW);
GL_REPORT_ERRORD();
// setup the pointers
fnSetupVertexPointers();
GL_REPORT_ERRORD();
// set the textures
{
DVProfileFunc _pf("VertexManager::Flush:textures");
u32 usedtextures = 0;
for (u32 i = 0; i < bpmem.genMode.numtevstages+1; ++i) {
if( bpmem.tevorders[i/2].getEnable(i&1) )
usedtextures |= 1<<bpmem.tevorders[i/2].getTexMap(i&1);
}
if( bpmem.genMode.numindstages > 0 ) {
for(u32 i = 0; i < bpmem.genMode.numtevstages+1; ++i) {
if( bpmem.tevind[i].IsActive() && bpmem.tevind[i].bt < bpmem.genMode.numindstages ) {
usedtextures |= 1<<bpmem.tevindref.getTexMap(bpmem.tevind[i].bt);
}
}
}
u32 nonpow2tex = 0;
for (int i = 0; i < 8; i++) {
if (usedtextures&(1<<i)) {
glActiveTexture(GL_TEXTURE0+i);
FourTexUnits &tex = bpmem.tex[i>>2];
TextureMngr::TCacheEntry* tentry = TextureMngr::Load(i, (tex.texImage3[i&3].image_base/* & 0x1FFFFF*/) << 5,
tex.texImage0[i&3].width+1, tex.texImage0[i&3].height+1,
tex.texImage0[i&3].format, tex.texTlut[i&3].tmem_offset<<9, tex.texTlut[i&3].tlut_format);
if( tentry != NULL ) {
// texture loaded fine, set dims for pixel shader
if( tentry->isNonPow2 ) {
PixelShaderMngr::SetTexDims(i, tentry->w, tentry->h, tentry->mode.wrap_s, tentry->mode.wrap_t);
nonpow2tex |= 1<<i;
if( tentry->mode.wrap_s > 0 ) nonpow2tex |= 1<<(8+i);
if( tentry->mode.wrap_t > 0 ) nonpow2tex |= 1<<(16+i);
}
// if texture is power of two, set to ones (since don't need scaling)
else PixelShaderMngr::SetTexDims(i, tentry->w, tentry->h, 0, 0);
if( tentry->isNonPow2 ) TextureMngr::EnableTexRECT(i);
else TextureMngr::EnableTex2D(i);
if( g_Config.iLog & CONF_PRIMLOG ) {
// save the textures
char strfile[255];
sprintf(strfile, "frames/tex%.3d_%d.tga", g_Config.iSaveTargetId, i);
SaveTexture(strfile, tentry->isNonPow2?GL_TEXTURE_RECTANGLE_ARB:GL_TEXTURE_2D, tentry->texture, tentry->w, tentry->h);
}
}
else {
ERROR_LOG("error loading tex\n");
TextureMngr::DisableStage(i); // disable since won't be used
}
}
else {
TextureMngr::DisableStage(i); // disable since won't be used
}
}
PixelShaderMngr::SetTexturesUsed(nonpow2tex);
}
FRAGMENTSHADER* ps = PixelShaderMngr::GetShader();
VERTEXSHADER* vs = VertexShaderMngr::GetShader(s_prevcomponents);
_assert_( ps != NULL && vs != NULL );
bool bRestoreBuffers = false;
if( Renderer::GetZBufferTarget() ) {
if( bpmem.zmode.updateenable ) {
if( !bpmem.blendmode.colorupdate ) {
Renderer::SetRenderMode(bpmem.blendmode.alphaupdate?Renderer::RM_ZBufferAlpha:Renderer::RM_ZBufferOnly);
}
}
else {
Renderer::SetRenderMode(Renderer::RM_Normal);
// remove temporarily
glDrawBuffer(GL_COLOR_ATTACHMENT0_EXT);
bRestoreBuffers = true;
}
}
else
Renderer::SetRenderMode(Renderer::RM_Normal);
// set global constants
VertexShaderMngr::SetConstants(*vs);
PixelShaderMngr::SetConstants(*ps);
// finally bind
glBindProgramARB(GL_VERTEX_PROGRAM_ARB, vs->glprogid);
glBindProgramARB(GL_FRAGMENT_PROGRAM_ARB, ps->glprogid);
PRIM_LOG("\n");
int offset = 0;
vector< pair<int, int> >::iterator it;
FORIT (it, s_vStoredPrimitives) {
glDrawArrays(it->first, offset, it->second);
offset += it->second;
}
#ifdef _DEBUG
if( g_Config.iLog & CONF_PRIMLOG ) {
// save the shaders
char strfile[255];
sprintf(strfile, "frames/ps%.3d.txt", g_Config.iSaveTargetId);
std::ofstream fps(strfile);
fps << ps->strprog.c_str();
sprintf(strfile, "frames/vs%.3d.txt", g_Config.iSaveTargetId);
ofstream fvs(strfile);
fvs << vs->strprog.c_str();
}
if( g_Config.iLog & CONF_SAVETARGETS ) {
char str[128];
sprintf(str, "frames/targ%.3d.tga", g_Config.iSaveTargetId);
Renderer::SaveRenderTarget(str, 0);
}
#endif
g_Config.iSaveTargetId++;
GL_REPORT_ERRORD();
if( bRestoreBuffers ) {
GLenum s_drawbuffers[2] = {GL_COLOR_ATTACHMENT0_EXT, GL_COLOR_ATTACHMENT1_EXT};
glDrawBuffers(2, s_drawbuffers);
SetColorMask();
}
ResetBuffer();
}
void VertexManager::LoadCPReg(u32 SubCmd, u32 Value)
{
switch (SubCmd & 0xF0)
{
case 0x30:
VertexShaderMngr::SetTexMatrixChangedA(Value);
break;
case 0x40:
VertexShaderMngr::SetTexMatrixChangedB(Value);
break;
case 0x50:
s_GlobalVtxDesc.Hex &= ~0x1FFFF; // keep the Upper bits
s_GlobalVtxDesc.Hex |= Value;
break;
case 0x60:
s_GlobalVtxDesc.Hex &= 0x1FFFF; // keep the lower 17Bits
s_GlobalVtxDesc.Hex |= (u64)Value << 17;
break;
case 0x70: g_VertexLoaders[SubCmd & 7].SetVAT_group0(Value); _assert_((SubCmd & 0x0F) < 8); break;
case 0x80: g_VertexLoaders[SubCmd & 7].SetVAT_group1(Value); _assert_((SubCmd & 0x0F) < 8); break;
case 0x90: g_VertexLoaders[SubCmd & 7].SetVAT_group2(Value); _assert_((SubCmd & 0x0F) < 8); break;
case 0xA0: arraybases[SubCmd & 0xF] = Value & 0xFFFFFFFF; break;
case 0xB0: arraystrides[SubCmd & 0xF] = Value & 0xFF; break;
}
}
size_t VertexManager::SaveLoadState(char *ptr, BOOL save)
{
BEGINSAVELOAD;
SAVELOAD(arraybases,16*sizeof(u32));
SAVELOAD(arraystrides,16*sizeof(u32));
ENDSAVELOAD;
}