dolphin/Source/Core/VideoCommon/BPStructs.cpp

1396 lines
46 KiB
C++
Raw Normal View History

// Copyright 2009 Dolphin Emulator Project
2015-05-17 23:08:10 +00:00
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include "VideoCommon/BPStructs.h"
#include <cmath>
#include <cstring>
#include <string>
#include "Common/Logging/Log.h"
#include "Common/StringUtil.h"
#include "Common/Thread.h"
2014-09-09 04:24:49 +00:00
#include "Core/ConfigManager.h"
#include "Core/FifoPlayer/FifoRecorder.h"
#include "Core/HW/Memmap.h"
#include "VideoCommon/BPFunctions.h"
#include "VideoCommon/BPMemory.h"
#include "VideoCommon/BoundingBox.h"
2014-07-08 14:49:33 +00:00
#include "VideoCommon/Fifo.h"
#include "VideoCommon/GeometryShaderManager.h"
#include "VideoCommon/PerfQueryBase.h"
#include "VideoCommon/PixelEngine.h"
#include "VideoCommon/PixelShaderManager.h"
#include "VideoCommon/RenderBase.h"
#include "VideoCommon/TextureCacheBase.h"
#include "VideoCommon/TextureDecoder.h"
#include "VideoCommon/VertexShaderManager.h"
#include "VideoCommon/VideoBackendBase.h"
#include "VideoCommon/VideoCommon.h"
#include "VideoCommon/VideoConfig.h"
using namespace BPFunctions;
static const float s_gammaLUT[] = {1.0f, 1.7f, 2.2f, 1.0f};
void BPInit()
{
memset(&bpmem, 0, sizeof(bpmem));
bpmem.bpMask = 0xFFFFFF;
}
2014-05-03 20:36:29 +00:00
static void BPWritten(const BPCmd& bp)
{
/*
----------------------------------------------------------------------------------------------------------------
Purpose: Writes to the BP registers
Called: At the end of every: OpcodeDecoding.cpp ExecuteDisplayList > Decode() > LoadBPReg
How It Works: First the pipeline is flushed then update the bpmem with the new value.
Some of the BP cases have to call certain functions while others just update the bpmem.
some bp cases check the changes variable, because they might not have to be updated all
the time
NOTE: it seems not all bp cases like checking changes, so calling if (bp.changes == 0 ? false :
true)
had to be ditched and the games seem to work fine with out it.
NOTE2: Yet Another GameCube Documentation calls them Bypass Raster State Registers but possibly
completely wrong
NOTE3: This controls the register groups: RAS1/2, SU, TF, TEV, C/Z, PEC
TODO: Turn into function table. The (future) DisplayList (DL) jit can then call the functions
directly,
getting rid of dynamic dispatch. Unfortunately, few games use DLs properly - most\
just stuff geometry in them and don't put state changes there
----------------------------------------------------------------------------------------------------------------
*/
// check for invalid state, else unneeded configuration are built
g_video_backend->CheckInvalidState();
if (((s32*)&bpmem)[bp.address] == bp.newvalue)
{
if (!(bp.address == BPMEM_TRIGGER_EFB_COPY || bp.address == BPMEM_CLEARBBOX1 ||
bp.address == BPMEM_CLEARBBOX2 || bp.address == BPMEM_SETDRAWDONE ||
bp.address == BPMEM_PE_TOKEN_ID || bp.address == BPMEM_PE_TOKEN_INT_ID ||
bp.address == BPMEM_LOADTLUT0 || bp.address == BPMEM_LOADTLUT1 ||
bp.address == BPMEM_TEXINVALIDATE || bp.address == BPMEM_PRELOAD_MODE ||
bp.address == BPMEM_CLEAR_PIXEL_PERF))
{
return;
}
}
FlushPipeline();
((u32*)&bpmem)[bp.address] = bp.newvalue;
switch (bp.address)
{
case BPMEM_GENMODE: // Set the Generation Mode
PRIM_LOG("genmode: texgen=%d, col=%d, multisampling=%d, tev=%d, cullmode=%d, ind=%d, zfeeze=%d",
(u32)bpmem.genMode.numtexgens, (u32)bpmem.genMode.numcolchans,
(u32)bpmem.genMode.multisampling, (u32)bpmem.genMode.numtevstages + 1,
(u32)bpmem.genMode.cullmode, (u32)bpmem.genMode.numindstages,
(u32)bpmem.genMode.zfreeze);
// Only call SetGenerationMode when cull mode changes.
if (bp.changes & 0xC000)
SetGenerationMode();
return;
case BPMEM_IND_MTXA: // Index Matrix Changed
case BPMEM_IND_MTXB:
case BPMEM_IND_MTXC:
case BPMEM_IND_MTXA + 3:
case BPMEM_IND_MTXB + 3:
case BPMEM_IND_MTXC + 3:
case BPMEM_IND_MTXA + 6:
case BPMEM_IND_MTXB + 6:
case BPMEM_IND_MTXC + 6:
if (bp.changes)
PixelShaderManager::SetIndMatrixChanged((bp.address - BPMEM_IND_MTXA) / 3);
return;
case BPMEM_RAS1_SS0: // Index Texture Coordinate Scale 0
if (bp.changes)
PixelShaderManager::SetIndTexScaleChanged(false);
return;
case BPMEM_RAS1_SS1: // Index Texture Coordinate Scale 1
if (bp.changes)
PixelShaderManager::SetIndTexScaleChanged(true);
return;
// ----------------
// Scissor Control
// ----------------
case BPMEM_SCISSORTL: // Scissor Rectable Top, Left
case BPMEM_SCISSORBR: // Scissor Rectable Bottom, Right
case BPMEM_SCISSOROFFSET: // Scissor Offset
SetScissor();
VertexShaderManager::SetViewportChanged();
GeometryShaderManager::SetViewportChanged();
return;
case BPMEM_LINEPTWIDTH: // Line Width
GeometryShaderManager::SetLinePtWidthChanged();
return;
case BPMEM_ZMODE: // Depth Control
PRIM_LOG("zmode: test=%d, func=%d, upd=%d", (int)bpmem.zmode.testenable, (int)bpmem.zmode.func,
(int)bpmem.zmode.updateenable);
SetDepthMode();
return;
case BPMEM_BLENDMODE: // Blending Control
if (bp.changes & 0xFFFF)
{
PRIM_LOG("blendmode: en=%d, open=%d, colupd=%d, alphaupd=%d, dst=%d, src=%d, sub=%d, mode=%d",
(int)bpmem.blendmode.blendenable, (int)bpmem.blendmode.logicopenable,
(int)bpmem.blendmode.colorupdate, (int)bpmem.blendmode.alphaupdate,
(int)bpmem.blendmode.dstfactor, (int)bpmem.blendmode.srcfactor,
(int)bpmem.blendmode.subtract, (int)bpmem.blendmode.logicmode);
// Set Blending Mode
if (bp.changes)
SetBlendMode();
// Set LogicOp Blending Mode
if (bp.changes & 0xF002) // logicopenable | logicmode
SetLogicOpMode();
// Set Color Mask
if (bp.changes & 0x18) // colorupdate | alphaupdate
SetColorMask();
}
return;
case BPMEM_CONSTANTALPHA: // Set Destination Alpha
PRIM_LOG("constalpha: alp=%d, en=%d", bpmem.dstalpha.alpha.Value(),
bpmem.dstalpha.enable.Value());
if (bp.changes & 0xFF)
PixelShaderManager::SetDestAlpha();
if (bp.changes & 0x100)
SetBlendMode();
return;
// This is called when the game is done drawing the new frame (eg: like in DX: Begin(); Draw();
// End();)
// Triggers an interrupt on the PPC side so that the game knows when the GPU has finished drawing.
// Tokens are similar.
case BPMEM_SETDRAWDONE:
switch (bp.newvalue & 0xFF)
{
case 0x02:
if (!Fifo::UseDeterministicGPUThread())
PixelEngine::SetFinish(); // may generate interrupt
DEBUG_LOG(VIDEO, "GXSetDrawDone SetPEFinish (value: 0x%02X)", (bp.newvalue & 0xFFFF));
return;
default:
WARN_LOG(VIDEO, "GXSetDrawDone ??? (value 0x%02X)", (bp.newvalue & 0xFFFF));
return;
}
return;
case BPMEM_PE_TOKEN_ID: // Pixel Engine Token ID
if (!Fifo::UseDeterministicGPUThread())
PixelEngine::SetToken(static_cast<u16>(bp.newvalue & 0xFFFF), false);
DEBUG_LOG(VIDEO, "SetPEToken 0x%04x", (bp.newvalue & 0xFFFF));
return;
case BPMEM_PE_TOKEN_INT_ID: // Pixel Engine Interrupt Token ID
if (!Fifo::UseDeterministicGPUThread())
PixelEngine::SetToken(static_cast<u16>(bp.newvalue & 0xFFFF), true);
DEBUG_LOG(VIDEO, "SetPEToken + INT 0x%04x", (bp.newvalue & 0xFFFF));
return;
// ------------------------
// EFB copy command. This copies a rectangle from the EFB to either RAM in a texture format or to
// XFB as YUYV.
// It can also optionally clear the EFB while copying from it. To emulate this, we of course copy
// first and clear afterwards.
case BPMEM_TRIGGER_EFB_COPY: // Copy EFB Region or Render to the XFB or Clear the screen.
{
// The bottom right is within the rectangle
// The values in bpmem.copyTexSrcXY and bpmem.copyTexSrcWH are updated in case 0x49 and 0x4a in
// this function
u32 destAddr = bpmem.copyTexDest << 5;
u32 destStride = bpmem.copyMipMapStrideChannels << 5;
EFBRectangle srcRect;
srcRect.left = (int)bpmem.copyTexSrcXY.x;
srcRect.top = (int)bpmem.copyTexSrcXY.y;
// Here Width+1 like Height, otherwise some textures are corrupted already since the native
// resolution.
// TODO: What's the behavior of out of bound access?
srcRect.right = (int)(bpmem.copyTexSrcXY.x + bpmem.copyTexSrcWH.x + 1);
srcRect.bottom = (int)(bpmem.copyTexSrcXY.y + bpmem.copyTexSrcWH.y + 1);
UPE_Copy PE_copy = bpmem.triggerEFBCopy;
// Check if we are to copy from the EFB or draw to the XFB
if (PE_copy.copy_to_xfb == 0)
{
// bpmem.zcontrol.pixel_format to PEControl::Z24 is when the game wants to copy from ZBuffer
// (Zbuffer uses 24-bit Format)
bool is_depth_copy = bpmem.zcontrol.pixel_format == PEControl::Z24;
g_texture_cache->CopyRenderTargetToTexture(destAddr, PE_copy.tp_realFormat(), destStride,
is_depth_copy, srcRect, !!PE_copy.intensity_fmt,
!!PE_copy.half_scale);
}
else
{
// We should be able to get away with deactivating the current bbox tracking
// here. Not sure if there's a better spot to put this.
// the number of lines copied is determined by the y scale * source efb height
BoundingBox::active = false;
float yScale;
if (PE_copy.scale_invert)
yScale = 256.0f / (float)bpmem.dispcopyyscale;
else
yScale = (float)bpmem.dispcopyyscale / 256.0f;
float num_xfb_lines = 1.0f + bpmem.copyTexSrcWH.y * yScale;
u32 height = static_cast<u32>(num_xfb_lines);
if (height > MAX_XFB_HEIGHT)
{
INFO_LOG(VIDEO, "Tried to scale EFB to too many XFB lines: %d (%f)", height, num_xfb_lines);
height = MAX_XFB_HEIGHT;
}
DEBUG_LOG(VIDEO, "RenderToXFB: destAddr: %08x | srcRect {%d %d %d %d} | fbWidth: %u | "
"fbStride: %u | fbHeight: %u",
destAddr, srcRect.left, srcRect.top, srcRect.right, srcRect.bottom,
bpmem.copyTexSrcWH.x + 1, destStride, height);
g_renderer->RenderToXFB(destAddr, srcRect, destStride, height, s_gammaLUT[PE_copy.gamma]);
}
// Clear the rectangular region after copying it.
if (PE_copy.clear)
{
ClearScreen(srcRect);
}
return;
}
case BPMEM_LOADTLUT0: // This one updates bpmem.tlutXferSrc, no need to do anything here.
return;
case BPMEM_LOADTLUT1: // Load a Texture Look Up Table
{
u32 tlutTMemAddr = (bp.newvalue & 0x3FF) << 9;
u32 tlutXferCount = (bp.newvalue & 0x1FFC00) >> 5;
u32 addr = bpmem.tmem_config.tlut_src << 5;
// The GameCube ignores the upper bits of this address. Some games (WW, MKDD) set them.
if (!SConfig::GetInstance().bWii)
addr = addr & 0x01FFFFFF;
Memory::CopyFromEmu(texMem + tlutTMemAddr, addr, tlutXferCount);
if (g_bRecordFifoData)
FifoRecorder::GetInstance().UseMemory(addr, tlutXferCount, MemoryUpdate::TMEM);
TextureCacheBase::InvalidateAllBindPoints();
return;
}
case BPMEM_FOGRANGE: // Fog Settings Control
case BPMEM_FOGRANGE + 1:
case BPMEM_FOGRANGE + 2:
case BPMEM_FOGRANGE + 3:
case BPMEM_FOGRANGE + 4:
case BPMEM_FOGRANGE + 5:
if (bp.changes)
PixelShaderManager::SetFogRangeAdjustChanged();
return;
case BPMEM_FOGPARAM0:
case BPMEM_FOGBMAGNITUDE:
case BPMEM_FOGBEXPONENT:
case BPMEM_FOGPARAM3:
if (bp.changes)
PixelShaderManager::SetFogParamChanged();
return;
case BPMEM_FOGCOLOR: // Fog Color
if (bp.changes)
PixelShaderManager::SetFogColorChanged();
return;
case BPMEM_ALPHACOMPARE: // Compare Alpha Values
PRIM_LOG("alphacmp: ref0=%d, ref1=%d, comp0=%d, comp1=%d, logic=%d", (int)bpmem.alpha_test.ref0,
(int)bpmem.alpha_test.ref1, (int)bpmem.alpha_test.comp0, (int)bpmem.alpha_test.comp1,
(int)bpmem.alpha_test.logic);
if (bp.changes & 0xFFFF)
PixelShaderManager::SetAlpha();
if (bp.changes)
{
g_renderer->SetColorMask();
SetBlendMode();
}
return;
case BPMEM_BIAS: // BIAS
PRIM_LOG("ztex bias=0x%x", bpmem.ztex1.bias.Value());
if (bp.changes)
PixelShaderManager::SetZTextureBias();
return;
case BPMEM_ZTEX2: // Z Texture type
{
if (bp.changes & 3)
PixelShaderManager::SetZTextureTypeChanged();
if (bp.changes & 12)
VertexShaderManager::SetViewportChanged();
#if defined(_DEBUG) || defined(DEBUGFAST)
const char* pzop[] = {"DISABLE", "ADD", "REPLACE", "?"};
const char* pztype[] = {"Z8", "Z16", "Z24", "?"};
PRIM_LOG("ztex op=%s, type=%s", pzop[bpmem.ztex2.op], pztype[bpmem.ztex2.type]);
#endif
}
return;
// ----------------------------------
// Display Copy Filtering Control - GX_SetCopyFilter(u8 aa,u8 sample_pattern[12][2],u8 vf,u8
// vfilter[7])
// Fields: Destination, Frame2Field, Gamma, Source
// ----------------------------------
case BPMEM_DISPLAYCOPYFILTER: // if (aa) { use sample_pattern } else { use 666666 }
case BPMEM_DISPLAYCOPYFILTER + 1: // if (aa) { use sample_pattern } else { use 666666 }
case BPMEM_DISPLAYCOPYFILTER + 2: // if (aa) { use sample_pattern } else { use 666666 }
case BPMEM_DISPLAYCOPYFILTER + 3: // if (aa) { use sample_pattern } else { use 666666 }
case BPMEM_COPYFILTER0: // if (vf) { use vfilter } else { use 595000 }
case BPMEM_COPYFILTER1: // if (vf) { use vfilter } else { use 000015 }
return;
// -----------------------------------
// Interlacing Control
// -----------------------------------
case BPMEM_FIELDMASK: // GX_SetFieldMask(u8 even_mask,u8 odd_mask)
case BPMEM_FIELDMODE: // GX_SetFieldMode(u8 field_mode,u8 half_aspect_ratio)
// TODO
return;
// ----------------------------------------
// Unimportant regs (Clock, Perf, ...)
// ----------------------------------------
case BPMEM_BUSCLOCK0: // TB Bus Clock ?
case BPMEM_BUSCLOCK1: // TB Bus Clock ?
case BPMEM_PERF0_TRI: // Perf: Triangles
case BPMEM_PERF0_QUAD: // Perf: Quads
case BPMEM_PERF1: // Perf: Some Clock, Texels, TX, TC
break;
// ----------------
// EFB Copy config
// ----------------
case BPMEM_EFB_TL: // EFB Source Rect. Top, Left
case BPMEM_EFB_BR: // EFB Source Rect. Bottom, Right (w, h - 1)
case BPMEM_EFB_ADDR: // EFB Target Address
return;
// --------------
// Clear Config
// --------------
case BPMEM_CLEAR_AR: // Alpha and Red Components
case BPMEM_CLEAR_GB: // Green and Blue Components
case BPMEM_CLEAR_Z: // Z Components (24-bit Zbuffer)
return;
// -------------------------
// Bounding Box Control
// -------------------------
case BPMEM_CLEARBBOX1:
case BPMEM_CLEARBBOX2:
2016-10-08 02:55:47 +00:00
{
u8 offset = bp.address & 2;
BoundingBox::active = true;
2016-10-08 02:55:47 +00:00
if (g_ActiveConfig.backend_info.bSupportsBBox && g_ActiveConfig.bBBoxEnable)
{
g_renderer->BBoxWrite(offset, bp.newvalue & 0x3ff);
g_renderer->BBoxWrite(offset + 1, bp.newvalue >> 10);
}
2016-10-08 02:55:47 +00:00
}
return;
case BPMEM_TEXINVALIDATE:
// TODO: Needs some restructuring in TextureCacheBase.
TextureCacheBase::InvalidateAllBindPoints();
return;
case BPMEM_ZCOMPARE: // Set the Z-Compare and EFB pixel format
OnPixelFormatChange();
if (bp.changes & 7)
{
SetBlendMode(); // dual source could be activated by changing to PIXELFMT_RGBA6_Z24
g_renderer->SetColorMask(); // alpha writing needs to be disabled if the new pixel format
// doesn't have an alpha channel
}
return;
case BPMEM_MIPMAP_STRIDE: // MipMap Stride Channel
case BPMEM_COPYYSCALE: // Display Copy Y Scale
/* 24 RID
* 21 BC3 - Ind. Tex Stage 3 NTexCoord
* 18 BI3 - Ind. Tex Stage 3 NTexMap
* 15 BC2 - Ind. Tex Stage 2 NTexCoord
* 12 BI2 - Ind. Tex Stage 2 NTexMap
* 9 BC1 - Ind. Tex Stage 1 NTexCoord
* 6 BI1 - Ind. Tex Stage 1 NTexMap
* 3 BC0 - Ind. Tex Stage 0 NTexCoord
* 0 BI0 - Ind. Tex Stage 0 NTexMap */
case BPMEM_IREF:
case BPMEM_TEV_KSEL: // Texture Environment Swap Mode Table 0
case BPMEM_TEV_KSEL + 1: // Texture Environment Swap Mode Table 1
case BPMEM_TEV_KSEL + 2: // Texture Environment Swap Mode Table 2
case BPMEM_TEV_KSEL + 3: // Texture Environment Swap Mode Table 3
case BPMEM_TEV_KSEL + 4: // Texture Environment Swap Mode Table 4
case BPMEM_TEV_KSEL + 5: // Texture Environment Swap Mode Table 5
case BPMEM_TEV_KSEL + 6: // Texture Environment Swap Mode Table 6
case BPMEM_TEV_KSEL + 7: // Texture Environment Swap Mode Table 7
/* This Register can be used to limit to which bits of BP registers is
* actually written to. The mask is only valid for the next BP write,
* and will reset itself afterwards. It's handled as a special case in
* LoadBPReg. */
case BPMEM_BP_MASK:
case BPMEM_IND_IMASK: // Index Mask ?
case BPMEM_REVBITS: // Always set to 0x0F when GX_InitRevBits() is called.
return;
case BPMEM_CLEAR_PIXEL_PERF:
// GXClearPixMetric writes 0xAAA here, Sunshine alternates this register between values 0x000
// and 0xAAA
if (PerfQueryBase::ShouldEmulate())
g_perf_query->ResetQuery();
return;
case BPMEM_PRELOAD_ADDR:
case BPMEM_PRELOAD_TMEMEVEN:
case BPMEM_PRELOAD_TMEMODD: // Used when PRELOAD_MODE is set
return;
case BPMEM_PRELOAD_MODE: // Set to 0 when GX_TexModeSync() is called.
// if this is different from 0, manual TMEM management is used (GX_PreloadEntireTexture).
if (bp.newvalue != 0)
{
// TODO: Not quite sure if this is completely correct (likely not)
// NOTE: libogc's implementation of GX_PreloadEntireTexture seems flawed, so it's not
// necessarily a good reference for RE'ing this feature.
BPS_TmemConfig& tmem_cfg = bpmem.tmem_config;
u32 src_addr = tmem_cfg.preload_addr << 5; // TODO: Should we add mask here on GC?
u32 bytes_read = 0;
u32 tmem_addr_even = tmem_cfg.preload_tmem_even * TMEM_LINE_SIZE;
if (tmem_cfg.preload_tile_info.type != 3)
{
bytes_read = tmem_cfg.preload_tile_info.count * TMEM_LINE_SIZE;
if (tmem_addr_even + bytes_read > TMEM_SIZE)
bytes_read = TMEM_SIZE - tmem_addr_even;
Memory::CopyFromEmu(texMem + tmem_addr_even, src_addr, bytes_read);
}
else // RGBA8 tiles (and CI14, but that might just be stupid libogc!)
{
u8* src_ptr = Memory::GetPointer(src_addr);
// AR and GB tiles are stored in separate TMEM banks => can't use a single memcpy for
// everything
u32 tmem_addr_odd = tmem_cfg.preload_tmem_odd * TMEM_LINE_SIZE;
for (u32 i = 0; i < tmem_cfg.preload_tile_info.count; ++i)
{
if (tmem_addr_even + TMEM_LINE_SIZE > TMEM_SIZE ||
tmem_addr_odd + TMEM_LINE_SIZE > TMEM_SIZE)
break;
memcpy(texMem + tmem_addr_even, src_ptr + bytes_read, TMEM_LINE_SIZE);
memcpy(texMem + tmem_addr_odd, src_ptr + bytes_read + TMEM_LINE_SIZE, TMEM_LINE_SIZE);
tmem_addr_even += TMEM_LINE_SIZE;
tmem_addr_odd += TMEM_LINE_SIZE;
bytes_read += TMEM_LINE_SIZE * 2;
}
}
if (g_bRecordFifoData)
FifoRecorder::GetInstance().UseMemory(src_addr, bytes_read, MemoryUpdate::TMEM);
TextureCacheBase::InvalidateAllBindPoints();
}
return;
// ---------------------------------------------------
// Set the TEV Color
// ---------------------------------------------------
//
// NOTE: Each of these registers actually maps to two variables internally.
// There's a bit that specifies which one is currently written to.
//
// NOTE: Some games write only to the RA register (or only to the BG register).
// We may not assume that the unwritten register holds a valid value, hence
// both component pairs need to be loaded individually.
case BPMEM_TEV_COLOR_RA:
case BPMEM_TEV_COLOR_RA + 2:
case BPMEM_TEV_COLOR_RA + 4:
case BPMEM_TEV_COLOR_RA + 6:
{
int num = (bp.address >> 1) & 0x3;
if (bpmem.tevregs[num].type_ra)
{
PixelShaderManager::SetTevKonstColor(num, 0, (s32)bpmem.tevregs[num].red);
PixelShaderManager::SetTevKonstColor(num, 3, (s32)bpmem.tevregs[num].alpha);
}
else
{
PixelShaderManager::SetTevColor(num, 0, (s32)bpmem.tevregs[num].red);
PixelShaderManager::SetTevColor(num, 3, (s32)bpmem.tevregs[num].alpha);
}
return;
}
case BPMEM_TEV_COLOR_BG:
case BPMEM_TEV_COLOR_BG + 2:
case BPMEM_TEV_COLOR_BG + 4:
case BPMEM_TEV_COLOR_BG + 6:
{
int num = (bp.address >> 1) & 0x3;
if (bpmem.tevregs[num].type_bg)
{
PixelShaderManager::SetTevKonstColor(num, 1, (s32)bpmem.tevregs[num].green);
PixelShaderManager::SetTevKonstColor(num, 2, (s32)bpmem.tevregs[num].blue);
}
else
{
PixelShaderManager::SetTevColor(num, 1, (s32)bpmem.tevregs[num].green);
PixelShaderManager::SetTevColor(num, 2, (s32)bpmem.tevregs[num].blue);
}
return;
}
default:
break;
}
switch (bp.address & 0xFC) // Texture sampler filter
{
// -------------------------
// Texture Environment Order
// -------------------------
case BPMEM_TREF:
case BPMEM_TREF + 4:
return;
// ----------------------
// Set wrap size
// ----------------------
case BPMEM_SU_SSIZE: // Matches BPMEM_SU_TSIZE too
case BPMEM_SU_SSIZE + 4:
case BPMEM_SU_SSIZE + 8:
case BPMEM_SU_SSIZE + 12:
if (bp.changes)
{
PixelShaderManager::SetTexCoordChanged((bp.address - BPMEM_SU_SSIZE) >> 1);
GeometryShaderManager::SetTexCoordChanged((bp.address - BPMEM_SU_SSIZE) >> 1);
}
return;
// ------------------------
// BPMEM_TX_SETMODE0 - (Texture lookup and filtering mode) LOD/BIAS Clamp, MaxAnsio, LODBIAS,
// DiagLoad, Min Filter, Mag Filter, Wrap T, S
// BPMEM_TX_SETMODE1 - (LOD Stuff) - Max LOD, Min LOD
// ------------------------
case BPMEM_TX_SETMODE0: // (0x90 for linear)
case BPMEM_TX_SETMODE0_4:
TextureCacheBase::InvalidateAllBindPoints();
return;
case BPMEM_TX_SETMODE1:
case BPMEM_TX_SETMODE1_4:
TextureCacheBase::InvalidateAllBindPoints();
return;
// --------------------------------------------
// BPMEM_TX_SETIMAGE0 - Texture width, height, format
// BPMEM_TX_SETIMAGE1 - even LOD address in TMEM - Image Type, Cache Height, Cache Width, TMEM
// Offset
// BPMEM_TX_SETIMAGE2 - odd LOD address in TMEM - Cache Height, Cache Width, TMEM Offset
// BPMEM_TX_SETIMAGE3 - Address of Texture in main memory
// --------------------------------------------
case BPMEM_TX_SETIMAGE0:
case BPMEM_TX_SETIMAGE0_4:
case BPMEM_TX_SETIMAGE1:
case BPMEM_TX_SETIMAGE1_4:
case BPMEM_TX_SETIMAGE2:
case BPMEM_TX_SETIMAGE2_4:
case BPMEM_TX_SETIMAGE3:
case BPMEM_TX_SETIMAGE3_4:
TextureCacheBase::InvalidateAllBindPoints();
return;
// -------------------------------
// Set a TLUT
// BPMEM_TX_SETTLUT - Format, TMEM Offset (offset of TLUT from start of TMEM high bank > > 5)
// -------------------------------
case BPMEM_TX_SETTLUT:
case BPMEM_TX_SETTLUT_4:
TextureCacheBase::InvalidateAllBindPoints();
return;
default:
break;
}
switch (bp.address & 0xF0)
{
// --------------
// Indirect Tev
// --------------
case BPMEM_IND_CMD: // Indirect 0-15
return;
// --------------------------------------------------
// Set Color/Alpha of a Tev
// BPMEM_TEV_COLOR_ENV - Dest, Shift, Clamp, Sub, Bias, Sel A, Sel B, Sel C, Sel D
// BPMEM_TEV_ALPHA_ENV - Dest, Shift, Clamp, Sub, Bias, Sel A, Sel B, Sel C, Sel D, T Swap, R Swap
// --------------------------------------------------
case BPMEM_TEV_COLOR_ENV: // Texture Environment Color/Alpha 0-7
case BPMEM_TEV_COLOR_ENV + 16: // Texture Environment Color/Alpha 8-15
return;
default:
break;
}
WARN_LOG(VIDEO, "Unknown BP opcode: address = 0x%08x value = 0x%08x", bp.address, bp.newvalue);
}
2014-05-03 20:36:29 +00:00
// Call browser: OpcodeDecoding.cpp ExecuteDisplayList > Decode() > LoadBPReg()
void LoadBPReg(u32 value0)
{
int regNum = value0 >> 24;
int oldval = ((u32*)&bpmem)[regNum];
int newval = (oldval & ~bpmem.bpMask) | (value0 & bpmem.bpMask);
int changes = (oldval ^ newval) & 0xFFFFFF;
2014-05-03 20:36:29 +00:00
BPCmd bp = {regNum, changes, newval};
2014-05-03 20:36:29 +00:00
// Reset the mask register if we're not trying to set it ourselves.
if (regNum != BPMEM_BP_MASK)
bpmem.bpMask = 0xFFFFFF;
2014-05-03 20:36:29 +00:00
BPWritten(bp);
2014-05-03 20:36:29 +00:00
}
Add the 'desynced GPU thread' mode. It's a relatively big commit (less big with -w), but it's hard to test any of this separately... The basic problem is that in netplay or movies, the state of the CPU must be deterministic, including when the game receives notification that the GPU has processed FIFO data. Dual core mode notifies the game whenever the GPU thread actually gets around to doing the work, so it isn't deterministic. Single core mode is because it notifies the game 'instantly' (after processing the data synchronously), but it's too slow for many systems and games. My old dc-netplay branch worked as follows: everything worked as normal except the state of the CP registers was a lie, and the CPU thread only delivered results when idle detection triggered (waiting for the GPU if they weren't ready at that point). Usually, a game is idle iff all the work for the frame has been done, except for a small amount of work depending on the GPU result, so neither the CPU or the GPU waiting on the other affected performance much. However, it's possible that the game could be waiting for some earlier interrupt, and any of several games which, for whatever reason, never went into a detectable idle (even when I tried to improve the detection) would never receive results at all. (The current method should have better compatibility, but it also has slightly higher overhead and breaks some other things, so I want to reimplement this, hopefully with less impact on the code, in the future.) With this commit, the basic idea is that the CPU thread acts as if the work has been done instantly, like single core mode, but actually hands it off asynchronously to the GPU thread (after backing up some data that the game might change in memory before it's actually done). Since the work isn't done, any feedback from the GPU to the CPU, such as real XFB/EFB copies (virtual are OK), EFB pokes, performance queries, etc. is broken; but most games work with these options disabled, and there is no need to try to detect what the CPU thread is doing. Technically: when the flag g_use_deterministic_gpu_thread (currently stuck on) is on, the CPU thread calls RunGpu like in single core mode. This function synchronously copies the data from the FIFO to the internal video buffer and updates the CP registers, interrupts, etc. However, instead of the regular ReadDataFromFifo followed by running the opcode decoder, it runs ReadDataFromFifoOnCPU -> OpcodeDecoder_Preprocess, which relatively quickly scans through the FIFO data, detects SetFinish calls etc., which are immediately fired, and saves certain associated data from memory (e.g. display lists) in AuxBuffers (a parallel stream to the main FIFO, which is a bit slow at the moment), before handing the data off to the GPU thread to actually render. That makes up the bulk of this commit. In various circumstances, including the aforementioned EFB pokes and performance queries as well as swap requests (i.e. the end of a frame - we don't want the CPU potentially pumping out frames too quickly and the GPU falling behind*), SyncGPU is called to wait for actual completion. The overhead mainly comes from OpcodeDecoder_Preprocess (which is, again, synchronous), as well as the actual copying. Currently, display lists and such are escrowed from main memory even though they usually won't change over the course of a frame, and textures are not even though they might, resulting in a small chance of graphical glitches. When the texture locking (i.e. fault on write) code lands, I can make this all correct and maybe a little faster. * This suggests an alternate determinism method of just delaying results until a short time before the end of each frame. For all I know this might mostly work - I haven't tried it - but if any significant work hinges on the competion of render to texture etc., the frame will be missed.
2014-08-28 02:56:19 +00:00
void LoadBPRegPreprocess(u32 value0)
{
int regNum = value0 >> 24;
// masking could hypothetically be a problem
u32 newval = value0 & 0xffffff;
switch (regNum)
{
case BPMEM_SETDRAWDONE:
if ((newval & 0xff) == 0x02)
PixelEngine::SetFinish();
break;
case BPMEM_PE_TOKEN_ID:
PixelEngine::SetToken(newval & 0xffff, false);
break;
case BPMEM_PE_TOKEN_INT_ID: // Pixel Engine Interrupt Token ID
PixelEngine::SetToken(newval & 0xffff, true);
break;
}
Add the 'desynced GPU thread' mode. It's a relatively big commit (less big with -w), but it's hard to test any of this separately... The basic problem is that in netplay or movies, the state of the CPU must be deterministic, including when the game receives notification that the GPU has processed FIFO data. Dual core mode notifies the game whenever the GPU thread actually gets around to doing the work, so it isn't deterministic. Single core mode is because it notifies the game 'instantly' (after processing the data synchronously), but it's too slow for many systems and games. My old dc-netplay branch worked as follows: everything worked as normal except the state of the CP registers was a lie, and the CPU thread only delivered results when idle detection triggered (waiting for the GPU if they weren't ready at that point). Usually, a game is idle iff all the work for the frame has been done, except for a small amount of work depending on the GPU result, so neither the CPU or the GPU waiting on the other affected performance much. However, it's possible that the game could be waiting for some earlier interrupt, and any of several games which, for whatever reason, never went into a detectable idle (even when I tried to improve the detection) would never receive results at all. (The current method should have better compatibility, but it also has slightly higher overhead and breaks some other things, so I want to reimplement this, hopefully with less impact on the code, in the future.) With this commit, the basic idea is that the CPU thread acts as if the work has been done instantly, like single core mode, but actually hands it off asynchronously to the GPU thread (after backing up some data that the game might change in memory before it's actually done). Since the work isn't done, any feedback from the GPU to the CPU, such as real XFB/EFB copies (virtual are OK), EFB pokes, performance queries, etc. is broken; but most games work with these options disabled, and there is no need to try to detect what the CPU thread is doing. Technically: when the flag g_use_deterministic_gpu_thread (currently stuck on) is on, the CPU thread calls RunGpu like in single core mode. This function synchronously copies the data from the FIFO to the internal video buffer and updates the CP registers, interrupts, etc. However, instead of the regular ReadDataFromFifo followed by running the opcode decoder, it runs ReadDataFromFifoOnCPU -> OpcodeDecoder_Preprocess, which relatively quickly scans through the FIFO data, detects SetFinish calls etc., which are immediately fired, and saves certain associated data from memory (e.g. display lists) in AuxBuffers (a parallel stream to the main FIFO, which is a bit slow at the moment), before handing the data off to the GPU thread to actually render. That makes up the bulk of this commit. In various circumstances, including the aforementioned EFB pokes and performance queries as well as swap requests (i.e. the end of a frame - we don't want the CPU potentially pumping out frames too quickly and the GPU falling behind*), SyncGPU is called to wait for actual completion. The overhead mainly comes from OpcodeDecoder_Preprocess (which is, again, synchronous), as well as the actual copying. Currently, display lists and such are escrowed from main memory even though they usually won't change over the course of a frame, and textures are not even though they might, resulting in a small chance of graphical glitches. When the texture locking (i.e. fault on write) code lands, I can make this all correct and maybe a little faster. * This suggests an alternate determinism method of just delaying results until a short time before the end of each frame. For all I know this might mostly work - I haven't tried it - but if any significant work hinges on the competion of render to texture etc., the frame will be missed.
2014-08-28 02:56:19 +00:00
}
void GetBPRegInfo(const u8* data, std::string* name, std::string* desc)
2014-05-03 20:36:29 +00:00
{
const char* no_yes[2] = {"No", "Yes"};
u8 cmd = data[0];
u32 cmddata = Common::swap32(*(u32*)data) & 0xFFFFFF;
switch (cmd)
{
// Macro to set the register name and make sure it was written correctly via compile time assertion
#define SetRegName(reg) \
*name = #reg; \
(void)(reg);
case BPMEM_GENMODE: // 0x00
SetRegName(BPMEM_GENMODE);
// TODO: Description
break;
case BPMEM_DISPLAYCOPYFILTER: // 0x01
// TODO: This is actually the sample pattern used for copies from an antialiased EFB
SetRegName(BPMEM_DISPLAYCOPYFILTER);
// TODO: Description
break;
case 0x02: // 0x02
case 0x03: // 0x03
case 0x04: // 0x04
// TODO: same as BPMEM_DISPLAYCOPYFILTER
break;
case BPMEM_IND_MTXA: // 0x06
case BPMEM_IND_MTXA + 3:
case BPMEM_IND_MTXA + 6:
SetRegName(BPMEM_IND_MTXA);
// TODO: Description
break;
case BPMEM_IND_MTXB: // 0x07
case BPMEM_IND_MTXB + 3:
case BPMEM_IND_MTXB + 6:
SetRegName(BPMEM_IND_MTXB);
// TODO: Descriptio
break;
case BPMEM_IND_MTXC: // 0x08
case BPMEM_IND_MTXC + 3:
case BPMEM_IND_MTXC + 6:
SetRegName(BPMEM_IND_MTXC);
// TODO: Description
break;
case BPMEM_IND_IMASK: // 0x0F
SetRegName(BPMEM_IND_IMASK);
// TODO: Description
break;
case BPMEM_IND_CMD: // 0x10
case BPMEM_IND_CMD + 1:
case BPMEM_IND_CMD + 2:
case BPMEM_IND_CMD + 3:
case BPMEM_IND_CMD + 4:
case BPMEM_IND_CMD + 5:
case BPMEM_IND_CMD + 6:
case BPMEM_IND_CMD + 7:
case BPMEM_IND_CMD + 8:
case BPMEM_IND_CMD + 9:
case BPMEM_IND_CMD + 10:
case BPMEM_IND_CMD + 11:
case BPMEM_IND_CMD + 12:
case BPMEM_IND_CMD + 13:
case BPMEM_IND_CMD + 14:
case BPMEM_IND_CMD + 15:
SetRegName(BPMEM_IND_CMD);
// TODO: Description
break;
case BPMEM_SCISSORTL: // 0x20
SetRegName(BPMEM_SCISSORTL);
// TODO: Description
break;
case BPMEM_SCISSORBR: // 0x21
SetRegName(BPMEM_SCISSORBR);
// TODO: Description
break;
case BPMEM_LINEPTWIDTH: // 0x22
SetRegName(BPMEM_LINEPTWIDTH);
// TODO: Description
break;
case BPMEM_PERF0_TRI: // 0x23
SetRegName(BPMEM_PERF0_TRI);
// TODO: Description
break;
case BPMEM_PERF0_QUAD: // 0x24
SetRegName(BPMEM_PERF0_QUAD);
// TODO: Description
break;
case BPMEM_RAS1_SS0: // 0x25
SetRegName(BPMEM_RAS1_SS0);
// TODO: Description
break;
case BPMEM_RAS1_SS1: // 0x26
SetRegName(BPMEM_RAS1_SS1);
// TODO: Description
break;
case BPMEM_IREF: // 0x27
SetRegName(BPMEM_IREF);
// TODO: Description
break;
case BPMEM_TREF: // 0x28
case BPMEM_TREF + 1:
case BPMEM_TREF + 2:
case BPMEM_TREF + 3:
case BPMEM_TREF + 4:
case BPMEM_TREF + 5:
case BPMEM_TREF + 6:
case BPMEM_TREF + 7:
SetRegName(BPMEM_TREF);
// TODO: Description
break;
case BPMEM_SU_SSIZE: // 0x30
case BPMEM_SU_SSIZE + 2:
case BPMEM_SU_SSIZE + 4:
case BPMEM_SU_SSIZE + 6:
case BPMEM_SU_SSIZE + 8:
case BPMEM_SU_SSIZE + 10:
case BPMEM_SU_SSIZE + 12:
case BPMEM_SU_SSIZE + 14:
SetRegName(BPMEM_SU_SSIZE);
// TODO: Description
break;
case BPMEM_SU_TSIZE: // 0x31
case BPMEM_SU_TSIZE + 2:
case BPMEM_SU_TSIZE + 4:
case BPMEM_SU_TSIZE + 6:
case BPMEM_SU_TSIZE + 8:
case BPMEM_SU_TSIZE + 10:
case BPMEM_SU_TSIZE + 12:
case BPMEM_SU_TSIZE + 14:
SetRegName(BPMEM_SU_TSIZE);
// TODO: Description
break;
case BPMEM_ZMODE: // 0x40
SetRegName(BPMEM_ZMODE);
// TODO: Description
break;
case BPMEM_BLENDMODE: // 0x41
{
SetRegName(BPMEM_BLENDMODE);
BlendMode mode;
mode.hex = cmddata;
const char* dstfactors[] = {"0", "1", "src_color", "1-src_color",
"src_alpha", "1-src_alpha", "dst_alpha", "1-dst_alpha"};
const char* srcfactors[] = {"0", "1", "dst_color", "1-dst_color",
"src_alpha", "1-src_alpha", "dst_alpha", "1-dst_alpha"};
const char* logicmodes[] = {"0", "s & d", "s & ~d", "s", "~s & d", "d",
"s ^ d", "s | d", "~(s | d)", "~(s ^ d)", "~d", "s | ~d",
"~s", "~s | d", "~(s & d)", "1"};
*desc = StringFromFormat(
"Enable: %s\n"
"Logic ops: %s\n"
"Dither: %s\n"
"Color write: %s\n"
"Alpha write: %s\n"
"Dest factor: %s\n"
"Source factor: %s\n"
"Subtract: %s\n"
"Logic mode: %s\n",
no_yes[mode.blendenable], no_yes[mode.logicopenable], no_yes[mode.dither],
no_yes[mode.colorupdate], no_yes[mode.alphaupdate], dstfactors[mode.dstfactor],
srcfactors[mode.srcfactor], no_yes[mode.subtract], logicmodes[mode.logicmode]);
}
break;
case BPMEM_CONSTANTALPHA: // 0x42
SetRegName(BPMEM_CONSTANTALPHA);
// TODO: Description
break;
case BPMEM_ZCOMPARE: // 0x43
{
SetRegName(BPMEM_ZCOMPARE);
PEControl config;
config.hex = cmddata;
const char* pixel_formats[] = {"RGB8_Z24", "RGBA6_Z24", "RGB565_Z16", "Z24",
"Y8", "U8", "V8", "YUV420"};
const char* zformats[] = {
"linear", "compressed (near)", "compressed (mid)", "compressed (far)",
"inv linear", "compressed (inv near)", "compressed (inv mid)", "compressed (inv far)"};
*desc = StringFromFormat("EFB pixel format: %s\n"
"Depth format: %s\n"
"Early depth test: %s\n",
pixel_formats[config.pixel_format], zformats[config.zformat],
no_yes[config.early_ztest]);
}
break;
case BPMEM_FIELDMASK: // 0x44
SetRegName(BPMEM_FIELDMASK);
// TODO: Description
break;
case BPMEM_SETDRAWDONE: // 0x45
SetRegName(BPMEM_SETDRAWDONE);
// TODO: Description
break;
case BPMEM_BUSCLOCK0: // 0x46
SetRegName(BPMEM_BUSCLOCK0);
// TODO: Description
break;
case BPMEM_PE_TOKEN_ID: // 0x47
SetRegName(BPMEM_PE_TOKEN_ID);
// TODO: Description
break;
case BPMEM_PE_TOKEN_INT_ID: // 0x48
SetRegName(BPMEM_PE_TOKEN_INT_ID);
// TODO: Description
break;
case BPMEM_EFB_TL: // 0x49
{
SetRegName(BPMEM_EFB_TL);
X10Y10 left_top;
left_top.hex = cmddata;
*desc = StringFromFormat("Left: %d\nTop: %d", left_top.x, left_top.y);
}
break;
case BPMEM_EFB_BR: // 0x4A
{
// TODO: Misleading name, should be BPMEM_EFB_WH instead
SetRegName(BPMEM_EFB_BR);
X10Y10 width_height;
width_height.hex = cmddata;
*desc = StringFromFormat("Width: %d\nHeight: %d", width_height.x + 1, width_height.y + 1);
}
break;
case BPMEM_EFB_ADDR: // 0x4B
SetRegName(BPMEM_EFB_ADDR);
*desc = StringFromFormat("Target address (32 byte aligned): 0x%06X", cmddata << 5);
break;
case BPMEM_MIPMAP_STRIDE: // 0x4D
SetRegName(BPMEM_MIPMAP_STRIDE);
// TODO: Description
break;
case BPMEM_COPYYSCALE: // 0x4E
SetRegName(BPMEM_COPYYSCALE);
*desc = StringFromFormat("Scaling factor (XFB copy only): 0x%X (%f or inverted %f)", cmddata,
(float)cmddata / 256.f, 256.f / (float)cmddata);
break;
case BPMEM_CLEAR_AR: // 0x4F
SetRegName(BPMEM_CLEAR_AR);
*desc = StringFromFormat("Alpha: 0x%02X\nRed: 0x%02X", (cmddata & 0xFF00) >> 8, cmddata & 0xFF);
break;
case BPMEM_CLEAR_GB: // 0x50
SetRegName(BPMEM_CLEAR_GB);
*desc =
StringFromFormat("Green: 0x%02X\nBlue: 0x%02X", (cmddata & 0xFF00) >> 8, cmddata & 0xFF);
break;
case BPMEM_CLEAR_Z: // 0x51
SetRegName(BPMEM_CLEAR_Z);
*desc = StringFromFormat("Z value: 0x%06X", cmddata);
break;
case BPMEM_TRIGGER_EFB_COPY: // 0x52
{
SetRegName(BPMEM_TRIGGER_EFB_COPY);
UPE_Copy copy;
copy.Hex = cmddata;
*desc = StringFromFormat("Clamping: %s\n"
"Converting from RGB to YUV: %s\n"
"Target pixel format: 0x%X\n"
"Gamma correction: %s\n"
"Mipmap filter: %s\n"
"Vertical scaling: %s\n"
"Clear: %s\n"
"Frame to field: 0x%01X\n"
"Copy to XFB: %s\n"
"Intensity format: %s\n"
"Automatic color conversion: %s",
(copy.clamp0 && copy.clamp1) ? "Top and Bottom" : (copy.clamp0) ?
"Top only" :
(copy.clamp1) ? "Bottom only" : "None",
no_yes[copy.yuv], copy.tp_realFormat(),
(copy.gamma == 0) ? "1.0" : (copy.gamma == 1) ?
"1.7" :
(copy.gamma == 2) ? "2.2" : "Invalid value 0x3?",
no_yes[copy.half_scale], no_yes[copy.scale_invert], no_yes[copy.clear],
(u32)copy.frame_to_field, no_yes[copy.copy_to_xfb],
no_yes[copy.intensity_fmt], no_yes[copy.auto_conv]);
}
break;
case BPMEM_COPYFILTER0: // 0x53
SetRegName(BPMEM_COPYFILTER0);
// TODO: Description
break;
case BPMEM_COPYFILTER1: // 0x54
SetRegName(BPMEM_COPYFILTER1);
// TODO: Description
break;
case BPMEM_CLEARBBOX1: // 0x55
SetRegName(BPMEM_CLEARBBOX1);
// TODO: Description
break;
case BPMEM_CLEARBBOX2: // 0x56
SetRegName(BPMEM_CLEARBBOX2);
// TODO: Description
break;
case BPMEM_CLEAR_PIXEL_PERF: // 0x57
SetRegName(BPMEM_CLEAR_PIXEL_PERF);
// TODO: Description
break;
case BPMEM_REVBITS: // 0x58
SetRegName(BPMEM_REVBITS);
// TODO: Description
break;
case BPMEM_SCISSOROFFSET: // 0x59
SetRegName(BPMEM_SCISSOROFFSET);
// TODO: Description
break;
case BPMEM_PRELOAD_ADDR: // 0x60
SetRegName(BPMEM_PRELOAD_ADDR);
// TODO: Description
break;
case BPMEM_PRELOAD_TMEMEVEN: // 0x61
SetRegName(BPMEM_PRELOAD_TMEMEVEN);
// TODO: Description
break;
case BPMEM_PRELOAD_TMEMODD: // 0x62
SetRegName(BPMEM_PRELOAD_TMEMODD);
// TODO: Description
break;
case BPMEM_PRELOAD_MODE: // 0x63
SetRegName(BPMEM_PRELOAD_MODE);
// TODO: Description
break;
case BPMEM_LOADTLUT0: // 0x64
SetRegName(BPMEM_LOADTLUT0);
// TODO: Description
break;
case BPMEM_LOADTLUT1: // 0x65
SetRegName(BPMEM_LOADTLUT1);
// TODO: Description
break;
case BPMEM_TEXINVALIDATE: // 0x66
SetRegName(BPMEM_TEXINVALIDATE);
// TODO: Description
break;
case BPMEM_PERF1: // 0x67
SetRegName(BPMEM_PERF1);
// TODO: Description
break;
case BPMEM_FIELDMODE: // 0x68
SetRegName(BPMEM_FIELDMODE);
// TODO: Description
break;
case BPMEM_BUSCLOCK1: // 0x69
SetRegName(BPMEM_BUSCLOCK1);
// TODO: Description
break;
case BPMEM_TX_SETMODE0: // 0x80
case BPMEM_TX_SETMODE0 + 1:
case BPMEM_TX_SETMODE0 + 2:
case BPMEM_TX_SETMODE0 + 3:
SetRegName(BPMEM_TX_SETMODE0);
// TODO: Description
break;
case BPMEM_TX_SETMODE1: // 0x84
case BPMEM_TX_SETMODE1 + 1:
case BPMEM_TX_SETMODE1 + 2:
case BPMEM_TX_SETMODE1 + 3:
SetRegName(BPMEM_TX_SETMODE1);
// TODO: Description
break;
case BPMEM_TX_SETIMAGE0: // 0x88
case BPMEM_TX_SETIMAGE0 + 1:
case BPMEM_TX_SETIMAGE0 + 2:
case BPMEM_TX_SETIMAGE0 + 3:
case BPMEM_TX_SETIMAGE0_4: // 0xA8
case BPMEM_TX_SETIMAGE0_4 + 1:
case BPMEM_TX_SETIMAGE0_4 + 2:
case BPMEM_TX_SETIMAGE0_4 + 3:
{
SetRegName(BPMEM_TX_SETIMAGE0);
int texnum =
(cmd < BPMEM_TX_SETIMAGE0_4) ? cmd - BPMEM_TX_SETIMAGE0 : cmd - BPMEM_TX_SETIMAGE0_4 + 4;
TexImage0 teximg;
teximg.hex = cmddata;
*desc = StringFromFormat("Texture Unit: %i\n"
"Width: %i\n"
"Height: %i\n"
"Format: %x\n",
texnum, teximg.width + 1, teximg.height + 1, teximg.format);
}
break;
case BPMEM_TX_SETIMAGE1: // 0x8C
case BPMEM_TX_SETIMAGE1 + 1:
case BPMEM_TX_SETIMAGE1 + 2:
case BPMEM_TX_SETIMAGE1 + 3:
case BPMEM_TX_SETIMAGE1_4: // 0xAC
case BPMEM_TX_SETIMAGE1_4 + 1:
case BPMEM_TX_SETIMAGE1_4 + 2:
case BPMEM_TX_SETIMAGE1_4 + 3:
{
SetRegName(BPMEM_TX_SETIMAGE1);
int texnum =
(cmd < BPMEM_TX_SETIMAGE1_4) ? cmd - BPMEM_TX_SETIMAGE1 : cmd - BPMEM_TX_SETIMAGE1_4 + 4;
TexImage1 teximg;
teximg.hex = cmddata;
*desc = StringFromFormat("Texture Unit: %i\n"
"Even TMEM Offset: %x\n"
"Even TMEM Width: %i\n"
"Even TMEM Height: %i\n"
"Cache is manually managed: %s\n",
texnum, teximg.tmem_even, teximg.cache_width, teximg.cache_height,
no_yes[teximg.image_type]);
}
break;
case BPMEM_TX_SETIMAGE2: // 0x90
case BPMEM_TX_SETIMAGE2 + 1:
case BPMEM_TX_SETIMAGE2 + 2:
case BPMEM_TX_SETIMAGE2 + 3:
case BPMEM_TX_SETIMAGE2_4: // 0xB0
case BPMEM_TX_SETIMAGE2_4 + 1:
case BPMEM_TX_SETIMAGE2_4 + 2:
case BPMEM_TX_SETIMAGE2_4 + 3:
{
SetRegName(BPMEM_TX_SETIMAGE2);
int texnum =
(cmd < BPMEM_TX_SETIMAGE2_4) ? cmd - BPMEM_TX_SETIMAGE2 : cmd - BPMEM_TX_SETIMAGE2_4 + 4;
TexImage2 teximg;
teximg.hex = cmddata;
*desc = StringFromFormat("Texture Unit: %i\n"
"Odd TMEM Offset: %x\n"
"Odd TMEM Width: %i\n"
"Odd TMEM Height: %i\n",
texnum, teximg.tmem_odd, teximg.cache_width, teximg.cache_height);
}
break;
case BPMEM_TX_SETIMAGE3: // 0x94
case BPMEM_TX_SETIMAGE3 + 1:
case BPMEM_TX_SETIMAGE3 + 2:
case BPMEM_TX_SETIMAGE3 + 3:
case BPMEM_TX_SETIMAGE3_4: // 0xB4
case BPMEM_TX_SETIMAGE3_4 + 1:
case BPMEM_TX_SETIMAGE3_4 + 2:
case BPMEM_TX_SETIMAGE3_4 + 3:
{
SetRegName(BPMEM_TX_SETIMAGE3);
int texnum =
(cmd < BPMEM_TX_SETIMAGE3_4) ? cmd - BPMEM_TX_SETIMAGE3 : cmd - BPMEM_TX_SETIMAGE3_4 + 4;
TexImage3 teximg;
teximg.hex = cmddata;
*desc = StringFromFormat("Texture %i source address (32 byte aligned): 0x%06X", texnum,
teximg.image_base << 5);
}
break;
case BPMEM_TX_SETTLUT: // 0x98
case BPMEM_TX_SETTLUT + 1:
case BPMEM_TX_SETTLUT + 2:
case BPMEM_TX_SETTLUT + 3:
case BPMEM_TX_SETTLUT_4: // 0xB8
case BPMEM_TX_SETTLUT_4 + 1:
case BPMEM_TX_SETTLUT_4 + 2:
case BPMEM_TX_SETTLUT_4 + 3:
SetRegName(BPMEM_TX_SETTLUT);
// TODO: Description
break;
case BPMEM_TEV_COLOR_ENV: // 0xC0
case BPMEM_TEV_COLOR_ENV + 2:
case BPMEM_TEV_COLOR_ENV + 4:
case BPMEM_TEV_COLOR_ENV + 8:
case BPMEM_TEV_COLOR_ENV + 10:
case BPMEM_TEV_COLOR_ENV + 12:
case BPMEM_TEV_COLOR_ENV + 14:
case BPMEM_TEV_COLOR_ENV + 16:
case BPMEM_TEV_COLOR_ENV + 18:
case BPMEM_TEV_COLOR_ENV + 20:
case BPMEM_TEV_COLOR_ENV + 22:
case BPMEM_TEV_COLOR_ENV + 24:
case BPMEM_TEV_COLOR_ENV + 26:
case BPMEM_TEV_COLOR_ENV + 28:
case BPMEM_TEV_COLOR_ENV + 30:
{
SetRegName(BPMEM_TEV_COLOR_ENV);
TevStageCombiner::ColorCombiner cc;
cc.hex = cmddata;
const char* tevin[] = {
"prev.rgb", "prev.aaa", "c0.rgb", "c0.aaa", "c1.rgb", "c1.aaa", "c2.rgb", "c2.aaa",
"tex.rgb", "tex.aaa", "ras.rgb", "ras.aaa", "ONE", "HALF", "konst.rgb", "ZERO",
};
const char* tevbias[] = {"0", "+0.5", "-0.5", "compare"};
const char* tevop[] = {"add", "sub"};
const char* tevscale[] = {"1", "2", "4", "0.5"};
const char* tevout[] = {"prev.rgb", "c0.rgb", "c1.rgb", "c2.rgb"};
*desc = StringFromFormat("Tev stage: %d\n"
"a: %s\n"
"b: %s\n"
"c: %s\n"
"d: %s\n"
"Bias: %s\n"
"Op: %s\n"
"Clamp: %s\n"
"Scale factor: %s\n"
"Dest: %s\n",
(data[0] - BPMEM_TEV_COLOR_ENV) / 2, tevin[cc.a], tevin[cc.b],
tevin[cc.c], tevin[cc.d], tevbias[cc.bias], tevop[cc.op],
no_yes[cc.clamp], tevscale[cc.shift], tevout[cc.dest]);
break;
}
case BPMEM_TEV_ALPHA_ENV: // 0xC1
case BPMEM_TEV_ALPHA_ENV + 2:
case BPMEM_TEV_ALPHA_ENV + 4:
case BPMEM_TEV_ALPHA_ENV + 6:
case BPMEM_TEV_ALPHA_ENV + 8:
case BPMEM_TEV_ALPHA_ENV + 10:
case BPMEM_TEV_ALPHA_ENV + 12:
case BPMEM_TEV_ALPHA_ENV + 14:
case BPMEM_TEV_ALPHA_ENV + 16:
case BPMEM_TEV_ALPHA_ENV + 18:
case BPMEM_TEV_ALPHA_ENV + 20:
case BPMEM_TEV_ALPHA_ENV + 22:
case BPMEM_TEV_ALPHA_ENV + 24:
case BPMEM_TEV_ALPHA_ENV + 26:
case BPMEM_TEV_ALPHA_ENV + 28:
case BPMEM_TEV_ALPHA_ENV + 30:
{
SetRegName(BPMEM_TEV_ALPHA_ENV);
TevStageCombiner::AlphaCombiner ac;
ac.hex = cmddata;
const char* tevin[] = {
"prev", "c0", "c1", "c2", "tex", "ras", "konst", "ZERO",
};
const char* tevbias[] = {"0", "+0.5", "-0.5", "compare"};
const char* tevop[] = {"add", "sub"};
const char* tevscale[] = {"1", "2", "4", "0.5"};
const char* tevout[] = {"prev", "c0", "c1", "c2"};
*desc =
StringFromFormat("Tev stage: %d\n"
"a: %s\n"
"b: %s\n"
"c: %s\n"
"d: %s\n"
"Bias: %s\n"
"Op: %s\n"
"Clamp: %s\n"
"Scale factor: %s\n"
"Dest: %s\n"
"Ras sel: %d\n"
"Tex sel: %d\n",
(data[0] - BPMEM_TEV_ALPHA_ENV) / 2, tevin[ac.a], tevin[ac.b], tevin[ac.c],
tevin[ac.d], tevbias[ac.bias], tevop[ac.op], no_yes[ac.clamp],
tevscale[ac.shift], tevout[ac.dest], ac.rswap.Value(), ac.tswap.Value());
break;
}
case BPMEM_TEV_COLOR_RA: // 0xE0
case BPMEM_TEV_COLOR_RA + 2: // 0xE2
case BPMEM_TEV_COLOR_RA + 4: // 0xE4
case BPMEM_TEV_COLOR_RA + 6: // 0xE6
SetRegName(BPMEM_TEV_COLOR_RA);
// TODO: Description
break;
case BPMEM_TEV_COLOR_BG: // 0xE1
case BPMEM_TEV_COLOR_BG + 2: // 0xE3
case BPMEM_TEV_COLOR_BG + 4: // 0xE5
case BPMEM_TEV_COLOR_BG + 6: // 0xE7
SetRegName(BPMEM_TEV_COLOR_BG);
// TODO: Description
break;
case BPMEM_FOGRANGE: // 0xE8
case BPMEM_FOGRANGE + 1:
case BPMEM_FOGRANGE + 2:
case BPMEM_FOGRANGE + 3:
case BPMEM_FOGRANGE + 4:
case BPMEM_FOGRANGE + 5:
SetRegName(BPMEM_FOGRANGE);
// TODO: Description
break;
case BPMEM_FOGPARAM0: // 0xEE
SetRegName(BPMEM_FOGPARAM0);
// TODO: Description
break;
case BPMEM_FOGBMAGNITUDE: // 0xEF
SetRegName(BPMEM_FOGBMAGNITUDE);
// TODO: Description
break;
case BPMEM_FOGBEXPONENT: // 0xF0
SetRegName(BPMEM_FOGBEXPONENT);
// TODO: Description
break;
case BPMEM_FOGPARAM3: // 0xF1
SetRegName(BPMEM_FOGPARAM3);
// TODO: Description
break;
case BPMEM_FOGCOLOR: // 0xF2
SetRegName(BPMEM_FOGCOLOR);
// TODO: Description
break;
case BPMEM_ALPHACOMPARE: // 0xF3
{
SetRegName(BPMEM_ALPHACOMPARE);
AlphaTest test;
test.hex = cmddata;
const char* functions[] = {"NEVER", "LESS", "EQUAL", "LEQUAL",
"GREATER", "NEQUAL", "GEQUAL", "ALWAYS"};
const char* logic[] = {"AND", "OR", "XOR", "XNOR"};
*desc = StringFromFormat("Test 1: %s (ref: %#02x)\n"
"Test 2: %s (ref: %#02x)\n"
"Logic: %s\n",
functions[test.comp0], (int)test.ref0, functions[test.comp1],
(int)test.ref1, logic[test.logic]);
break;
}
case BPMEM_BIAS: // 0xF4
SetRegName(BPMEM_BIAS);
// TODO: Description
break;
case BPMEM_ZTEX2: // 0xF5
SetRegName(BPMEM_ZTEX2);
// TODO: Description
break;
case BPMEM_TEV_KSEL: // 0xF6
case BPMEM_TEV_KSEL + 1:
case BPMEM_TEV_KSEL + 2:
case BPMEM_TEV_KSEL + 3:
case BPMEM_TEV_KSEL + 4:
case BPMEM_TEV_KSEL + 5:
case BPMEM_TEV_KSEL + 6:
case BPMEM_TEV_KSEL + 7:
SetRegName(BPMEM_TEV_KSEL);
// TODO: Description
break;
2014-05-03 20:36:29 +00:00
#undef SetRegName
}
2014-05-03 20:36:29 +00:00
}
// Called when loading a saved state.
void BPReload()
{
// restore anything that goes straight to the renderer.
// let's not risk actually replaying any writes.
// note that PixelShaderManager is already covered since it has its own DoState.
SetGenerationMode();
SetScissor();
SetDepthMode();
SetLogicOpMode();
SetBlendMode();
SetColorMask();
OnPixelFormatChange();
}