desmume/src/OGLRender.cpp

1496 lines
40 KiB
C++

/*
Copyright (C) 2006 yopyop
Copyright (C) 2006-2007 shash
This file is part of DeSmuME
DeSmuME is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
DeSmuME is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with DeSmuME; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
//problem - alpha-on-alpha texture rendering might work but the dest alpha buffer isnt tracked correctly
//due to zeromus not having any idea how to set dest alpha blending in opengl.
//so, it doesnt composite to 2d correctly.
//(re: new super mario brothers renders the stormclouds at the beginning)
#include "OGLRender.h"
#include "debug.h"
//#define DEBUG_DUMP_TEXTURE
bool (*oglrender_init)() = 0;
bool (*oglrender_beginOpenGL)() = 0;
void (*oglrender_endOpenGL)() = 0;
static bool BEGINGL() {
if(oglrender_beginOpenGL)
return oglrender_beginOpenGL();
else return true;
}
static void ENDGL() {
if(oglrender_endOpenGL)
oglrender_endOpenGL();
}
#ifdef _WIN32
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include <GL/gl.h>
#include <GL/glext.h>
#else
#ifdef DESMUME_COCOA
#include <OpenGL/gl.h>
#include <OpenGL/glext.h>
#else
#include <GL/gl.h>
#include <GL/glext.h>
#endif
#endif
#include "types.h"
#include "debug.h"
#include "MMU.h"
#include "bits.h"
#include "matrix.h"
#include "NDSSystem.h"
#include "OGLRender.h"
#include "gfx3d.h"
#include "shaders.h"
//This class represents a number of regions of memory which should be viewed as contiguous
class MemSpan
{
public:
static const int MAXSIZE = 8;
MemSpan()
: numItems(0)
{}
int numItems;
struct Item {
u32 start;
u32 len;
u8* ptr;
u32 ofs; //offset within the memspan
} items[MAXSIZE];
int size;
//this MemSpan shall be considered the first argument to a standard memcmp
//the length shall be as specified in this MemSpan, unless you specify otherwise
int memcmp(void* buf2, int size=-1)
{
if(size==-1) size = this->size;
size = std::min(this->size,size);
for(int i=0;i<numItems;i++)
{
Item &item = items[i];
int todo = std::min((int)item.len,size);
size -= todo;
int temp = ::memcmp(item.ptr,((u8*)buf2)+item.ofs,todo);
if(temp) return temp;
if(size == 0) break;
}
return 0;
}
//dumps the memspan to the specified buffer
//you may set size to limit the size to be copied
int dump(void* buf, int size=-1)
{
if(size==-1) size = this->size;
size = std::min(this->size,size);
u8* bufptr = (u8*)buf;
int done = 0;
for(int i=0;i<numItems;i++)
{
Item item = items[i];
int todo = std::min((int)item.len,size);
size -= todo;
done += todo;
memcpy(bufptr,item.ptr,todo);
bufptr += todo;
if(size==0) return done;
}
return done;
}
};
//creates a MemSpan in texture memory
static MemSpan MemSpan_TexMem(u32 ofs, u32 len)
{
MemSpan ret;
ret.size = len;
u32 currofs = 0;
while(len) {
MemSpan::Item &curr = ret.items[ret.numItems++];
curr.start = ofs&0x1FFFF;
u32 slot = (ofs>>17)&3; //slots will wrap around
curr.len = std::min(len,0x20000-curr.start);
curr.ofs = currofs;
len -= curr.len;
ofs += curr.len;
currofs += curr.len;
u8* ptr = ARM9Mem.textureSlotAddr[slot];
if(ptr == ARM9Mem.blank_memory) {
PROGINFO("Tried to reference unmapped texture memory: slot %d\n",slot);
}
curr.ptr = ptr + curr.start;
}
return ret;
}
//creates a MemSpan in texture palette memory
static MemSpan MemSpan_TexPalette(u32 ofs, u32 len)
{
MemSpan ret;
ret.size = len;
u32 currofs = 0;
while(len) {
MemSpan::Item &curr = ret.items[ret.numItems++];
curr.start = ofs&0x3FFF;
u32 slot = (ofs>>14)&7; //this masks to 8 slots, but there are really only 6
if(slot>5) {
PROGINFO("Texture palette overruns texture memory. Wrapping at palette slot 0.\n");
slot -= 5;
}
curr.len = std::min(len,0x4000-curr.start);
curr.ofs = currofs;
len -= curr.len;
ofs += curr.len;
//if(len != 0)
//here is an actual test case of bank spanning
currofs += curr.len;
u8* ptr = ARM9Mem.texPalSlot[slot];
if(ptr == ARM9Mem.blank_memory) {
PROGINFO("Tried to reference unmapped texture palette memory: 16k slot #%d\n",slot);
}
curr.ptr = ptr + curr.start;
}
return ret;
}
#ifndef CTASSERT
#define CTASSERT(x) typedef char __assert ## y[(x) ? 1 : -1]
#endif
static ALIGN(16) u8 GPU_screen3D [256*192*4];
//static ALIGN(16) unsigned char GPU_screenStencil[256*256];
static const unsigned short map3d_cull[4] = {GL_FRONT_AND_BACK, GL_FRONT, GL_BACK, 0};
static const int texEnv[4] = { GL_MODULATE, GL_DECAL, GL_MODULATE, GL_MODULATE };
static const int depthFunc[2] = { GL_LESS, GL_EQUAL };
static bool needRefreshFramebuffer = false;
static unsigned char texMAP[1024*2048*4];
static unsigned int textureMode=TEXMODE_NONE;
float clearAlpha;
//raw ds format poly attributes, installed from the display list
static u32 textureFormat=0, texturePalette=0;
//derived values extracted from polyattr etc
static bool wireframe=false, alpha31=false;
static unsigned int polyID=0;
static unsigned int depthFuncMode=0;
static unsigned int envMode=0;
static unsigned int lastEnvMode=0;
static unsigned int cullingMask=0;
static bool alphaDepthWrite;
static unsigned int lightMask=0;
static bool isTranslucent;
//------------------------------------------------------------
#define OGLEXT(x,y) x y = 0;
#ifdef _WIN32
#define INITOGLEXT(x,y) y = (x)wglGetProcAddress(#y);
#elif !defined(DESMUME_COCOA)
#include <GL/glx.h>
#define INITOGLEXT(x,y) y = (x)glXGetProcAddress((const GLubyte *) #y);
#endif
#ifndef DESMUME_COCOA
OGLEXT(PFNGLCREATESHADERPROC,glCreateShader)
//zero: i dont understand this at all. my glext.h has the wrong thing declared here... so I have to do it myself
typedef void (APIENTRYP X_PFNGLGETSHADERSOURCEPROC) (GLuint shader, GLsizei bufSize, const GLchar **source, GLsizei *length);
OGLEXT(X_PFNGLGETSHADERSOURCEPROC,glShaderSource)
OGLEXT(PFNGLCOMPILESHADERPROC,glCompileShader)
OGLEXT(PFNGLCREATEPROGRAMPROC,glCreateProgram)
OGLEXT(PFNGLATTACHSHADERPROC,glAttachShader)
OGLEXT(PFNGLDETACHSHADERPROC,glDetachShader)
OGLEXT(PFNGLLINKPROGRAMPROC,glLinkProgram)
OGLEXT(PFNGLUSEPROGRAMPROC,glUseProgram)
OGLEXT(PFNGLGETSHADERIVPROC,glGetShaderiv)
OGLEXT(PFNGLGETSHADERINFOLOGPROC,glGetShaderInfoLog)
OGLEXT(PFNGLDELETESHADERPROC,glDeleteShader)
OGLEXT(PFNGLDELETEPROGRAMPROC,glDeleteProgram)
OGLEXT(PFNGLGETPROGRAMIVPROC,glGetProgramiv)
OGLEXT(PFNGLGETPROGRAMINFOLOGPROC,glGetProgramInfoLog)
OGLEXT(PFNGLVALIDATEPROGRAMPROC,glValidateProgram)
OGLEXT(PFNGLBLENDFUNCSEPARATEEXTPROC,glBlendFuncSeparateEXT)
OGLEXT(PFNGLGETUNIFORMLOCATIONPROC,glGetUniformLocation)
OGLEXT(PFNGLUNIFORM1IPROC,glUniform1i)
#endif
#if !defined(GL_VERSION_1_3) || defined(_MSC_VER) || defined(__INTEL_COMPILER)
OGLEXT(PFNGLACTIVETEXTUREPROC,glActiveTexture)
#endif
//opengl state caching:
//This is of dubious performance assistance, but it is easy to take out so I am leaving it for now.
//every function that is xgl* can be replaced with gl* if we decide to rip this out or if anyone else
//doesnt feel like sticking with it (or if it causes trouble)
static void xglDepthFunc(GLenum func) {
static GLenum oldfunc = -1;
if(oldfunc == func) return;
glDepthFunc(oldfunc=func);
}
static void xglPolygonMode(GLenum face,GLenum mode) {
static GLenum oldmodes[2] = {-1,-1};
switch(face) {
case GL_FRONT: if(oldmodes[0]==mode) return; else glPolygonMode(GL_FRONT,oldmodes[0]=mode); return;
case GL_BACK: if(oldmodes[1]==mode) return; else glPolygonMode(GL_BACK,oldmodes[1]=mode); return;
case GL_FRONT_AND_BACK: if(oldmodes[0]==mode && oldmodes[1]==mode) return; else glPolygonMode(GL_FRONT_AND_BACK,oldmodes[0]=oldmodes[1]=mode);
}
}
#if 0
#ifdef _WIN32
static void xglUseProgram(GLuint program) {
if(!glUseProgram) return;
static GLuint oldprogram = -1;
if(oldprogram==program) return;
glUseProgram(oldprogram=program);
}
#else
#if 0 /* not used */
static void xglUseProgram(GLuint program) {
(void)program;
return;
}
#endif
#endif
#endif
static void xglDepthMask (GLboolean flag) {
static GLboolean oldflag = -1;
if(oldflag==flag) return;
glDepthMask(oldflag=flag);
}
struct GLCaps {
u8 caps[0x100];
GLCaps() {
memset(caps,0xFF,sizeof(caps));
}
};
static GLCaps glcaps;
static void _xglEnable(GLenum cap) {
cap -= 0x0B00;
if(glcaps.caps[cap] == 0xFF || glcaps.caps[cap] == 0) {
glEnable(cap+0x0B00);
glcaps.caps[cap] = 1;
}
}
static void _xglDisable(GLenum cap) {
cap -= 0x0B00;
if(glcaps.caps[cap]) {
glDisable(cap+0x0B00);
glcaps.caps[cap] = 0;
}
}
#define xglEnable(cap) { \
CTASSERT((cap-0x0B00)<0x100); \
_xglEnable(cap); }
#define xglDisable(cap) {\
CTASSERT((cap-0x0B00)<0x100); \
_xglDisable(cap); }
//================================================= Textures
#define MAX_TEXTURE 500
#ifdef SSE2
struct ALIGN(16) TextureCache
#else
struct ALIGN(8) TextureCache
#endif
{
GLenum id;
u32 frm;
u32 mode;
u32 pal;
u32 sizeX;
u32 sizeY;
float invSizeX;
float invSizeY;
int textureSize, indexSize;
u8 texture[128*1024]; // 128Kb texture slot
u8 palette[256*2];
//set if this texture is suspected be invalid due to a vram reconfigure
bool suspectedInvalid;
};
TextureCache texcache[MAX_TEXTURE+1];
u32 texcache_count;
u32 texcache_start;
u32 texcache_stop;
//u32 texcache_last;
GLenum oglTempTextureID[MAX_TEXTURE];
GLenum oglToonTableTextureID;
#define NOSHADERS(i) { hasShaders = false; INFO("Shaders aren't supported on your system, using fixed pipeline\n(failed shader init at step %i)\n", i); return; }
#define SHADER_COMPCHECK(s) { \
GLint status = GL_TRUE; \
glGetShaderiv(s, GL_COMPILE_STATUS, &status); \
if(status != GL_TRUE) \
{ \
GLint logSize; \
GLchar *log; \
glGetShaderiv(s, GL_INFO_LOG_LENGTH, &logSize); \
log = new GLchar[logSize]; \
glGetShaderInfoLog(s, logSize, &logSize, log); \
INFO("SEVERE : FAILED TO COMPILE GL SHADER : %s\n", log); \
delete log; \
if(s)glDeleteShader(s); \
NOSHADERS(3); \
} \
}
#define PROGRAM_COMPCHECK(p, s1, s2) { \
GLint status = GL_TRUE; \
glGetProgramiv(p, GL_LINK_STATUS, &status); \
if(status != GL_TRUE) \
{ \
GLint logSize; \
GLchar *log; \
glGetProgramiv(p, GL_INFO_LOG_LENGTH, &logSize); \
log = new GLchar[logSize]; \
glGetProgramInfoLog(p, logSize, &logSize, log); \
INFO("SEVERE : FAILED TO LINK GL SHADER PROGRAM : %s\n", log); \
delete log; \
if(s1)glDeleteShader(s1); \
if(s2)glDeleteShader(s2); \
NOSHADERS(5); \
} \
}
bool hasShaders = false;
/* Vertex shader */
GLuint vertexShaderID;
/* Fragment shader */
GLuint fragmentShaderID;
/* Shader program */
GLuint shaderProgram;
static GLuint hasTexLoc;
static GLuint texBlendLoc;
/* Shaders init */
static void createShaders()
{
hasShaders = true;
#ifdef HAVE_LIBOSMESA
NOSHADERS(1);
#endif
if (glCreateShader == NULL || //use ==NULL instead of !func to avoid always true warnings for some systems
glShaderSource == NULL ||
glCompileShader == NULL ||
glCreateProgram == NULL ||
glAttachShader == NULL ||
glLinkProgram == NULL ||
glUseProgram == NULL ||
glGetShaderInfoLog == NULL)
NOSHADERS(1);
vertexShaderID = glCreateShader(GL_VERTEX_SHADER);
if(!vertexShaderID)
NOSHADERS(2);
glShaderSource(vertexShaderID, 1, (const GLchar**)&vertexShader, NULL);
glCompileShader(vertexShaderID);
SHADER_COMPCHECK(vertexShaderID);
fragmentShaderID = glCreateShader(GL_FRAGMENT_SHADER);
if(!fragmentShaderID)
NOSHADERS(2);
glShaderSource(fragmentShaderID, 1, (const GLchar**)&fragmentShader, NULL);
glCompileShader(fragmentShaderID);
SHADER_COMPCHECK(fragmentShaderID);
shaderProgram = glCreateProgram();
if(!shaderProgram)
NOSHADERS(4);
glAttachShader(shaderProgram, vertexShaderID);
glAttachShader(shaderProgram, fragmentShaderID);
glLinkProgram(shaderProgram);
PROGRAM_COMPCHECK(shaderProgram, vertexShaderID, fragmentShaderID);
glValidateProgram(shaderProgram);
glUseProgram(shaderProgram);
INFO("Successfully created OpenGL shaders.\n");
}
//=================================================
static void OGLReset()
{
int i;
//reset the texture cache
memset(&texcache,0,sizeof(texcache));
texcache_count=0;
for (i = 0; i < MAX_TEXTURE; i++)
texcache[i].id=oglTempTextureID[i];
texcache_start=0;
texcache_stop=MAX_TEXTURE<<1;
for(i=0;i<MAX_TEXTURE+1;i++)
texcache[i].suspectedInvalid = true;
//clear the framebuffers
// memset(GPU_screenStencil,0,sizeof(GPU_screenStencil));
memset(GPU_screen3D,0,sizeof(GPU_screen3D));
needRefreshFramebuffer = false;
memset(texMAP, 0, sizeof(texMAP));
textureMode=TEXMODE_NONE;
}
static char OGLInit(void)
{
GLuint loc;
if(!oglrender_init)
return 0;
if(!oglrender_init())
return 0;
if(!BEGINGL())
return 0;
glPixelStorei(GL_PACK_ALIGNMENT,8);
xglEnable (GL_NORMALIZE);
xglEnable (GL_DEPTH_TEST);
glEnable (GL_TEXTURE_1D);
glEnable (GL_TEXTURE_2D);
glAlphaFunc (GL_GREATER, 0);
xglEnable (GL_ALPHA_TEST);
glGenTextures (MAX_TEXTURE, &oglTempTextureID[0]);
glViewport(0, 0, 256, 192);
if (glGetError() != GL_NO_ERROR)
return 0;
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
#ifndef DESMUME_COCOA
INITOGLEXT(PFNGLCREATESHADERPROC,glCreateShader)
INITOGLEXT(X_PFNGLGETSHADERSOURCEPROC,glShaderSource)
INITOGLEXT(PFNGLCOMPILESHADERPROC,glCompileShader)
INITOGLEXT(PFNGLCREATEPROGRAMPROC,glCreateProgram)
INITOGLEXT(PFNGLATTACHSHADERPROC,glAttachShader)
INITOGLEXT(PFNGLDETACHSHADERPROC,glDetachShader)
INITOGLEXT(PFNGLLINKPROGRAMPROC,glLinkProgram)
INITOGLEXT(PFNGLUSEPROGRAMPROC,glUseProgram)
INITOGLEXT(PFNGLGETSHADERIVPROC,glGetShaderiv)
INITOGLEXT(PFNGLGETSHADERINFOLOGPROC,glGetShaderInfoLog)
INITOGLEXT(PFNGLDELETESHADERPROC,glDeleteShader)
INITOGLEXT(PFNGLDELETEPROGRAMPROC,glDeleteProgram)
INITOGLEXT(PFNGLGETPROGRAMIVPROC,glGetProgramiv)
INITOGLEXT(PFNGLGETPROGRAMINFOLOGPROC,glGetProgramInfoLog)
INITOGLEXT(PFNGLVALIDATEPROGRAMPROC,glValidateProgram)
#ifdef HAVE_LIBOSMESA
glBlendFuncSeparateEXT = NULL;
#else
INITOGLEXT(PFNGLBLENDFUNCSEPARATEEXTPROC,glBlendFuncSeparateEXT)
#endif
INITOGLEXT(PFNGLGETUNIFORMLOCATIONPROC,glGetUniformLocation)
INITOGLEXT(PFNGLUNIFORM1IPROC,glUniform1i)
#endif
#if !defined(GL_VERSION_1_3) || defined(_MSC_VER) || defined(__INTEL_COMPILER)
INITOGLEXT(PFNGLACTIVETEXTUREPROC,glActiveTexture)
#endif
/* Create the shaders */
createShaders();
/* Assign the texture units : 0 for main textures, 1 for toon table */
/* Also init the locations for some variables in the shaders */
if(hasShaders)
{
loc = glGetUniformLocation(shaderProgram, "tex2d");
glUniform1i(loc, 0);
loc = glGetUniformLocation(shaderProgram, "toonTable");
glUniform1i(loc, 1);
hasTexLoc = glGetUniformLocation(shaderProgram, "hasTexture");
glUniform1i(hasTexLoc, 1);
texBlendLoc = glGetUniformLocation(shaderProgram, "texBlending");
glUniform1i(texBlendLoc, 0);
}
//we want to use alpha destination blending so we can track the last-rendered alpha value
if(glBlendFuncSeparateEXT != NULL)
{
glBlendFuncSeparateEXT(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE, GL_DST_ALPHA);
}
if(hasShaders)
{
glGenTextures (1, &oglToonTableTextureID);
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_1D, oglToonTableTextureID);
glTexParameterf(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameterf(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_WRAP_S, GL_CLAMP); //clamp so that we dont run off the edges due to 1.0 -> [0,31] math
}
if(glBlendFuncSeparateEXT == NULL)
clearAlpha = 1;
else
clearAlpha = 0;
OGLReset();
ENDGL();
return 1;
}
static void OGLClose()
{
if(!BEGINGL())
return;
if(hasShaders)
{
glUseProgram(0);
glDetachShader(shaderProgram, vertexShaderID);
glDetachShader(shaderProgram, fragmentShaderID);
glDeleteProgram(shaderProgram);
glDeleteShader(vertexShaderID);
glDeleteShader(fragmentShaderID);
hasShaders = false;
}
glDeleteTextures(MAX_TEXTURE, &oglTempTextureID[0]);
glDeleteTextures(1, &oglToonTableTextureID);
ENDGL();
}
//todo - make all color conversions go through a properly spread table!!
#if defined (DEBUG_DUMP_TEXTURE) && defined (WIN32)
static void DebugDumpTexture(int which)
{
char fname[100];
sprintf(fname,"c:\\dump\\%d.bmp", which);
glBindTexture(GL_TEXTURE_2D,texcache[which].id);
glGetTexImage( GL_TEXTURE_2D ,
0,
GL_BGRA_EXT,
GL_UNSIGNED_BYTE,
texMAP);
NDS_WriteBMP_32bppBuffer(texcache[which].sizeX,texcache[which].sizeY,texMAP,fname);
}
#else
#define DebugDumpTexture(which) do { (void)which; } while (0)
#endif
//================================================================================
static int lastTexture = -1;
static bool hasTexture = false;
static void setTexture(unsigned int format, unsigned int texpal)
{
//for each texformat, number of palette entries
const int palSizes[] = {0, 32, 4, 16, 256, 0, 8, 0};
//for each texformat, multiplier from numtexels to numbytes (fixed point 30.2)
const int texSizes[] = {0, 4, 1, 2, 4, 1, 4, 8};
//used to hold a copy of the palette specified for this texture
u16 pal[256];
u32 *dwdst = (u32*)texMAP;
textureMode = (unsigned short)((format>>26)&0x07);
unsigned int sizeX=(8 << ((format>>20)&0x07));
unsigned int sizeY=(8 << ((format>>23)&0x07));
unsigned int imageSize = sizeX*sizeY;
u8 *adr;
if (format==0)
{
texcache_count=-1;
if(hasShaders && hasTexture) { glUniform1i(hasTexLoc, 0); hasTexture = false; }
return;
}
if (textureMode==0)
{
texcache_count=-1;
if(hasShaders && hasTexture) { glUniform1i(hasTexLoc, 0); hasTexture = false; }
return;
}
if(hasShaders)
{
if(!hasTexture) { glUniform1i(hasTexLoc, 1); hasTexture = true; }
glActiveTexture(GL_TEXTURE0);
}
u32 paletteAddress;
switch (textureMode)
{
case TEXMODE_I2:
paletteAddress = texturePalette<<3;
break;
case TEXMODE_A3I5: //a3i5
case TEXMODE_I4: //i4
case TEXMODE_I8: //i8
case TEXMODE_A5I3: //a5i3
case TEXMODE_16BPP: //16bpp
case TEXMODE_4X4: //4x4
default:
paletteAddress = texturePalette<<4;
break;
}
//analyze the texture memory mapping and the specifications of this texture
int palSize = palSizes[textureMode];
int texSize = (imageSize*texSizes[textureMode])>>2; //shifted because the texSizes multiplier is fixed point
MemSpan ms = MemSpan_TexMem((format&0xFFFF)<<3,texSize);
MemSpan mspal = MemSpan_TexPalette(paletteAddress,palSize*2);
//determine the location for 4x4 index data
u32 indexBase;
if((format & 0xc000) == 0x8000) indexBase = 0x30000;
else indexBase = 0x20000;
u32 indexOffset = (format&0x3FFF)<<2;
int indexSize = 0;
MemSpan msIndex;
if(textureMode == TEXMODE_4X4)
{
indexSize = imageSize>>3;
msIndex = MemSpan_TexMem(indexOffset+indexBase,indexSize);
}
//dump the palette to a temp buffer, so that we don't have to worry about memory mapping.
//this isnt such a problem with texture memory, because we read sequentially from it.
//however, we read randomly from palette memory, so the mapping is more costly.
mspal.dump(pal);
u32 tx=texcache_start;
//if(false)
while (TRUE)
{
//conditions where we give up and regenerate the texture:
if (texcache_stop == tx) break;
if (texcache[tx].frm == 0) break;
//conditions where we reject matches:
//when the teximage or texpal params dont match
//(this is our key for identifying palettes in the cache)
if (texcache[tx].frm != format) goto REJECT;
if (texcache[tx].pal != texpal) goto REJECT;
//the texture matches params, but isnt suspected invalid. accept it.
if (!texcache[tx].suspectedInvalid) goto ACCEPT;
//if we couldnt cache this entire texture due to it being too large, then reject it
if (texSize+indexSize > (int)sizeof(texcache[tx].texture)) goto REJECT;
//when the palettes dont match:
//note that we are considering 4x4 textures to have a palette size of 0.
//they really have a potentially HUGE palette, too big for us to handle like a normal palette,
//so they go through a different system
if (mspal.size != 0 && memcmp(texcache[tx].palette,pal,mspal.size)) goto REJECT;
//when the texture data doesn't match
if(ms.memcmp(texcache[tx].texture,sizeof(texcache[tx].texture))) goto REJECT;
//if the texture is 4x4 then the index data must match
if(textureMode == TEXMODE_4X4)
{
if(msIndex.memcmp(texcache[tx].texture + texcache[tx].textureSize,texcache[tx].indexSize)) goto REJECT;
}
ACCEPT:
texcache[tx].suspectedInvalid = false;
texcache_count = tx;
if(lastTexture == -1 || (int)tx != lastTexture)
{
lastTexture = tx;
glBindTexture(GL_TEXTURE_2D,texcache[tx].id);
glMatrixMode (GL_TEXTURE);
glLoadIdentity ();
glScaled (texcache[tx].invSizeX, texcache[tx].invSizeY, 1.0f);
}
return;
REJECT:
tx++;
if ( tx > MAX_TEXTURE )
{
texcache_stop=texcache_start;
texcache[texcache_stop].frm=0;
texcache_start++;
if (texcache_start>MAX_TEXTURE)
{
texcache_start=0;
texcache_stop=MAX_TEXTURE<<1;
}
tx=0;
}
}
lastTexture = tx;
glBindTexture(GL_TEXTURE_2D, texcache[tx].id);
texcache[tx].suspectedInvalid = false;
texcache[tx].frm=format;
texcache[tx].mode=textureMode;
texcache[tx].pal=texpal;
texcache[tx].sizeX=sizeX;
texcache[tx].sizeY=sizeY;
texcache[tx].invSizeX=1.0f/((float)(sizeX));
texcache[tx].invSizeY=1.0f/((float)(sizeY));
texcache[tx].textureSize = ms.dump(texcache[tx].texture,sizeof(texcache[tx].texture));
//dump palette data for cache keying
if ( palSize )
{
memcpy(texcache[tx].palette, pal, palSize*2);
}
//dump 4x4 index data for cache keying
texcache[tx].indexSize = 0;
if(textureMode == TEXMODE_4X4)
{
texcache[tx].indexSize = std::min(msIndex.size,(int)sizeof(texcache[tx].texture) - texcache[tx].textureSize);
msIndex.dump(texcache[tx].texture+texcache[tx].textureSize,texcache[tx].indexSize);
}
glMatrixMode (GL_TEXTURE);
glLoadIdentity ();
glScaled (texcache[tx].invSizeX, texcache[tx].invSizeY, 1.0f);
//INFO("Texture %03i - format=%08X; pal=%04X (mode %X, width %04i, height %04i)\n",i, texcache[i].frm, texcache[i].pal, texcache[i].mode, sizeX, sizeY);
//============================================================================ Texture conversion
u32 palZeroTransparent = (1-((format>>29)&1))*255; // shash: CONVERT THIS TO A TABLE :)
switch (texcache[tx].mode)
{
case TEXMODE_A3I5:
{
for(int j=0;j<ms.numItems;j++) {
adr = ms.items[j].ptr;
for(u32 x = 0; x < ms.items[j].len; x++)
{
u16 c = pal[*adr&31];
u8 alpha = *adr>>5;
*dwdst++ = RGB15TO32(c,material_3bit_to_8bit[alpha]);
adr++;
}
}
break;
}
case TEXMODE_I2:
{
for(int j=0;j<ms.numItems;j++) {
adr = ms.items[j].ptr;
for(u32 x = 0; x < ms.items[j].len; x++)
{
u8 bits;
u16 c;
bits = (*adr)&0x3;
c = pal[bits];
*dwdst++ = RGB15TO32(c,(bits == 0) ? palZeroTransparent : 255);
bits = ((*adr)>>2)&0x3;
c = pal[bits];
*dwdst++ = RGB15TO32(c,(bits == 0) ? palZeroTransparent : 255);
bits = ((*adr)>>4)&0x3;
c = pal[bits];
*dwdst++ = RGB15TO32(c,(bits == 0) ? palZeroTransparent : 255);
bits = ((*adr)>>6)&0x3;
c = pal[bits];
*dwdst++ = RGB15TO32(c,(bits == 0) ? palZeroTransparent : 255);
adr++;
}
}
break;
}
case TEXMODE_I4:
{
for(int j=0;j<ms.numItems;j++) {
adr = ms.items[j].ptr;
for(u32 x = 0; x < ms.items[j].len; x++)
{
u8 bits;
u16 c;
bits = (*adr)&0xF;
c = pal[bits];
*dwdst++ = RGB15TO32(c,(bits == 0) ? palZeroTransparent : 255);
bits = ((*adr)>>4);
c = pal[bits];
*dwdst++ = RGB15TO32(c,(bits == 0) ? palZeroTransparent : 255);
adr++;
}
}
break;
}
case TEXMODE_I8:
{
for(int j=0;j<ms.numItems;j++) {
adr = ms.items[j].ptr;
for(u32 x = 0; x < ms.items[j].len; ++x)
{
u16 c = pal[*adr];
*dwdst++ = RGB15TO32(c,(*adr == 0) ? palZeroTransparent : 255);
adr++;
}
}
}
break;
case TEXMODE_4X4:
{
//RGB16TO32 is used here because the other conversion macros result in broken interpolation logic
if(ms.numItems != 1) {
PROGINFO("Your 4x4 texture has overrun its texture slot.\n");
}
//this check isnt necessary since the addressing is tied to the texture data which will also run out:
//if(msIndex.numItems != 1) PROGINFO("Your 4x4 texture index has overrun its slot.\n");
#define PAL4X4(offset) ( *(u16*)( ARM9Mem.texPalSlot[((paletteAddress + (offset)*2)>>14)] + ((paletteAddress + (offset)*2)&0x3FFF) ) )
u16* slot1;
u32* map = (u32*)ms.items[0].ptr;
u32 limit = ms.items[0].len<<2;
u32 d = 0;
if ( (texcache[tx].frm & 0xc000) == 0x8000)
// texel are in slot 2
slot1=(u16*)&ARM9Mem.textureSlotAddr[1][((texcache[tx].frm & 0x3FFF)<<2)+0x010000];
else
slot1=(u16*)&ARM9Mem.textureSlotAddr[1][(texcache[tx].frm & 0x3FFF)<<2];
u16 yTmpSize = (texcache[tx].sizeY>>2);
u16 xTmpSize = (texcache[tx].sizeX>>2);
//this is flagged whenever a 4x4 overruns its slot.
//i am guessing we just generate black in that case
bool dead = false;
for (int y = 0; y < yTmpSize; y ++)
{
u32 tmpPos[4]={(y<<2)*texcache[tx].sizeX,((y<<2)+1)*texcache[tx].sizeX,
((y<<2)+2)*texcache[tx].sizeX,((y<<2)+3)*texcache[tx].sizeX};
for (int x = 0; x < xTmpSize; x ++, d++)
{
if(d >= limit)
dead = true;
if(dead) {
for (int sy = 0; sy < 4; sy++)
{
u32 currentPos = (x<<2) + tmpPos[sy];
dwdst[currentPos] = dwdst[currentPos+1] = dwdst[currentPos+2] = dwdst[currentPos+3] = 0;
}
continue;
}
u32 currBlock = map[d];
u16 pal1 = slot1[d];
u16 pal1offset = (pal1 & 0x3FFF)<<1;
u8 mode = pal1>>14;
u32 tmp_col[4];
tmp_col[0]=RGB16TO32(PAL4X4(pal1offset),255);
tmp_col[1]=RGB16TO32(PAL4X4(pal1offset+1),255);
switch (mode)
{
case 0:
tmp_col[2]=RGB16TO32(PAL4X4(pal1offset+2),255);
tmp_col[3]=RGB16TO32(0x7FFF,0);
break;
case 1:
tmp_col[2]=(((tmp_col[0]&0xFF)+(tmp_col[1]&0xff))>>1)|
(((tmp_col[0]&(0xFF<<8))+(tmp_col[1]&(0xFF<<8)))>>1)|
(((tmp_col[0]&(0xFF<<16))+(tmp_col[1]&(0xFF<<16)))>>1)|
(0xff<<24);
tmp_col[3]=RGB16TO32(0x7FFF,0);
break;
case 2:
tmp_col[2]=RGB16TO32(PAL4X4(pal1offset+2),255);
tmp_col[3]=RGB16TO32(PAL4X4(pal1offset+3),255);
break;
case 3:
{
u32 red1, red2;
u32 green1, green2;
u32 blue1, blue2;
u16 tmp1, tmp2;
red1=tmp_col[0]&0xff;
green1=(tmp_col[0]>>8)&0xff;
blue1=(tmp_col[0]>>16)&0xff;
red2=tmp_col[1]&0xff;
green2=(tmp_col[1]>>8)&0xff;
blue2=(tmp_col[1]>>16)&0xff;
tmp1=((red1*5+red2*3)>>6)|
(((green1*5+green2*3)>>6)<<5)|
(((blue1*5+blue2*3)>>6)<<10);
tmp2=((red2*5+red1*3)>>6)|
(((green2*5+green1*3)>>6)<<5)|
(((blue2*5+blue1*3)>>6)<<10);
tmp_col[2]=RGB16TO32(tmp1,255);
tmp_col[3]=RGB16TO32(tmp2,255);
break;
}
}
//set all 16 texels
for (int sy = 0; sy < 4; sy++)
{
// Texture offset
u32 currentPos = (x<<2) + tmpPos[sy];
u8 currRow = (u8)((currBlock>>(sy<<3))&0xFF);
dwdst[currentPos] = tmp_col[currRow&3];
dwdst[currentPos+1] = tmp_col[(currRow>>2)&3];
dwdst[currentPos+2] = tmp_col[(currRow>>4)&3];
dwdst[currentPos+3] = tmp_col[(currRow>>6)&3];
}
}
}
break;
}
case TEXMODE_A5I3:
{
for(int j=0;j<ms.numItems;j++) {
adr = ms.items[j].ptr;
for(u32 x = 0; x < ms.items[j].len; ++x)
{
u16 c = pal[*adr&0x07];
u8 alpha = (*adr>>3);
*dwdst++ = RGB15TO32(c,material_5bit_to_8bit[alpha]);
adr++;
}
}
break;
}
case TEXMODE_16BPP:
{
for(int j=0;j<ms.numItems;j++) {
u16* map = (u16*)ms.items[j].ptr;
for(u32 x = 0; x < ms.items[j].len; ++x)
{
u16 c = map[x];
int alpha = ((c&0x8000)?255:0);
*dwdst++ = RGB15TO32(c&0x7FFF,alpha);
}
}
break;
}
}
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA,
texcache[tx].sizeX, texcache[tx].sizeY, 0,
GL_RGBA, GL_UNSIGNED_BYTE, texMAP);
DebugDumpTexture(tx);
//============================================================================================
texcache_count=tx;
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, (BIT16(texcache[tx].frm) ? (BIT18(texcache[tx].frm)?GL_MIRRORED_REPEAT:GL_REPEAT) : GL_CLAMP));
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, (BIT17(texcache[tx].frm) ? (BIT19(texcache[tx].frm)?GL_MIRRORED_REPEAT:GL_REPEAT) : GL_CLAMP));
}
//controls states:
//glStencilFunc
//glStencilOp
//glColorMask
static u32 stencilStateSet = -1;
static void BeginRenderPoly()
{
bool enableDepthWrite = true;
xglDepthFunc (depthFuncMode);
// Cull face
if (cullingMask != 0xC0)
{
xglEnable(GL_CULL_FACE);
glCullFace(map3d_cull[cullingMask>>6]);
}
else
xglDisable(GL_CULL_FACE);
if (!wireframe)
{
xglPolygonMode (GL_FRONT_AND_BACK, GL_FILL);
}
else
{
xglPolygonMode (GL_FRONT_AND_BACK, GL_LINE);
}
setTexture(textureFormat, texturePalette);
if(isTranslucent)
enableDepthWrite = alphaDepthWrite;
//handle shadow polys
if(envMode == 3)
{
xglEnable(GL_STENCIL_TEST);
if(polyID == 0) {
enableDepthWrite = false;
if(stencilStateSet!=0) {
stencilStateSet = 0;
//when the polyID is zero, we are writing the shadow mask.
//set stencilbuf = 1 where the shadow volume is obstructed by geometry.
//do not write color or depth information.
glStencilFunc(GL_ALWAYS,2,255);
glStencilOp(GL_KEEP,GL_REPLACE,GL_KEEP);
glColorMask(GL_FALSE,GL_FALSE,GL_FALSE,GL_FALSE);
}
} else {
enableDepthWrite = true;
if(stencilStateSet!=1) {
stencilStateSet = 1;
//when the polyid is nonzero, we are drawing the shadow poly.
//only draw the shadow poly where the stencilbuf==1.
//I am not sure whether to update the depth buffer here--so I chose not to.
glStencilFunc(GL_EQUAL,2,255);
glStencilOp(GL_KEEP,GL_KEEP,GL_KEEP);
glColorMask(GL_TRUE,GL_TRUE,GL_TRUE,GL_TRUE);
}
}
} else {
xglEnable(GL_STENCIL_TEST);
if(stencilStateSet!=2) {
stencilStateSet=2;
glStencilFunc(GL_ALWAYS,1,255);
glStencilOp(GL_REPLACE,GL_REPLACE,GL_REPLACE);
glColorMask(GL_TRUE,GL_TRUE,GL_TRUE,GL_TRUE);
}
}
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, texEnv[envMode]);
if(hasShaders)
{
if(envMode != lastEnvMode)
{
lastEnvMode = envMode;
int _envModes[4] = {0, 1, (2 + gfx3d.shading), 0};
glUniform1i(texBlendLoc, _envModes[envMode]);
}
}
xglDepthMask(enableDepthWrite?GL_TRUE:GL_FALSE);
}
static void InstallPolygonAttrib(unsigned long val)
{
// Light enable/disable
lightMask = (val&0xF);
// texture environment
envMode = (val&0x30)>>4;
// overwrite depth on alpha pass
alphaDepthWrite = BIT11(val)!=0;
// depth test function
depthFuncMode = depthFunc[BIT14(val)];
// back face culling
cullingMask = (val&0xC0);
alpha31 = ((val>>16)&0x1F)==31;
// Alpha value, actually not well handled, 0 should be wireframe
wireframe = ((val>>16)&0x1F)==0;
// polyID
polyID = (val>>24)&0x1F;
}
static void Control()
{
if(gfx3d.enableTexturing) glEnable (GL_TEXTURE_2D);
else glDisable (GL_TEXTURE_2D);
if(gfx3d.enableAlphaTest)
glAlphaFunc (GL_GREATER, gfx3d.alphaTestRef);
else
glAlphaFunc (GL_GREATER, 0);
if(gfx3d.enableAlphaBlending)
{
glEnable (GL_BLEND);
}
else
{
glDisable (GL_BLEND);
}
}
static void OGLRender()
{
if(!BEGINGL()) return;
Control();
if(hasShaders)
{
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_1D, oglToonTableTextureID);
glTexImage1D(GL_TEXTURE_1D, 0, GL_RGB, 32, 0, GL_RGBA, GL_UNSIGNED_BYTE, gfx3d.rgbToonTable);
}
xglDepthMask(GL_TRUE);
glViewport(gfx3d.viewport.x,gfx3d.viewport.y,gfx3d.viewport.width,gfx3d.viewport.height);
//it might be handy to print the size of the projection list, in case a game is doing something weird with it
//printf("%d\n",gfx3d.projlist->count);
//we're not using the alpha clear color right now
glClearColor(gfx3d.clearColor[0],gfx3d.clearColor[1],gfx3d.clearColor[2], gfx3d.clearColor[3]);
glClearDepth(gfx3d.clearDepth);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
//render display list
//TODO - properly doublebuffer the display lists
{
u32 lastTextureFormat = 0, lastTexturePalette = 0, lastPolyAttr = 0;
// int lastProjIndex = -1;
for(int i=0;i<gfx3d.polylist->count;i++) {
POLY *poly = &gfx3d.polylist->list[gfx3d.indexlist[i]];
int type = poly->type;
//a very macro-level state caching approach:
//these are the only things which control the GPU rendering state.
if(i==0 || lastTextureFormat != poly->texParam || lastTexturePalette != poly->texPalette || lastPolyAttr != poly->polyAttr)
{
isTranslucent = poly->isTranslucent();
InstallPolygonAttrib(lastPolyAttr=poly->polyAttr);
lastTextureFormat = textureFormat = poly->texParam;
lastTexturePalette = texturePalette = poly->texPalette;
BeginRenderPoly();
}
//since we havent got the whole pipeline working yet, lets use opengl for the projection
/* if(lastProjIndex != poly->projIndex) {
glMatrixMode(GL_PROJECTION);
glLoadMatrixf(gfx3d.projlist->projMatrix[poly->projIndex]);
lastProjIndex = poly->projIndex;
}*/
glBegin(type==3?GL_TRIANGLES:GL_QUADS);
for(int j=0;j<type;j++) {
VERT* vert = &gfx3d.vertlist->list[poly->vertIndexes[j]];
u8 color[4] = {
material_5bit_to_8bit[vert->color[0]],
material_5bit_to_8bit[vert->color[1]],
material_5bit_to_8bit[vert->color[2]],
material_5bit_to_8bit[vert->color[3]]
};
//float tempCoord[4];
//Vector4Copy(tempCoord, vert->coord);
//we havent got the whole pipeline working yet, so we cant do this
////convert from ds device coords to opengl
//tempCoord[0] *= 2;
//tempCoord[1] *= 2;
//tempCoord[0] -= 1;
//tempCoord[1] -= 1;
//todo - edge flag?
glTexCoord2fv(vert->texcoord);
glColor4ubv((GLubyte*)color);
//glVertex4fv(tempCoord);
glVertex4fv(vert->coord);
}
glEnd();
}
}
//since we just redrew, we need to refresh the framebuffers
needRefreshFramebuffer = true;
ENDGL();
}
static void OGLVramReconfigureSignal()
{
//well, this is a very blunt instrument.
//lets just flag all the textures as invalid.
for(int i=0;i<MAX_TEXTURE+1;i++) {
texcache[i].suspectedInvalid = true;
//invalidate all 4x4 textures when texture palettes change mappings
//this is necessary because we arent tracking 4x4 texture palettes to look for changes.
//Although I concede this is a bit paranoid.. I think the odds of anyone changing 4x4 palette data
//without also changing the texture data is pretty much zero.
//
//TODO - move this to a separate signal: split into TexReconfigureSignal and TexPaletteReconfigureSignal
if(texcache[i].mode == TEXMODE_4X4)
texcache[i].frm = 0;
}
}
static void GL_ReadFramebuffer()
{
if(!BEGINGL()) return;
glFinish();
// glReadPixels(0,0,256,192,GL_STENCIL_INDEX, GL_UNSIGNED_BYTE, GPU_screenStencil);
glReadPixels(0,0,256,192,GL_BGRA_EXT, GL_UNSIGNED_BYTE, GPU_screen3D);
ENDGL();
//convert the pixels to a different format which is more convenient
//is it safe to modify the screen buffer? if not, we could make a temp copy
for(int i=0;i<256*192;i++) {
u32 &u32screen3D = ((u32*)GPU_screen3D)[i];
u32screen3D>>=3;
u32screen3D &= 0x1F1F1F1F;
}
//debug: view depth buffer via color buffer for debugging
//int ctr=0;
//for(ctr=0;ctr<256*192;ctr++) {
// float zval = GPU_screen3Ddepth[ctr];
// u8* colorPtr = GPU_screen3D+ctr*3;
// if(zval<0) {
// colorPtr[0] = 255;
// colorPtr[1] = 0;
// colorPtr[2] = 0;
// } else if(zval>1) {
// colorPtr[0] = 0;
// colorPtr[1] = 0;
// colorPtr[2] = 255;
// } else {
// colorPtr[0] = colorPtr[1] = colorPtr[2] = zval*255;
// //INFO("%f %f %d\n",zval, zval*255,colorPtr[0]);
// }
//}
}
static void OGLGetLineCaptured(int line, u16* dst)
{
if(needRefreshFramebuffer) {
needRefreshFramebuffer = false;
GL_ReadFramebuffer();
}
u8 *screen3D = (u8*)GPU_screen3D+((191-line)<<10);
// u8 *screenStencil = (u8*)GPU_screenStencil+((191-line)<<8);
for(int i = 0; i < 256; i++)
{
/* u32 stencil = screenStencil[i];
if(!stencil)
{
dst[i] = 0x0000;
continue;
}*/
int t=i<<2;
/* u8 r = screen3D[t+2];
u8 g = screen3D[t+1];
u8 b = screen3D[t+0];*/
//if this math strikes you as wrong, be sure to look at GL_ReadFramebuffer() where the pixel format in screen3D is changed
//dst[i] = (b<<10) | (g<<5) | (r) | 0x8000;
dst[i] = (screen3D[t+2] | (screen3D[t+1] << 5) | (screen3D[t+0] << 10) | ((screen3D[t+3] > 0) ? 0x8000 : 0x0000));
}
}
static void OGLGetLine(int line, u16* dst, u8* dstAlpha)
{
assert(line<192 && line>=0);
if(needRefreshFramebuffer) {
needRefreshFramebuffer = false;
GL_ReadFramebuffer();
}
u8 *screen3D = (u8*)GPU_screen3D+((191-line)<<10);
//u8 *screenStencil = (u8*)GPU_screenStencil+((191-line)<<8);
//the renderer clears the stencil to 0
//then it sets it to 1 whenever it renders a pixel that passes the alpha test
//(it also sets it to 2 under some circumstances when rendering shadow volumes)
//so, we COULD use a zero stencil value to indicate that nothing should get composited.
//in fact, we are going to do that to fix some problems.
//but beware that it i figure it might could CAUSE some problems
//this alpha compositing blending logic isnt thought through very much
//someone needs to think about what bitdepth it should take place at and how to do it efficiently
for(int i=0;i<256;i++)
{
// u32 stencil = screenStencil[i];
//you would use this if you wanted to use the stencil buffer to make decisions here
// if(!stencil) continue;
// u16 oldcolor = dst[j];
int t=i<<2;
// u32 dstpixel;
dst[i] = (screen3D[t+2] | (screen3D[t+1] << 5) | (screen3D[t+0] << 10) | ((screen3D[t+3] > 0) ? 0x8000 : 0x0000));
dstAlpha[i] = alpha_5bit_to_4bit[screen3D[t+3]];
//old debug reminder: display alpha channel
//u32 r = screen3D[t+3];
//u32 g = screen3D[t+3];
//u32 b = screen3D[t+3];
//if this math strikes you as wrong, be sure to look at GL_ReadFramebuffer() where the pixel format in screen3D is changed
/* u32 a = screen3D[t+3];
typedef u8 mixtbl[32][32];
mixtbl & mix = mixTable555[a];
//r
u32 newpix = screen3D[t+2];
u32 oldpix = oldcolor&0x1F;
newpix = mix[newpix][oldpix];
dstpixel = newpix;
//g
newpix = screen3D[t+1];
oldpix = (oldcolor>>5)&0x1F;
newpix = mix[newpix][oldpix];
dstpixel |= (newpix<<5);
//b
newpix = screen3D[t+0];
oldpix = (oldcolor>>10)&0x1F;
newpix = mix[newpix][oldpix];
dstpixel |= (newpix<<10);
dst[j] = dstpixel;*/
}
}
GPU3DInterface gpu3Dgl = {
"OpenGL",
OGLInit,
OGLReset,
OGLClose,
OGLRender,
OGLVramReconfigureSignal,
OGLGetLine,
OGLGetLineCaptured
};