mirror of https://github.com/bsnes-emu/bsnes.git
306 lines
7.7 KiB
GLSL
306 lines
7.7 KiB
GLSL
#version 150
|
|
|
|
// PUBLIC DOMAIN CRT STYLED SCAN-LINE SHADER
|
|
//
|
|
// by Timothy Lottes
|
|
//
|
|
// This is more along the style of a really good CGA arcade monitor.
|
|
// With RGB inputs instead of NTSC.
|
|
// The shadow mask example has the mask rotated 90 degrees for less chromatic aberration.
|
|
//
|
|
// Left it unoptimized to show the theory behind the algorithm.
|
|
//
|
|
// It is an example what I personally would want as a display option for pixel art games.
|
|
// Please take and use, change, or whatever.
|
|
|
|
#define hardScan -8.0
|
|
#define hardPix -3.0
|
|
#define warpX 0.031
|
|
#define warpY 0.041
|
|
#define maskDark 0.5
|
|
#define maskLight 1.5
|
|
#define scaleInLinearGamma 1.0
|
|
#define shadowMask 3.0
|
|
#define brightBoost 1.0
|
|
#define hardBloomPix -1.5
|
|
#define hardBloomScan -2.0
|
|
#define bloomAmount 0.4
|
|
#define shape 2.0
|
|
|
|
uniform sampler2D source[];
|
|
uniform vec4 sourceSize[];
|
|
|
|
in Vertex {
|
|
vec2 vTexCoord;
|
|
};
|
|
|
|
out vec4 FragColor;
|
|
|
|
//Uncomment to reduce instructions with simpler linearization
|
|
//(fixes HD3000 Sandy Bridge IGP)
|
|
//#define SIMPLE_LINEAR_GAMMA
|
|
#define DO_BLOOM 1
|
|
|
|
// ------------- //
|
|
|
|
// sRGB to Linear.
|
|
// Assuming using sRGB typed textures this should not be needed.
|
|
#ifdef SIMPLE_LINEAR_GAMMA
|
|
float ToLinear1(float c)
|
|
{
|
|
return c;
|
|
}
|
|
vec3 ToLinear(vec3 c)
|
|
{
|
|
return c;
|
|
}
|
|
vec3 ToSrgb(vec3 c)
|
|
{
|
|
return pow(c, vec3(1.0 / 2.2));
|
|
}
|
|
#else
|
|
float ToLinear1(float c)
|
|
{
|
|
if (scaleInLinearGamma == 0)
|
|
return c;
|
|
|
|
return(c<=0.04045) ? c/12.92 : pow((c + 0.055)/1.055, 2.4);
|
|
}
|
|
|
|
vec3 ToLinear(vec3 c)
|
|
{
|
|
if (scaleInLinearGamma==0)
|
|
return c;
|
|
|
|
return vec3(ToLinear1(c.r), ToLinear1(c.g), ToLinear1(c.b));
|
|
}
|
|
|
|
// Linear to sRGB.
|
|
// Assuming using sRGB typed textures this should not be needed.
|
|
float ToSrgb1(float c)
|
|
{
|
|
if (scaleInLinearGamma == 0)
|
|
return c;
|
|
|
|
return(c<0.0031308 ? c*12.92 : 1.055*pow(c, 0.41666) - 0.055);
|
|
}
|
|
|
|
vec3 ToSrgb(vec3 c)
|
|
{
|
|
if (scaleInLinearGamma == 0)
|
|
return c;
|
|
|
|
return vec3(ToSrgb1(c.r), ToSrgb1(c.g), ToSrgb1(c.b));
|
|
}
|
|
#endif
|
|
|
|
|
|
|
|
// Nearest emulated sample given floating point position and texel offset.
|
|
// Also zero's off screen.
|
|
vec3 Fetch(vec2 pos,vec2 off){
|
|
pos=(floor(pos*sourceSize[0].xy+off)+vec2(0.5,0.5))/sourceSize[0].xy;
|
|
#ifdef SIMPLE_LINEAR_GAMMA
|
|
return ToLinear(brightBoost * pow(texture(source[0],pos.xy).rgb, vec3(2.2)));
|
|
#else
|
|
return ToLinear(brightBoost * texture(source[0],pos.xy).rgb);
|
|
#endif
|
|
}
|
|
|
|
// Distance in emulated pixels to nearest texel.
|
|
vec2 Dist(vec2 pos)
|
|
{
|
|
pos = pos*sourceSize[0].xy;
|
|
|
|
return -((pos - floor(pos)) - vec2(0.5));
|
|
}
|
|
|
|
// 1D Gaussian.
|
|
float Gaus(float pos, float scale)
|
|
{
|
|
return exp2(scale*pow(abs(pos), shape));
|
|
}
|
|
|
|
// 3-tap Gaussian filter along horz line.
|
|
vec3 Horz3(vec2 pos, float off)
|
|
{
|
|
vec3 b = Fetch(pos, vec2(-1.0, off));
|
|
vec3 c = Fetch(pos, vec2( 0.0, off));
|
|
vec3 d = Fetch(pos, vec2( 1.0, off));
|
|
float dst = Dist(pos).x;
|
|
|
|
// Convert distance to weight.
|
|
float scale = hardPix;
|
|
float wb = Gaus(dst-1.0,scale);
|
|
float wc = Gaus(dst+0.0,scale);
|
|
float wd = Gaus(dst+1.0,scale);
|
|
|
|
// Return filtered sample.
|
|
return (b*wb+c*wc+d*wd)/(wb+wc+wd);
|
|
}
|
|
|
|
// 5-tap Gaussian filter along horz line.
|
|
vec3 Horz5(vec2 pos,float off){
|
|
vec3 a = Fetch(pos,vec2(-2.0, off));
|
|
vec3 b = Fetch(pos,vec2(-1.0, off));
|
|
vec3 c = Fetch(pos,vec2( 0.0, off));
|
|
vec3 d = Fetch(pos,vec2( 1.0, off));
|
|
vec3 e = Fetch(pos,vec2( 2.0, off));
|
|
|
|
float dst = Dist(pos).x;
|
|
// Convert distance to weight.
|
|
float scale = hardPix;
|
|
float wa = Gaus(dst - 2.0, scale);
|
|
float wb = Gaus(dst - 1.0, scale);
|
|
float wc = Gaus(dst + 0.0, scale);
|
|
float wd = Gaus(dst + 1.0, scale);
|
|
float we = Gaus(dst + 2.0, scale);
|
|
|
|
// Return filtered sample.
|
|
return (a*wa+b*wb+c*wc+d*wd+e*we)/(wa+wb+wc+wd+we);
|
|
}
|
|
|
|
// 7-tap Gaussian filter along horz line.
|
|
vec3 Horz7(vec2 pos,float off)
|
|
{
|
|
vec3 a = Fetch(pos, vec2(-3.0, off));
|
|
vec3 b = Fetch(pos, vec2(-2.0, off));
|
|
vec3 c = Fetch(pos, vec2(-1.0, off));
|
|
vec3 d = Fetch(pos, vec2( 0.0, off));
|
|
vec3 e = Fetch(pos, vec2( 1.0, off));
|
|
vec3 f = Fetch(pos, vec2( 2.0, off));
|
|
vec3 g = Fetch(pos, vec2( 3.0, off));
|
|
|
|
float dst = Dist(pos).x;
|
|
// Convert distance to weight.
|
|
float scale = hardBloomPix;
|
|
float wa = Gaus(dst - 3.0, scale);
|
|
float wb = Gaus(dst - 2.0, scale);
|
|
float wc = Gaus(dst - 1.0, scale);
|
|
float wd = Gaus(dst + 0.0, scale);
|
|
float we = Gaus(dst + 1.0, scale);
|
|
float wf = Gaus(dst + 2.0, scale);
|
|
float wg = Gaus(dst + 3.0, scale);
|
|
|
|
// Return filtered sample.
|
|
return (a*wa+b*wb+c*wc+d*wd+e*we+f*wf+g*wg)/(wa+wb+wc+wd+we+wf+wg);
|
|
}
|
|
|
|
// Return scanline weight.
|
|
float Scan(vec2 pos, float off)
|
|
{
|
|
float dst = Dist(pos).y;
|
|
|
|
return Gaus(dst + off, hardScan);
|
|
}
|
|
|
|
// Return scanline weight for bloom.
|
|
float BloomScan(vec2 pos, float off)
|
|
{
|
|
float dst = Dist(pos).y;
|
|
|
|
return Gaus(dst + off, hardBloomScan);
|
|
}
|
|
|
|
// Allow nearest three lines to effect pixel.
|
|
vec3 Tri(vec2 pos)
|
|
{
|
|
vec3 a = Horz3(pos,-1.0);
|
|
vec3 b = Horz5(pos, 0.0);
|
|
vec3 c = Horz3(pos, 1.0);
|
|
|
|
float wa = Scan(pos,-1.0);
|
|
float wb = Scan(pos, 0.0);
|
|
float wc = Scan(pos, 1.0);
|
|
|
|
return a*wa + b*wb + c*wc;
|
|
}
|
|
|
|
// Small bloom.
|
|
vec3 Bloom(vec2 pos)
|
|
{
|
|
vec3 a = Horz5(pos,-2.0);
|
|
vec3 b = Horz7(pos,-1.0);
|
|
vec3 c = Horz7(pos, 0.0);
|
|
vec3 d = Horz7(pos, 1.0);
|
|
vec3 e = Horz5(pos, 2.0);
|
|
|
|
float wa = BloomScan(pos,-2.0);
|
|
float wb = BloomScan(pos,-1.0);
|
|
float wc = BloomScan(pos, 0.0);
|
|
float wd = BloomScan(pos, 1.0);
|
|
float we = BloomScan(pos, 2.0);
|
|
|
|
return a*wa+b*wb+c*wc+d*wd+e*we;
|
|
}
|
|
|
|
// Distortion of scanlines, and end of screen alpha.
|
|
vec2 Warp(vec2 pos)
|
|
{
|
|
pos = pos*2.0-1.0;
|
|
pos *= vec2(1.0 + (pos.y*pos.y)*warpX, 1.0 + (pos.x*pos.x)*warpY);
|
|
|
|
return pos*0.5 + 0.5;
|
|
}
|
|
|
|
// Shadow mask.
|
|
vec3 Mask(vec2 pos)
|
|
{
|
|
vec3 mask = vec3(maskDark, maskDark, maskDark);
|
|
|
|
// Very compressed TV style shadow mask.
|
|
if (shadowMask == 1.0)
|
|
{
|
|
float line = maskLight;
|
|
float odd = 0.0;
|
|
|
|
if (fract(pos.x*0.166666666) < 0.5) odd = 1.0;
|
|
if (fract((pos.y + odd) * 0.5) < 0.5) line = maskDark;
|
|
|
|
pos.x = fract(pos.x*0.333333333);
|
|
|
|
if (pos.x < 0.333) mask.r = maskLight;
|
|
else if (pos.x < 0.666) mask.g = maskLight;
|
|
else mask.b = maskLight;
|
|
mask*=line;
|
|
}
|
|
|
|
// Aperture-grille.
|
|
else if (shadowMask == 2.0)
|
|
{
|
|
pos.x = fract(pos.x*0.333333333);
|
|
|
|
if (pos.x < 0.333) mask.r = maskLight;
|
|
else if (pos.x < 0.666) mask.g = maskLight;
|
|
else mask.b = maskLight;
|
|
}
|
|
|
|
// Stretched VGA style shadow mask (same as prior shaders).
|
|
else if (shadowMask == 3.0)
|
|
{
|
|
pos.x += pos.y*3.0;
|
|
pos.x = fract(pos.x*0.166666666);
|
|
|
|
if (pos.x < 0.333) mask.r = maskLight;
|
|
else if (pos.x < 0.666) mask.g = maskLight;
|
|
else mask.b = maskLight;
|
|
}
|
|
|
|
// VGA style shadow mask.
|
|
else if (shadowMask == 4.0)
|
|
{
|
|
pos.xy = floor(pos.xy*vec2(1.0, 0.5));
|
|
pos.x += pos.y*3.0;
|
|
pos.x = fract(pos.x*0.166666666);
|
|
|
|
if (pos.x < 0.333) mask.r = maskLight;
|
|
else if (pos.x < 0.666) mask.g = maskLight;
|
|
else mask.b = maskLight;
|
|
}
|
|
|
|
return mask;
|
|
}
|
|
|
|
void main() {
|
|
FragColor = vec4(Bloom(vTexCoord)*bloomAmount, 1.0);
|
|
} |