bsnes/higan/processor/z80/instructions.cpp

384 lines
6.2 KiB
C++

//legend:
// a = register A
// c = condition
// e = relative operand
// in = (operand)
// inn = (operand-word)
// irr = (register-word)
// o = opcode bits
// n = operand
// nn = operand-word
// r = register
auto Z80::ADD(uint8 x, uint8 y, bool c) -> uint8 {
uint9 z = x + y + c;
CF = z.bit(8);
NF = 0;
VF = ~(x ^ y) & (x ^ z) & 0x80;
XF = z.bit(3);
HF = (x ^ y ^ z) & 0x10;
YF = z.bit(5);
ZF = (uint8)z == 0;
SF = z.bit(7);
return z;
}
auto Z80::AND(uint8 x, uint8 y) -> uint8 {
uint8 z = x & y;
CF = 0;
NF = 0;
PF = parity(z);
XF = z.bit(3);
HF = 1;
YF = z.bit(5);
ZF = z == 0;
SF = z.bit(7);
return z;
}
auto Z80::DEC(uint8 x) -> uint8 {
uint8 z = x - 1;
NF = 1;
VF = z == 0x7f;
XF = z.bit(3);
HF = z.bits(0,3) == 0x0f;
YF = z.bit(5);
ZF = z == 0;
SF = z.bit(7);
return z;
}
auto Z80::INC(uint8 x) -> uint8 {
uint8 z = x + 1;
NF = 0;
VF = z == 0x80;
XF = z.bit(3);
HF = z.bits(0,3) == 0x00;
YF = z.bit(5);
ZF = z == 0;
SF = z.bit(7);
return z;
}
auto Z80::OR(uint8 x, uint8 y) -> uint8 {
uint8 z = x | y;
CF = 0;
NF = 0;
PF = parity(z);
XF = z.bit(3);
HF = 0;
YF = z.bit(5);
ZF = z == 0;
SF = z.bit(7);
return z;
}
auto Z80::SUB(uint8 x, uint8 y, bool c) -> uint8 {
uint9 z = x - y - c;
CF = z.bit(8);
NF = 1;
VF = (x ^ y) & (x ^ z) & 0x80;
XF = z.bit(3);
HF = (x ^ y ^ z) & 0x10;
YF = z.bit(5);
ZF = (uint8)z == 0;
SF = z.bit(7);
return z;
}
auto Z80::XOR(uint8 x, uint8 y) -> uint8 {
uint8 z = x ^ y;
CF = 0;
NF = 0;
PF = parity(z);
XF = z.bit(3);
HF = 0;
YF = z.bit(5);
ZF = z == 0;
SF = z.bit(7);
return z;
}
//
auto Z80::instructionADC_a_irr(uint16& x) -> void {
A = ADD(A, read(displace(x)), CF);
}
auto Z80::instructionADC_a_r(uint8& x) -> void {
A = ADD(A, x, CF);
}
auto Z80::instructionADD_a_irr(uint16& x) -> void {
A = ADD(A, read(displace(x)));
}
auto Z80::instructionADD_a_r(uint8& x) -> void {
A = ADD(A, x);
}
auto Z80::instructionADD_rr_rr(uint16& x, uint16& y) -> void {
wait(4);
x.byte(0) = ADD(x.byte(0), y.byte(0));
wait(3);
x.byte(1) = ADD(x.byte(1), y.byte(1), CF);
}
auto Z80::instructionAND_a_irr(uint16& x) -> void {
A = AND(A, read(displace(x)));
}
auto Z80::instructionAND_a_r(uint8& x) -> void {
A = AND(A, x);
}
auto Z80::instructionCCF() -> void {
CF = !CF;
NF = 0;
HF = !CF;
}
auto Z80::instructionCP_a_irr(uint16& x) -> void {
SUB(A, read(displace(x)));
}
auto Z80::instructionCP_a_n() -> void {
SUB(A, operand());
}
auto Z80::instructionCP_a_r(uint8& x) -> void {
SUB(A, x);
}
auto Z80::instructionCPL() -> void {
A = ~A;
NF = 1;
XF = A.bit(3);
HF = 1;
YF = A.bit(5);
}
auto Z80::instructionDEC_irr(uint16& x) -> void {
auto addr = displace(x);
auto data = read(addr);
wait(1);
write(addr, DEC(data));
}
auto Z80::instructionDEC_r(uint8& x) -> void {
x = DEC(x);
}
auto Z80::instructionDEC_rr(uint16& x) -> void {
wait(2);
x--;
}
auto Z80::instructionDI() -> void {
r.iff1 = 0;
r.iff2 = 0;
}
auto Z80::instructionEI() -> void {
r.iff1 = 1;
r.iff2 = 1;
}
auto Z80::instructionEX_rr_rr(uint16& x, uint16& y) -> void {
auto z = x;
x = y;
y = z;
}
auto Z80::instructionHALT() -> void {
r.halt = 1;
}
auto Z80::instructionIM_o(uint2 code) -> void {
wait(4);
r.im = code;
}
auto Z80::instructionIN_a_in() -> void {
A = in(operand());
}
auto Z80::instructionINC_irr(uint16& x) -> void {
auto addr = displace(x);
auto data = read(addr);
wait(1);
write(addr, INC(data));
}
auto Z80::instructionINC_r(uint8& x) -> void {
x = INC(x);
}
auto Z80::instructionINC_rr(uint16& x) -> void {
wait(2);
x++;
}
auto Z80::instructionJP_c_nn(bool c) -> void {
auto pc = operands();
if(c) r.pc = pc;
}
auto Z80::instructionJR_c_e(bool c) -> void {
auto e = operand();
if(c) wait(5), r.pc += (int8)e;
}
auto Z80::instructionLD_a_inn() -> void {
A = read(operands());
}
auto Z80::instructionLD_a_irr(uint16& x) -> void {
A = read(displace(x));
}
auto Z80::instructionLD_inn_a() -> void {
write(operands(), A);
}
auto Z80::instructionLD_inn_rr(uint16& x) -> void {
auto addr = operands();
write(addr + 0, x >> 0);
write(addr + 1, x >> 8);
}
auto Z80::instructionLD_irr_a(uint16& x) -> void {
write(displace(x), A);
}
auto Z80::instructionLD_irr_n(uint16& x) -> void {
auto addr = displace(x);
write(addr, operand());
}
auto Z80::instructionLD_irr_r(uint16& x, uint8& y) -> void {
write(displace(x), y);
}
auto Z80::instructionLD_r_n(uint8& x) -> void {
x = operand();
}
auto Z80::instructionLD_r_irr(uint8& x, uint16& y) -> void {
x = read(displace(y));
}
auto Z80::instructionLD_r_r(uint8& x, uint8& y) -> void {
x = y;
}
auto Z80::instructionLD_rr_inn(uint16& x) -> void {
auto addr = operands();
x.byte(0) = read(addr + 0);
x.byte(1) = read(addr + 1);
}
auto Z80::instructionLD_rr_nn(uint16& x) -> void {
x = operands();
}
auto Z80::instructionNOP() -> void {
}
auto Z80::instructionOR_a_irr(uint16& x) -> void {
A = OR(A, read(displace(x)));
}
auto Z80::instructionOR_a_r(uint8& x) -> void {
A = OR(A, x);
}
auto Z80::instructionRLA() -> void {
bool c = A.bit(7);
A = A << 1 | CF;
CF = c;
NF = 0;
XF = A.bit(3);
HF = 0;
YF = A.bit(5);
}
auto Z80::instructionRLCA() -> void {
bool c = A.bit(7);
A = A << 1 | c;
CF = c;
NF = 0;
XF = A.bit(3);
HF = 0;
YF = A.bit(5);
}
auto Z80::instructionRRA() -> void {
bool c = A.bit(0);
A = CF << 7 | A >> 1;
CF = c;
NF = 0;
XF = A.bit(3);
HF = 0;
YF = A.bit(5);
}
auto Z80::instructionRRCA() -> void {
bool c = A.bit(0);
A = c << 7 | A >> 1;
CF = c;
NF = 0;
XF = A.bit(3);
HF = 0;
YF = A.bit(5);
}
auto Z80::instructionSBC_a_irr(uint16& x) -> void {
A = SUB(A, read(displace(x)), CF);
}
auto Z80::instructionSBC_a_r(uint8& x) -> void {
A = SUB(A, x, CF);
}
auto Z80::instructionSCF() -> void {
CF = 1;
NF = 0;
HF = 0;
}
auto Z80::instructionSUB_a_irr(uint16& x) -> void {
A = SUB(A, read(displace(x)));
}
auto Z80::instructionSUB_a_r(uint8& x) -> void {
A = SUB(A, x);
}
auto Z80::instructionXOR_a_irr(uint16& x) -> void {
A = XOR(A, read(displace(x)));
}
auto Z80::instructionXOR_a_r(uint8& x) -> void {
A = XOR(A, x);
}