bsnes/fc/cartridge/board/sunsoft-5b.cpp

227 lines
5.3 KiB
C++

//SUNSOFT-5B
struct Sunsoft5B : Board {
uint4 mmu_port;
uint4 apu_port;
uint8 prg_bank[4];
uint8 chr_bank[8];
uint2 mirror;
bool irq_enable;
bool irq_counter_enable;
uint16 irq_counter;
int16 dac[16];
struct Pulse {
bool disable;
uint12 frequency;
uint4 volume;
uint16 counter; //12-bit countdown + 4-bit phase
uint1 duty;
uint4 output;
void clock() {
if(--counter == 0) {
counter = frequency << 4;
duty ^= 1;
}
output = duty ? volume : (uint4)0;
if(disable) output = 0;
}
void reset() {
disable = 1;
frequency = 1;
volume = 0;
counter = 0;
duty = 0;
output = 0;
}
void serialize(serializer& s) {
s.integer(disable);
s.integer(frequency);
s.integer(volume);
s.integer(counter);
s.integer(duty);
s.integer(output);
}
} pulse[3];
void main() {
while(true) {
if(scheduler.sync == Scheduler::SynchronizeMode::All) {
scheduler.exit(Scheduler::ExitReason::SynchronizeEvent);
}
if(irq_counter_enable) {
if(--irq_counter == 0xffff) {
cpu.set_irq_line(irq_enable);
}
}
pulse[0].clock();
pulse[1].clock();
pulse[2].clock();
int16 output = dac[pulse[0].output] + dac[pulse[1].output] + dac[pulse[2].output];
apu.set_sample(-output);
tick();
}
}
uint8 prg_read(unsigned addr) {
if(addr < 0x6000) return cpu.mdr();
uint8 bank = 0x3f; //((addr & 0xe000) == 0xe000
if((addr & 0xe000) == 0x6000) bank = prg_bank[0];
if((addr & 0xe000) == 0x8000) bank = prg_bank[1];
if((addr & 0xe000) == 0xa000) bank = prg_bank[2];
if((addr & 0xe000) == 0xc000) bank = prg_bank[3];
bool ram_enable = bank & 0x80;
bool ram_select = bank & 0x40;
bank &= 0x3f;
if(ram_select) {
if(ram_enable == false) return cpu.mdr();
return prgram.data[addr & 0x1fff];
}
addr = (bank << 13) | (addr & 0x1fff);
return prgrom.read(addr);
}
void prg_write(unsigned addr, uint8 data) {
if((addr & 0xe000) == 0x6000) {
prgram.data[addr & 0x1fff] = data;
}
if(addr == 0x8000) {
mmu_port = data & 0x0f;
}
if(addr == 0xa000) {
switch(mmu_port) {
case 0: chr_bank[0] = data; break;
case 1: chr_bank[1] = data; break;
case 2: chr_bank[2] = data; break;
case 3: chr_bank[3] = data; break;
case 4: chr_bank[4] = data; break;
case 5: chr_bank[5] = data; break;
case 6: chr_bank[6] = data; break;
case 7: chr_bank[7] = data; break;
case 8: prg_bank[0] = data; break;
case 9: prg_bank[1] = data; break;
case 10: prg_bank[2] = data; break;
case 11: prg_bank[3] = data; break;
case 12: mirror = data & 3; break;
case 13:
irq_enable = data & 0x80;
irq_counter_enable = data & 0x01;
if(irq_enable == 0) cpu.set_irq_line(0);
break;
case 14: irq_counter = (irq_counter & 0xff00) | (data << 0); break;
case 15: irq_counter = (irq_counter & 0x00ff) | (data << 8); break;
}
}
if(addr == 0xc000) {
apu_port = data & 0x0f;
}
if(addr == 0xe000) {
switch(apu_port) {
case 0: pulse[0].frequency = (pulse[0].frequency & 0xff00) | (data << 0); break;
case 1: pulse[0].frequency = (pulse[0].frequency & 0x00ff) | (data << 8); break;
case 2: pulse[1].frequency = (pulse[1].frequency & 0xff00) | (data << 0); break;
case 3: pulse[1].frequency = (pulse[1].frequency & 0x00ff) | (data << 8); break;
case 4: pulse[2].frequency = (pulse[2].frequency & 0xff00) | (data << 0); break;
case 5: pulse[2].frequency = (pulse[2].frequency & 0x00ff) | (data << 8); break;
case 7:
pulse[0].disable = data & 0x01;
pulse[1].disable = data & 0x02;
pulse[2].disable = data & 0x04;
break;
case 8: pulse[0].volume = data & 0x0f; break;
case 9: pulse[1].volume = data & 0x0f; break;
case 10: pulse[2].volume = data & 0x0f; break;
}
}
}
unsigned chr_addr(unsigned addr) {
uint8 bank = (addr >> 10) & 7;
return (chr_bank[bank] << 10) | (addr & 0x03ff);
}
unsigned ciram_addr(unsigned addr) {
switch(mirror) {
case 0: return ((addr & 0x0400) >> 0) | (addr & 0x03ff); //vertical
case 1: return ((addr & 0x0800) >> 1) | (addr & 0x03ff); //horizontal
case 2: return 0x0000 | (addr & 0x03ff); //first
case 3: return 0x0400 | (addr & 0x03ff); //second
}
}
uint8 chr_read(unsigned addr) {
if(addr & 0x2000) return ppu.ciram_read(ciram_addr(addr));
return Board::chr_read(chr_addr(addr));
}
void chr_write(unsigned addr, uint8 data) {
if(addr & 0x2000) return ppu.ciram_write(ciram_addr(addr), data);
return Board::chr_write(chr_addr(addr), data);
}
void power() {
for(signed n = 0; n < 16; n++) {
double volume = 1.0 / pow(2, 1.0 / 2 * (15 - n));
dac[n] = volume * 8192.0;
}
}
void reset() {
mmu_port = 0;
apu_port = 0;
for(auto& n : prg_bank) n = 0;
for(auto& n : chr_bank) n = 0;
mirror = 0;
irq_enable = 0;
irq_counter_enable = 0;
irq_counter = 0;
pulse[0].reset();
pulse[1].reset();
pulse[2].reset();
}
void serialize(serializer& s) {
Board::serialize(s);
s.integer(mmu_port);
s.integer(apu_port);
s.array(prg_bank);
s.array(chr_bank);
s.integer(mirror);
s.integer(irq_enable);
s.integer(irq_counter_enable);
s.integer(irq_counter);
pulse[0].serialize(s);
pulse[1].serialize(s);
pulse[2].serialize(s);
}
Sunsoft5B(Markup::Node& document) : Board(document) {
}
};