bsnes/shaders/CRT-Royale.shader/first-pass-linearize-crt-ga...

4704 lines
239 KiB
GLSL

#version 150
in vec4 position;
in vec2 texCoord;
out Vertex {
vec2 vTexCoord;
vec2 uv_step;
float interlaced;
};
uniform vec4 targetSize;
uniform vec4 sourceSize[];
// USER SETTINGS BLOCK //
#define crt_gamma 2.500000
#define lcd_gamma 2.200000
#define levels_contrast 1.0
#define halation_weight 0.0
#define diffusion_weight 0.075
#define bloom_underestimate_levels 0.8
#define bloom_excess 0.000000
#define beam_min_sigma 0.020000
#define beam_max_sigma 0.300000
#define beam_spot_power 0.330000
#define beam_min_shape 2.000000
#define beam_max_shape 4.000000
#define beam_shape_power 0.250000
#define beam_horiz_filter 0.000000
#define beam_horiz_sigma 0.35
#define beam_horiz_linear_rgb_weight 1.000000
#define convergence_offset_x_r -0.000000
#define convergence_offset_x_g 0.000000
#define convergence_offset_x_b 0.000000
#define convergence_offset_y_r 0.000000
#define convergence_offset_y_g -0.000000
#define convergence_offset_y_b 0.000000
#define mask_type 1.000000
#define mask_sample_mode_desired 0.000000
#define mask_specify_num_triads 0.000000
#define mask_triad_size_desired 3.000000
#define mask_num_triads_desired 480.000000
#define aa_subpixel_r_offset_x_runtime -0.0
#define aa_subpixel_r_offset_y_runtime 0.000000
#define aa_cubic_c 0.500000
#define aa_gauss_sigma 0.500000
#define geom_mode_runtime 0.000000
#define geom_radius 2.000000
#define geom_view_dist 2.000000
#define geom_tilt_angle_x 0.000000
#define geom_tilt_angle_y 0.000000
#define geom_aspect_ratio_x 432.000000
#define geom_aspect_ratio_y 329.000000
#define geom_overscan_x 1.000000
#define geom_overscan_y 1.000000
#define border_size 0.015
#define border_darkness 2.0
#define border_compress 2.500000
#define interlace_bff 0.000000
#define interlace_1080i 0.000000
// END USER SETTINGS BLOCK //
// compatibility macros for transparently converting HLSLisms into GLSLisms
#define mul(a,b) (b*a)
#define lerp(a,b,c) mix(a,b,c)
#define saturate(c) clamp(c, 0.0, 1.0)
#define frac(x) (fract(x))
#define float2 vec2
#define float3 vec3
#define float4 vec4
#define bool2 bvec2
#define bool3 bvec3
#define bool4 bvec4
#define float2x2 mat2x2
#define float3x3 mat3x3
#define float4x4 mat4x4
#define float4x3 mat4x3
#define float2x4 mat2x4
#define IN params
#define texture_size sourceSize[0].xy
#define video_size sourceSize[0].xy
#define output_size targetSize.xy
#define frame_count phase
#define static
#define inline
#define const
#define fmod(x,y) mod(x,y)
#define ddx(c) dFdx(c)
#define ddy(c) dFdy(c)
#define atan2(x,y) atan(y,x)
#define rsqrt(c) inversesqrt(c)
#define input_texture source[0]
#ifdef GL_ES
#ifdef GL_FRAGMENT_PRECISION_HIGH
precision highp float;
#else
precision mediump float;
#endif
#define COMPAT_PRECISION mediump
#else
#define COMPAT_PRECISION
#endif
#if __VERSION__ >= 130
#define COMPAT_VARYING in
#define COMPAT_TEXTURE texture
#else
#define COMPAT_VARYING varying
#define FragColor gl_FragColor
#define COMPAT_TEXTURE texture2D
#endif
///////////////////////////// SETTINGS MANAGEMENT ////////////////////////////
// PASS SETTINGS:
// gamma-management.h needs to know what kind of pipeline we're using and
// what pass this is in that pipeline. This will become obsolete if/when we
// can #define things like this in the .cgp preset file.
#define FIRST_PASS
#define SIMULATE_CRT_ON_LCD
////////////////////////////////// INCLUDES //////////////////////////////////
//#include "bind-shader-h"
///////////////////////////// BEGIN BIND-SHADER-PARAMS ////////////////////////////
#ifndef BIND_SHADER_PARAMS_H
#define BIND_SHADER_PARAMS_H
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
// crt-royale: A full-featured CRT shader, with cheese.
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
//
// This program is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 2 of the License, or any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
// more details.
//
// You should have received a copy of the GNU General Public License along with
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
// Place, Suite 330, Boston, MA 02111-1307 USA
///////////////////////////// SETTINGS MANAGEMENT ////////////////////////////
/////////////////////////////// BEGIN INCLUDES ///////////////////////////////
//#include "../user-settings.h"
///////////////////////////// BEGIN USER-SETTINGS ////////////////////////////
#ifndef USER_SETTINGS_H
#define USER_SETTINGS_H
///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
// The Cg compiler uses different "profiles" with different capabilities.
// This shader requires a Cg compilation profile >= arbfp1, but a few options
// require higher profiles like fp30 or fp40. The shader can't detect profile
// or driver capabilities, so instead you must comment or uncomment the lines
// below with "//" before "#define." Disable an option if you get compilation
// errors resembling those listed. Generally speaking, all of these options
// will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
// likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
// Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
// Among other things, derivatives help us fix anisotropic filtering artifacts
// with curved manually tiled phosphor mask coords. Related errors:
// error C3004: function "float2 ddx(float2);" not supported in this profile
// error C3004: function "float2 ddy(float2);" not supported in this profile
//#define DRIVERS_ALLOW_DERIVATIVES
// Fine derivatives: Unsupported on older ATI cards.
// Fine derivatives enable 2x2 fragment block communication, letting us perform
// fast single-pass blur operations. If your card uses coarse derivatives and
// these are enabled, blurs could look broken. Derivatives are a prerequisite.
#ifdef DRIVERS_ALLOW_DERIVATIVES
#define DRIVERS_ALLOW_FINE_DERIVATIVES
#endif
// Dynamic looping: Requires an fp30 or newer profile.
// This makes phosphor mask resampling faster in some cases. Related errors:
// error C5013: profile does not support "for" statements and "for" could not
// be unrolled
//#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
// Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
// Using one static loop avoids overhead if the user is right, but if the user
// is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
// binary search can potentially save some iterations. However, it may fail:
// error C6001: Temporary register limit of 32 exceeded; 35 registers
// needed to compile program
//#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
// tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
// anisotropic filtering, thereby fixing related artifacts. Related errors:
// error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
// this profile
//#define DRIVERS_ALLOW_TEX2DLOD
// tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
// artifacts from anisotropic filtering and mipmapping. Related errors:
// error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
// in this profile
//#define DRIVERS_ALLOW_TEX2DBIAS
// Integrated graphics compatibility: Integrated graphics like Intel HD 4000
// impose stricter limitations on register counts and instructions. Enable
// INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
// error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
// to compile program.
// Enabling integrated graphics compatibility mode will automatically disable:
// 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
// (This may be reenabled in a later release.)
// 2.) RUNTIME_GEOMETRY_MODE
// 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
//#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
//////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
// To disable a #define option, turn its line into a comment with "//."
// RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
// Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
// many of the options in this file and allow real-time tuning, but many of
// them are slower. Disabling them and using this text file will boost FPS.
#define RUNTIME_SHADER_PARAMS_ENABLE
// Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
// it's the only way to do a wide-enough full bloom with a runtime dot pitch.
#define RUNTIME_PHOSPHOR_BLOOM_SIGMA
// Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
#define RUNTIME_ANTIALIAS_WEIGHTS
// Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
//#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
// Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
// parameters? This will require more math or dynamic branching.
#define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
// Specify the tilt at runtime? This makes things about 3% slower.
#define RUNTIME_GEOMETRY_TILT
// Specify the geometry mode at runtime?
#define RUNTIME_GEOMETRY_MODE
// Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
// mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
// dynamic branches? This is cheap if mask_resize_viewport_scale is small.
#define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
// PHOSPHOR MASK:
// Manually resize the phosphor mask for best results (slower)? Disabling this
// removes the option to do so, but it may be faster without dynamic branches.
#define PHOSPHOR_MASK_MANUALLY_RESIZE
// If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
#define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
// Larger blurs are expensive, but we need them to blur larger triads. We can
// detect the right blur if the triad size is static or our profile allows
// dynamic branches, but otherwise we use the largest blur the user indicates
// they might need:
#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
// Here's a helpful chart:
// MaxTriadSize BlurSize MinTriadCountsByResolution
// 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
// 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
// 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
// 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
// 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
/////////////////////////////// USER PARAMETERS //////////////////////////////
// Note: Many of these static parameters are overridden by runtime shader
// parameters when those are enabled. However, many others are static codepath
// options that were cleaner or more convert to code as static constants.
// GAMMA:
static const float crt_gamma_static = 2.5; // range [1, 5]
static const float lcd_gamma_static = 2.2; // range [1, 5]
// LEVELS MANAGEMENT:
// Control the final multiplicative image contrast:
static const float levels_contrast_static = 1.0; // range [0, 4)
// We auto-dim to avoid clipping between passes and restore brightness
// later. Control the dim factor here: Lower values clip less but crush
// blacks more (static only for now).
static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0
// HALATION/DIFFUSION/BLOOM:
// Halation weight: How much energy should be lost to electrons bounding
// around under the CRT glass and exciting random phosphors?
static const float halation_weight_static = 0.0; // range [0, 1]
// Refractive diffusion weight: How much light should spread/diffuse from
// refracting through the CRT glass?
static const float diffusion_weight_static = 0.075; // range [0, 1]
// Underestimate brightness: Bright areas bloom more, but we can base the
// bloom brightpass on a lower brightness to sharpen phosphors, or a higher
// brightness to soften them. Low values clip, but >= 0.8 looks okay.
static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
// Blur all colors more than necessary for a softer phosphor bloom?
static const float bloom_excess_static = 0.0; // range [0, 1]
// The BLOOM_APPROX pass approximates a phosphor blur early on with a small
// blurred resize of the input (convergence offsets are applied as well).
// There are three filter options (static option only for now):
// 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
// if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
// and beam_max_sigma is low.
// 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
// always uses a static sigma regardless of beam_max_sigma or
// mask_num_triads_desired.
// 2.) True 4x4 Gaussian resize: Slowest, technically correct.
// These options are more pronounced for the fast, unbloomed shader version.
#ifndef RADEON_FIX
static const float bloom_approx_filter_static = 2.0;
#else
static const float bloom_approx_filter_static = 1.0;
#endif
// ELECTRON BEAM SCANLINE DISTRIBUTION:
// How many scanlines should contribute light to each pixel? Using more
// scanlines is slower (especially for a generalized Gaussian) but less
// distorted with larger beam sigmas (especially for a pure Gaussian). The
// max_beam_sigma at which the closest unused weight is guaranteed <
// 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
// 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
// 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
// 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
// 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
// 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
static const float beam_num_scanlines = 3.0; // range [2, 6]
// A generalized Gaussian beam varies shape with color too, now just width.
// It's slower but more flexible (static option only for now).
static const bool beam_generalized_gaussian = true;
// What kind of scanline antialiasing do you want?
// 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
// Integrals are slow (especially for generalized Gaussians) and rarely any
// better than 3x antialiasing (static option only for now).
static const float beam_antialias_level = 1.0; // range [0, 2]
// Min/max standard deviations for scanline beams: Higher values widen and
// soften scanlines. Depending on other options, low min sigmas can alias.
static const float beam_min_sigma_static = 0.02; // range (0, 1]
static const float beam_max_sigma_static = 0.3; // range (0, 1]
// Beam width varies as a function of color: A power function (0) is more
// configurable, but a spherical function (1) gives the widest beam
// variability without aliasing (static option only for now).
static const float beam_spot_shape_function = 0.0;
// Spot shape power: Powers <= 1 give smoother spot shapes but lower
// sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
// Generalized Gaussian max shape parameters: Higher values give flatter
// scanline plateaus and steeper dropoffs, simultaneously widening and
// sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
// values > ~40.0 cause artifacts with integrals.
static const float beam_min_shape_static = 2.0; // range [2, 32]
static const float beam_max_shape_static = 4.0; // range [2, 32]
// Generalized Gaussian shape power: Affects how quickly the distribution
// changes shape from Gaussian to steep/plateaued as color increases from 0
// to 1.0. Higher powers appear softer for most colors, and lower powers
// appear sharper for most colors.
static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
// What filter should be used to sample scanlines horizontally?
// 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
static const float beam_horiz_filter_static = 0.0;
// Standard deviation for horizontal Gaussian resampling:
static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
// Do horizontal scanline sampling in linear RGB (correct light mixing),
// gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
// limiting circuitry in some CRT's), or a weighted avg.?
static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
// Simulate scanline misconvergence? This needs 3x horizontal texture
// samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
// later passes (static option only for now).
static const bool beam_misconvergence = true;
// Convergence offsets in x/y directions for R/G/B scanline beams in units
// of scanlines. Positive offsets go right/down; ranges [-2, 2]
static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
// Detect interlacing (static option only for now)?
static const bool interlace_detect = true;
// Assume 1080-line sources are interlaced?
static const bool interlace_1080i_static = false;
// For interlaced sources, assume TFF (top-field first) or BFF order?
// (Whether this matters depends on the nature of the interlaced input.)
static const bool interlace_bff_static = false;
// ANTIALIASING:
// What AA level do you want for curvature/overscan/subpixels? Options:
// 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
// (Static option only for now)
static const float aa_level = 12.0; // range [0, 24]
// What antialiasing filter do you want (static option only)? Options:
// 0: Box (separable), 1: Box (cylindrical),
// 2: Tent (separable), 3: Tent (cylindrical),
// 4: Gaussian (separable), 5: Gaussian (cylindrical),
// 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
// 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
// * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
static const float aa_filter = 6.0; // range [0, 9]
// Flip the sample grid on odd/even frames (static option only for now)?
static const bool aa_temporal = false;
// Use RGB subpixel offsets for antialiasing? The pixel is at green, and
// the blue offset is the negative r offset; range [0, 0.5]
static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
// Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
// 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
// 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
// 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
// 4.) C = 0.0 is a soft spline filter.
static const float aa_cubic_c_static = 0.5; // range [0, 4]
// Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
// PHOSPHOR MASK:
// Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
static const float mask_type_static = 1.0; // range [0, 2]
// We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
// 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
// This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
// 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
// is halfway decent with LUT mipmapping but atrocious without it.
// 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
// (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
// This mode reuses the same masks, so triads will be enormous unless
// you change the mask LUT filenames in your .cgp file.
static const float mask_sample_mode_static = 0.0; // range [0, 2]
// Prefer setting the triad size (0.0) or number on the screen (1.0)?
// If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
// will always be used to calculate the full bloom sigma statically.
static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
// Specify the phosphor triad size, in pixels. Each tile (usually with 8
// triads) will be rounded to the nearest integer tile size and clamped to
// obey minimum size constraints (imposed to reduce downsize taps) and
// maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
// To increase the size limit, double the viewport-relative scales for the
// two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
// range [1, mask_texture_small_size/mask_triads_per_tile]
static const float mask_triad_size_desired_static = 24.0 / 8.0;
// If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
// final size will be rounded and constrained as above); default 480.0
static const float mask_num_triads_desired_static = 480.0;
// How many lobes should the sinc/Lanczos resizer use? More lobes require
// more samples and avoid moire a bit better, but some is unavoidable
// depending on the destination size (static option for now).
static const float mask_sinc_lobes = 3.0; // range [2, 4]
// The mask is resized using a variable number of taps in each dimension,
// but some Cg profiles always fetch a constant number of taps no matter
// what (no dynamic branching). We can limit the maximum number of taps if
// we statically limit the minimum phosphor triad size. Larger values are
// faster, but the limit IS enforced (static option only, forever);
// range [1, mask_texture_small_size/mask_triads_per_tile]
// TODO: Make this 1.0 and compensate with smarter sampling!
static const float mask_min_allowed_triad_size = 2.0;
// GEOMETRY:
// Geometry mode:
// 0: Off (default), 1: Spherical mapping (like cgwg's),
// 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
static const float geom_mode_static = 0.0; // range [0, 3]
// Radius of curvature: Measured in units of your viewport's diagonal size.
static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
// View dist is the distance from the player to their physical screen, in
// units of the viewport's diagonal size. It controls the field of view.
static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
// Tilt angle in radians (clockwise around up and right vectors):
static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
// Aspect ratio: When the true viewport size is unknown, this value is used
// to help convert between the phosphor triad size and count, along with
// the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
// this equal to Retroarch's display aspect ratio (DAR) for best results;
// range [1, geom_max_aspect_ratio from user-cgp-constants.h];
// default (256/224)*(54/47) = 1.313069909 (see below)
static const float geom_aspect_ratio_static = 1.313069909;
// Before getting into overscan, here's some general aspect ratio info:
// - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
// - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
// - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
// Geometry processing has to "undo" the screen-space 2D DAR to calculate
// 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
// uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
// a.) Enable Retroarch's "Crop Overscan"
// b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
// Real consoles use horizontal black padding in the signal, but emulators
// often crop this without cropping the vertical padding; a 256x224 [S]NES
// frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
// The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
// http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
// http://forums.nesdev.com/viewtopic.php?p=24815#p24815
// For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
// without doing a. or b., but horizontal image borders will be tighter
// than vertical ones, messing up curvature and overscan. Fixing the
// padding first corrects this.
// Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
// or adjust x/y independently to e.g. readd horizontal padding, as noted
// above: Values < 1.0 zoom out; range (0, inf)
static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
// Compute a proper pixel-space to texture-space matrix even without ddx()/
// ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
// with strong curvature (static option only for now).
static const bool geom_force_correct_tangent_matrix = true;
// BORDERS:
// Rounded border size in texture uv coords:
static const float border_size_static = 0.015; // range [0, 0.5]
// Border darkness: Moderate values darken the border smoothly, and high
// values make the image very dark just inside the border:
static const float border_darkness_static = 2.0; // range [0, inf)
// Border compression: High numbers compress border transitions, narrowing
// the dark border area.
static const float border_compress_static = 2.5; // range [1, inf)
#endif // USER_SETTINGS_H
///////////////////////////// END USER-SETTINGS ////////////////////////////
//#include "derived-settings-and-constants.h"
///////////////////// BEGIN DERIVED-SETTINGS-AND-CONSTANTS ////////////////////
#ifndef DERIVED_SETTINGS_AND_CONSTANTS_H
#define DERIVED_SETTINGS_AND_CONSTANTS_H
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
// crt-royale: A full-featured CRT shader, with cheese.
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
//
// This program is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 2 of the License, or any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
// more details.
//
// You should have received a copy of the GNU General Public License along with
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
// Place, Suite 330, Boston, MA 02111-1307 USA
///////////////////////////////// DESCRIPTION ////////////////////////////////
// These macros and constants can be used across the whole codebase.
// Unlike the values in user-settings.cgh, end users shouldn't modify these.
/////////////////////////////// BEGIN INCLUDES ///////////////////////////////
//#include "../user-settings.h"
///////////////////////////// BEGIN USER-SETTINGS ////////////////////////////
#ifndef USER_SETTINGS_H
#define USER_SETTINGS_H
///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
// The Cg compiler uses different "profiles" with different capabilities.
// This shader requires a Cg compilation profile >= arbfp1, but a few options
// require higher profiles like fp30 or fp40. The shader can't detect profile
// or driver capabilities, so instead you must comment or uncomment the lines
// below with "//" before "#define." Disable an option if you get compilation
// errors resembling those listed. Generally speaking, all of these options
// will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
// likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
// Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
// Among other things, derivatives help us fix anisotropic filtering artifacts
// with curved manually tiled phosphor mask coords. Related errors:
// error C3004: function "float2 ddx(float2);" not supported in this profile
// error C3004: function "float2 ddy(float2);" not supported in this profile
//#define DRIVERS_ALLOW_DERIVATIVES
// Fine derivatives: Unsupported on older ATI cards.
// Fine derivatives enable 2x2 fragment block communication, letting us perform
// fast single-pass blur operations. If your card uses coarse derivatives and
// these are enabled, blurs could look broken. Derivatives are a prerequisite.
#ifdef DRIVERS_ALLOW_DERIVATIVES
#define DRIVERS_ALLOW_FINE_DERIVATIVES
#endif
// Dynamic looping: Requires an fp30 or newer profile.
// This makes phosphor mask resampling faster in some cases. Related errors:
// error C5013: profile does not support "for" statements and "for" could not
// be unrolled
//#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
// Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
// Using one static loop avoids overhead if the user is right, but if the user
// is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
// binary search can potentially save some iterations. However, it may fail:
// error C6001: Temporary register limit of 32 exceeded; 35 registers
// needed to compile program
//#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
// tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
// anisotropic filtering, thereby fixing related artifacts. Related errors:
// error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
// this profile
//#define DRIVERS_ALLOW_TEX2DLOD
// tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
// artifacts from anisotropic filtering and mipmapping. Related errors:
// error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
// in this profile
//#define DRIVERS_ALLOW_TEX2DBIAS
// Integrated graphics compatibility: Integrated graphics like Intel HD 4000
// impose stricter limitations on register counts and instructions. Enable
// INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
// error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
// to compile program.
// Enabling integrated graphics compatibility mode will automatically disable:
// 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
// (This may be reenabled in a later release.)
// 2.) RUNTIME_GEOMETRY_MODE
// 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
//#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
//////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
// To disable a #define option, turn its line into a comment with "//."
// RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
// Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
// many of the options in this file and allow real-time tuning, but many of
// them are slower. Disabling them and using this text file will boost FPS.
#define RUNTIME_SHADER_PARAMS_ENABLE
// Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
// it's the only way to do a wide-enough full bloom with a runtime dot pitch.
#define RUNTIME_PHOSPHOR_BLOOM_SIGMA
// Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
#define RUNTIME_ANTIALIAS_WEIGHTS
// Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
//#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
// Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
// parameters? This will require more math or dynamic branching.
#define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
// Specify the tilt at runtime? This makes things about 3% slower.
#define RUNTIME_GEOMETRY_TILT
// Specify the geometry mode at runtime?
#define RUNTIME_GEOMETRY_MODE
// Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
// mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
// dynamic branches? This is cheap if mask_resize_viewport_scale is small.
#define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
// PHOSPHOR MASK:
// Manually resize the phosphor mask for best results (slower)? Disabling this
// removes the option to do so, but it may be faster without dynamic branches.
#define PHOSPHOR_MASK_MANUALLY_RESIZE
// If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
#define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
// Larger blurs are expensive, but we need them to blur larger triads. We can
// detect the right blur if the triad size is static or our profile allows
// dynamic branches, but otherwise we use the largest blur the user indicates
// they might need:
#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
// Here's a helpful chart:
// MaxTriadSize BlurSize MinTriadCountsByResolution
// 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
// 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
// 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
// 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
// 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
/////////////////////////////// USER PARAMETERS //////////////////////////////
// Note: Many of these static parameters are overridden by runtime shader
// parameters when those are enabled. However, many others are static codepath
// options that were cleaner or more convert to code as static constants.
// GAMMA:
static const float crt_gamma_static = 2.5; // range [1, 5]
static const float lcd_gamma_static = 2.2; // range [1, 5]
// LEVELS MANAGEMENT:
// Control the final multiplicative image contrast:
static const float levels_contrast_static = 1.0; // range [0, 4)
// We auto-dim to avoid clipping between passes and restore brightness
// later. Control the dim factor here: Lower values clip less but crush
// blacks more (static only for now).
static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0
// HALATION/DIFFUSION/BLOOM:
// Halation weight: How much energy should be lost to electrons bounding
// around under the CRT glass and exciting random phosphors?
static const float halation_weight_static = 0.0; // range [0, 1]
// Refractive diffusion weight: How much light should spread/diffuse from
// refracting through the CRT glass?
static const float diffusion_weight_static = 0.075; // range [0, 1]
// Underestimate brightness: Bright areas bloom more, but we can base the
// bloom brightpass on a lower brightness to sharpen phosphors, or a higher
// brightness to soften them. Low values clip, but >= 0.8 looks okay.
static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
// Blur all colors more than necessary for a softer phosphor bloom?
static const float bloom_excess_static = 0.0; // range [0, 1]
// The BLOOM_APPROX pass approximates a phosphor blur early on with a small
// blurred resize of the input (convergence offsets are applied as well).
// There are three filter options (static option only for now):
// 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
// if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
// and beam_max_sigma is low.
// 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
// always uses a static sigma regardless of beam_max_sigma or
// mask_num_triads_desired.
// 2.) True 4x4 Gaussian resize: Slowest, technically correct.
// These options are more pronounced for the fast, unbloomed shader version.
#ifndef RADEON_FIX
static const float bloom_approx_filter_static = 2.0;
#else
static const float bloom_approx_filter_static = 1.0;
#endif
// ELECTRON BEAM SCANLINE DISTRIBUTION:
// How many scanlines should contribute light to each pixel? Using more
// scanlines is slower (especially for a generalized Gaussian) but less
// distorted with larger beam sigmas (especially for a pure Gaussian). The
// max_beam_sigma at which the closest unused weight is guaranteed <
// 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
// 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
// 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
// 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
// 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
// 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
static const float beam_num_scanlines = 3.0; // range [2, 6]
// A generalized Gaussian beam varies shape with color too, now just width.
// It's slower but more flexible (static option only for now).
static const bool beam_generalized_gaussian = true;
// What kind of scanline antialiasing do you want?
// 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
// Integrals are slow (especially for generalized Gaussians) and rarely any
// better than 3x antialiasing (static option only for now).
static const float beam_antialias_level = 1.0; // range [0, 2]
// Min/max standard deviations for scanline beams: Higher values widen and
// soften scanlines. Depending on other options, low min sigmas can alias.
static const float beam_min_sigma_static = 0.02; // range (0, 1]
static const float beam_max_sigma_static = 0.3; // range (0, 1]
// Beam width varies as a function of color: A power function (0) is more
// configurable, but a spherical function (1) gives the widest beam
// variability without aliasing (static option only for now).
static const float beam_spot_shape_function = 0.0;
// Spot shape power: Powers <= 1 give smoother spot shapes but lower
// sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
// Generalized Gaussian max shape parameters: Higher values give flatter
// scanline plateaus and steeper dropoffs, simultaneously widening and
// sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
// values > ~40.0 cause artifacts with integrals.
static const float beam_min_shape_static = 2.0; // range [2, 32]
static const float beam_max_shape_static = 4.0; // range [2, 32]
// Generalized Gaussian shape power: Affects how quickly the distribution
// changes shape from Gaussian to steep/plateaued as color increases from 0
// to 1.0. Higher powers appear softer for most colors, and lower powers
// appear sharper for most colors.
static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
// What filter should be used to sample scanlines horizontally?
// 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
static const float beam_horiz_filter_static = 0.0;
// Standard deviation for horizontal Gaussian resampling:
static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
// Do horizontal scanline sampling in linear RGB (correct light mixing),
// gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
// limiting circuitry in some CRT's), or a weighted avg.?
static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
// Simulate scanline misconvergence? This needs 3x horizontal texture
// samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
// later passes (static option only for now).
static const bool beam_misconvergence = true;
// Convergence offsets in x/y directions for R/G/B scanline beams in units
// of scanlines. Positive offsets go right/down; ranges [-2, 2]
static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
// Detect interlacing (static option only for now)?
static const bool interlace_detect = true;
// Assume 1080-line sources are interlaced?
static const bool interlace_1080i_static = false;
// For interlaced sources, assume TFF (top-field first) or BFF order?
// (Whether this matters depends on the nature of the interlaced input.)
static const bool interlace_bff_static = false;
// ANTIALIASING:
// What AA level do you want for curvature/overscan/subpixels? Options:
// 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
// (Static option only for now)
static const float aa_level = 12.0; // range [0, 24]
// What antialiasing filter do you want (static option only)? Options:
// 0: Box (separable), 1: Box (cylindrical),
// 2: Tent (separable), 3: Tent (cylindrical),
// 4: Gaussian (separable), 5: Gaussian (cylindrical),
// 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
// 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
// * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
static const float aa_filter = 6.0; // range [0, 9]
// Flip the sample grid on odd/even frames (static option only for now)?
static const bool aa_temporal = false;
// Use RGB subpixel offsets for antialiasing? The pixel is at green, and
// the blue offset is the negative r offset; range [0, 0.5]
static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
// Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
// 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
// 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
// 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
// 4.) C = 0.0 is a soft spline filter.
static const float aa_cubic_c_static = 0.5; // range [0, 4]
// Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
// PHOSPHOR MASK:
// Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
static const float mask_type_static = 1.0; // range [0, 2]
// We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
// 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
// This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
// 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
// is halfway decent with LUT mipmapping but atrocious without it.
// 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
// (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
// This mode reuses the same masks, so triads will be enormous unless
// you change the mask LUT filenames in your .cgp file.
static const float mask_sample_mode_static = 0.0; // range [0, 2]
// Prefer setting the triad size (0.0) or number on the screen (1.0)?
// If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
// will always be used to calculate the full bloom sigma statically.
static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
// Specify the phosphor triad size, in pixels. Each tile (usually with 8
// triads) will be rounded to the nearest integer tile size and clamped to
// obey minimum size constraints (imposed to reduce downsize taps) and
// maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
// To increase the size limit, double the viewport-relative scales for the
// two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
// range [1, mask_texture_small_size/mask_triads_per_tile]
static const float mask_triad_size_desired_static = 24.0 / 8.0;
// If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
// final size will be rounded and constrained as above); default 480.0
static const float mask_num_triads_desired_static = 480.0;
// How many lobes should the sinc/Lanczos resizer use? More lobes require
// more samples and avoid moire a bit better, but some is unavoidable
// depending on the destination size (static option for now).
static const float mask_sinc_lobes = 3.0; // range [2, 4]
// The mask is resized using a variable number of taps in each dimension,
// but some Cg profiles always fetch a constant number of taps no matter
// what (no dynamic branching). We can limit the maximum number of taps if
// we statically limit the minimum phosphor triad size. Larger values are
// faster, but the limit IS enforced (static option only, forever);
// range [1, mask_texture_small_size/mask_triads_per_tile]
// TODO: Make this 1.0 and compensate with smarter sampling!
static const float mask_min_allowed_triad_size = 2.0;
// GEOMETRY:
// Geometry mode:
// 0: Off (default), 1: Spherical mapping (like cgwg's),
// 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
static const float geom_mode_static = 0.0; // range [0, 3]
// Radius of curvature: Measured in units of your viewport's diagonal size.
static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
// View dist is the distance from the player to their physical screen, in
// units of the viewport's diagonal size. It controls the field of view.
static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
// Tilt angle in radians (clockwise around up and right vectors):
static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
// Aspect ratio: When the true viewport size is unknown, this value is used
// to help convert between the phosphor triad size and count, along with
// the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
// this equal to Retroarch's display aspect ratio (DAR) for best results;
// range [1, geom_max_aspect_ratio from user-cgp-constants.h];
// default (256/224)*(54/47) = 1.313069909 (see below)
static const float geom_aspect_ratio_static = 1.313069909;
// Before getting into overscan, here's some general aspect ratio info:
// - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
// - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
// - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
// Geometry processing has to "undo" the screen-space 2D DAR to calculate
// 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
// uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
// a.) Enable Retroarch's "Crop Overscan"
// b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
// Real consoles use horizontal black padding in the signal, but emulators
// often crop this without cropping the vertical padding; a 256x224 [S]NES
// frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
// The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
// http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
// http://forums.nesdev.com/viewtopic.php?p=24815#p24815
// For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
// without doing a. or b., but horizontal image borders will be tighter
// than vertical ones, messing up curvature and overscan. Fixing the
// padding first corrects this.
// Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
// or adjust x/y independently to e.g. readd horizontal padding, as noted
// above: Values < 1.0 zoom out; range (0, inf)
static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
// Compute a proper pixel-space to texture-space matrix even without ddx()/
// ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
// with strong curvature (static option only for now).
static const bool geom_force_correct_tangent_matrix = true;
// BORDERS:
// Rounded border size in texture uv coords:
static const float border_size_static = 0.015; // range [0, 0.5]
// Border darkness: Moderate values darken the border smoothly, and high
// values make the image very dark just inside the border:
static const float border_darkness_static = 2.0; // range [0, inf)
// Border compression: High numbers compress border transitions, narrowing
// the dark border area.
static const float border_compress_static = 2.5; // range [1, inf)
#endif // USER_SETTINGS_H
///////////////////////////// END USER-SETTINGS ////////////////////////////
//#include "user-cgp-constants.h"
///////////////////////// BEGIN USER-CGP-CONSTANTS /////////////////////////
#ifndef USER_CGP_CONSTANTS_H
#define USER_CGP_CONSTANTS_H
// IMPORTANT:
// These constants MUST be set appropriately for the settings in crt-royale.cgp
// (or whatever related .cgp file you're using). If they aren't, you're likely
// to get artifacts, the wrong phosphor mask size, etc. I wish these could be
// set directly in the .cgp file to make things easier, but...they can't.
// PASS SCALES AND RELATED CONSTANTS:
// Copy the absolute scale_x for BLOOM_APPROX. There are two major versions of
// this shader: One does a viewport-scale bloom, and the other skips it. The
// latter benefits from a higher bloom_approx_scale_x, so save both separately:
static const float bloom_approx_size_x = 320.0;
static const float bloom_approx_size_x_for_fake = 400.0;
// Copy the viewport-relative scales of the phosphor mask resize passes
// (MASK_RESIZE and the pass immediately preceding it):
static const float2 mask_resize_viewport_scale = float2(0.0625, 0.0625);
// Copy the geom_max_aspect_ratio used to calculate the MASK_RESIZE scales, etc.:
static const float geom_max_aspect_ratio = 4.0/3.0;
// PHOSPHOR MASK TEXTURE CONSTANTS:
// Set the following constants to reflect the properties of the phosphor mask
// texture named in crt-royale.cgp. The shader optionally resizes a mask tile
// based on user settings, then repeats a single tile until filling the screen.
// The shader must know the input texture size (default 64x64), and to manually
// resize, it must also know the horizontal triads per tile (default 8).
static const float2 mask_texture_small_size = float2(64.0, 64.0);
static const float2 mask_texture_large_size = float2(512.0, 512.0);
static const float mask_triads_per_tile = 8.0;
// We need the average brightness of the phosphor mask to compensate for the
// dimming it causes. The following four values are roughly correct for the
// masks included with the shader. Update the value for any LUT texture you
// change. [Un]comment "#define PHOSPHOR_MASK_GRILLE14" depending on whether
// the loaded aperture grille uses 14-pixel or 15-pixel stripes (default 15).
//#define PHOSPHOR_MASK_GRILLE14
static const float mask_grille14_avg_color = 50.6666666/255.0;
// TileableLinearApertureGrille14Wide7d33Spacing*.png
// TileableLinearApertureGrille14Wide10And6Spacing*.png
static const float mask_grille15_avg_color = 53.0/255.0;
// TileableLinearApertureGrille15Wide6d33Spacing*.png
// TileableLinearApertureGrille15Wide8And5d5Spacing*.png
static const float mask_slot_avg_color = 46.0/255.0;
// TileableLinearSlotMask15Wide9And4d5Horizontal8VerticalSpacing*.png
// TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacing*.png
static const float mask_shadow_avg_color = 41.0/255.0;
// TileableLinearShadowMask*.png
// TileableLinearShadowMaskEDP*.png
#ifdef PHOSPHOR_MASK_GRILLE14
static const float mask_grille_avg_color = mask_grille14_avg_color;
#else
static const float mask_grille_avg_color = mask_grille15_avg_color;
#endif
#endif // USER_CGP_CONSTANTS_H
////////////////////////// END USER-CGP-CONSTANTS //////////////////////////
//////////////////////////////// END INCLUDES ////////////////////////////////
/////////////////////////////// FIXED SETTINGS ///////////////////////////////
// Avoid dividing by zero; using a macro overloads for float, float2, etc.:
#define FIX_ZERO(c) (max(abs(c), 0.0000152587890625)) // 2^-16
// Ensure the first pass decodes CRT gamma and the last encodes LCD gamma.
#ifndef SIMULATE_CRT_ON_LCD
#define SIMULATE_CRT_ON_LCD
#endif
// Manually tiling a manually resized texture creates texture coord derivative
// discontinuities and confuses anisotropic filtering, causing discolored tile
// seams in the phosphor mask. Workarounds:
// a.) Using tex2Dlod disables anisotropic filtering for tiled masks. It's
// downgraded to tex2Dbias without DRIVERS_ALLOW_TEX2DLOD #defined and
// disabled without DRIVERS_ALLOW_TEX2DBIAS #defined either.
// b.) "Tile flat twice" requires drawing two full tiles without border padding
// to the resized mask FBO, and it's incompatible with same-pass curvature.
// (Same-pass curvature isn't used but could be in the future...maybe.)
// c.) "Fix discontinuities" requires derivatives and drawing one tile with
// border padding to the resized mask FBO, but it works with same-pass
// curvature. It's disabled without DRIVERS_ALLOW_DERIVATIVES #defined.
// Precedence: a, then, b, then c (if multiple strategies are #defined).
#define ANISOTROPIC_TILING_COMPAT_TEX2DLOD // 129.7 FPS, 4x, flat; 101.8 at fullscreen
#define ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE // 128.1 FPS, 4x, flat; 101.5 at fullscreen
#define ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES // 124.4 FPS, 4x, flat; 97.4 at fullscreen
// Also, manually resampling the phosphor mask is slightly blurrier with
// anisotropic filtering. (Resampling with mipmapping is even worse: It
// creates artifacts, but only with the fully bloomed shader.) The difference
// is subtle with small triads, but you can fix it for a small cost.
//#define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
////////////////////////////// DERIVED SETTINGS //////////////////////////////
// Intel HD 4000 GPU's can't handle manual mask resizing (for now), setting the
// geometry mode at runtime, or a 4x4 true Gaussian resize. Disable
// incompatible settings ASAP. (INTEGRATED_GRAPHICS_COMPATIBILITY_MODE may be
// #defined by either user-settings.h or a wrapper .cg that #includes the
// current .cg pass.)
#ifdef INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
#ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
#undef PHOSPHOR_MASK_MANUALLY_RESIZE
#endif
#ifdef RUNTIME_GEOMETRY_MODE
#undef RUNTIME_GEOMETRY_MODE
#endif
// Mode 2 (4x4 Gaussian resize) won't work, and mode 1 (3x3 blur) is
// inferior in most cases, so replace 2.0 with 0.0:
static const float bloom_approx_filter =
bloom_approx_filter_static > 1.5 ? 0.0 : bloom_approx_filter_static;
#else
static const float bloom_approx_filter = bloom_approx_filter_static;
#endif
// Disable slow runtime paths if static parameters are used. Most of these
// won't be a problem anyway once the params are disabled, but some will.
#ifndef RUNTIME_SHADER_PARAMS_ENABLE
#ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA
#undef RUNTIME_PHOSPHOR_BLOOM_SIGMA
#endif
#ifdef RUNTIME_ANTIALIAS_WEIGHTS
#undef RUNTIME_ANTIALIAS_WEIGHTS
#endif
#ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
#undef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
#endif
#ifdef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
#undef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
#endif
#ifdef RUNTIME_GEOMETRY_TILT
#undef RUNTIME_GEOMETRY_TILT
#endif
#ifdef RUNTIME_GEOMETRY_MODE
#undef RUNTIME_GEOMETRY_MODE
#endif
#ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
#undef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
#endif
#endif
// Make tex2Dbias a backup for tex2Dlod for wider compatibility.
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
#define ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
#endif
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
#define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
#endif
// Rule out unavailable anisotropic compatibility strategies:
#ifndef DRIVERS_ALLOW_DERIVATIVES
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
#endif
#endif
#ifndef DRIVERS_ALLOW_TEX2DLOD
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
#undef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
#endif
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
#undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
#endif
#ifdef ANTIALIAS_DISABLE_ANISOTROPIC
#undef ANTIALIAS_DISABLE_ANISOTROPIC
#endif
#endif
#ifndef DRIVERS_ALLOW_TEX2DBIAS
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
#undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
#endif
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
#undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
#endif
#endif
// Prioritize anisotropic tiling compatibility strategies by performance and
// disable unused strategies. This concentrates all the nesting in one place.
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
#undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
#endif
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
#undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
#endif
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
#endif
#else
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
#undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
#endif
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
#endif
#else
// ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE is only compatible with
// flat texture coords in the same pass, but that's all we use.
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
#endif
#endif
#endif
#endif
// The tex2Dlod and tex2Dbias strategies share a lot in common, and we can
// reduce some #ifdef nesting in the next section by essentially OR'ing them:
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
#define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
#endif
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
#define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
#endif
// Prioritize anisotropic resampling compatibility strategies the same way:
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
#undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
#endif
#endif
/////////////////////// DERIVED PHOSPHOR MASK CONSTANTS //////////////////////
// If we can use the large mipmapped LUT without mipmapping artifacts, we
// should: It gives us more options for using fewer samples.
#ifdef DRIVERS_ALLOW_TEX2DLOD
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
// TODO: Take advantage of this!
#define PHOSPHOR_MASK_RESIZE_MIPMAPPED_LUT
static const float2 mask_resize_src_lut_size = mask_texture_large_size;
#else
static const float2 mask_resize_src_lut_size = mask_texture_small_size;
#endif
#else
static const float2 mask_resize_src_lut_size = mask_texture_small_size;
#endif
// tex2D's sampler2D parameter MUST be a uniform global, a uniform input to
// main_fragment, or a static alias of one of the above. This makes it hard
// to select the phosphor mask at runtime: We can't even assign to a uniform
// global in the vertex shader or select a sampler2D in the vertex shader and
// pass it to the fragment shader (even with explicit TEXUNIT# bindings),
// because it just gives us the input texture or a black screen. However, we
// can get around these limitations by calling tex2D three times with different
// uniform samplers (or resizing the phosphor mask three times altogether).
// With dynamic branches, we can process only one of these branches on top of
// quickly discarding fragments we don't need (cgc seems able to overcome
// limigations around dependent texture fetches inside of branches). Without
// dynamic branches, we have to process every branch for every fragment...which
// is slower. Runtime sampling mode selection is slower without dynamic
// branches as well. Let the user's static #defines decide if it's worth it.
#ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES
#define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
#else
#ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
#define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
#endif
#endif
// We need to render some minimum number of tiles in the resize passes.
// We need at least 1.0 just to repeat a single tile, and we need extra
// padding beyond that for anisotropic filtering, discontinuitity fixing,
// antialiasing, same-pass curvature (not currently used), etc. First
// determine how many border texels and tiles we need, based on how the result
// will be sampled:
#ifdef GEOMETRY_EARLY
static const float max_subpixel_offset = aa_subpixel_r_offset_static.x;
// Most antialiasing filters have a base radius of 4.0 pixels:
static const float max_aa_base_pixel_border = 4.0 +
max_subpixel_offset;
#else
static const float max_aa_base_pixel_border = 0.0;
#endif
// Anisotropic filtering adds about 0.5 to the pixel border:
#ifndef ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
static const float max_aniso_pixel_border = max_aa_base_pixel_border + 0.5;
#else
static const float max_aniso_pixel_border = max_aa_base_pixel_border;
#endif
// Fixing discontinuities adds 1.0 more to the pixel border:
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
static const float max_tiled_pixel_border = max_aniso_pixel_border + 1.0;
#else
static const float max_tiled_pixel_border = max_aniso_pixel_border;
#endif
// Convert the pixel border to an integer texel border. Assume same-pass
// curvature about triples the texel frequency:
#ifdef GEOMETRY_EARLY
static const float max_mask_texel_border =
ceil(max_tiled_pixel_border * 3.0);
#else
static const float max_mask_texel_border = ceil(max_tiled_pixel_border);
#endif
// Convert the texel border to a tile border using worst-case assumptions:
static const float max_mask_tile_border = max_mask_texel_border/
(mask_min_allowed_triad_size * mask_triads_per_tile);
// Finally, set the number of resized tiles to render to MASK_RESIZE, and set
// the starting texel (inside borders) for sampling it.
#ifndef GEOMETRY_EARLY
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
// Special case: Render two tiles without borders. Anisotropic
// filtering doesn't seem to be a problem here.
static const float mask_resize_num_tiles = 1.0 + 1.0;
static const float mask_start_texels = 0.0;
#else
static const float mask_resize_num_tiles = 1.0 +
2.0 * max_mask_tile_border;
static const float mask_start_texels = max_mask_texel_border;
#endif
#else
static const float mask_resize_num_tiles = 1.0 + 2.0*max_mask_tile_border;
static const float mask_start_texels = max_mask_texel_border;
#endif
// We have to fit mask_resize_num_tiles into an FBO with a viewport scale of
// mask_resize_viewport_scale. This limits the maximum final triad size.
// Estimate the minimum number of triads we can split the screen into in each
// dimension (we'll be as correct as mask_resize_viewport_scale is):
static const float mask_resize_num_triads =
mask_resize_num_tiles * mask_triads_per_tile;
static const float2 min_allowed_viewport_triads =
float2(mask_resize_num_triads) / mask_resize_viewport_scale;
//////////////////////// COMMON MATHEMATICAL CONSTANTS ///////////////////////
static const float pi = 3.141592653589;
// We often want to find the location of the previous texel, e.g.:
// const float2 curr_texel = uv * texture_size;
// const float2 prev_texel = floor(curr_texel - float2(0.5)) + float2(0.5);
// const float2 prev_texel_uv = prev_texel / texture_size;
// However, many GPU drivers round incorrectly around exact texel locations.
// We need to subtract a little less than 0.5 before flooring, and some GPU's
// require this value to be farther from 0.5 than others; define it here.
// const float2 prev_texel =
// floor(curr_texel - float2(under_half)) + float2(0.5);
static const float under_half = 0.4995;
#endif // DERIVED_SETTINGS_AND_CONSTANTS_H
//////////////////// END DERIVED-SETTINGS-AND-CONSTANTS /////////////////////
//////////////////////////////// END INCLUDES ////////////////////////////////
// Override some parameters for gamma-management.h and tex2Dantialias.h:
#define OVERRIDE_DEVICE_GAMMA
static const float gba_gamma = 3.5; // Irrelevant but necessary to define.
#define ANTIALIAS_OVERRIDE_BASICS
#define ANTIALIAS_OVERRIDE_PARAMETERS
// Provide accessors for vector constants that pack scalar uniforms:
inline float2 get_aspect_vector(const float geom_aspect_ratio)
{
// Get an aspect ratio vector. Enforce geom_max_aspect_ratio, and prevent
// the absolute scale from affecting the uv-mapping for curvature:
const float geom_clamped_aspect_ratio =
min(geom_aspect_ratio, geom_max_aspect_ratio);
const float2 geom_aspect =
normalize(float2(geom_clamped_aspect_ratio, 1.0));
return geom_aspect;
}
inline float2 get_geom_overscan_vector()
{
return float2(geom_overscan_x, geom_overscan_y);
}
inline float2 get_geom_tilt_angle_vector()
{
return float2(geom_tilt_angle_x, geom_tilt_angle_y);
}
inline float3 get_convergence_offsets_x_vector()
{
return float3(convergence_offset_x_r, convergence_offset_x_g,
convergence_offset_x_b);
}
inline float3 get_convergence_offsets_y_vector()
{
return float3(convergence_offset_y_r, convergence_offset_y_g,
convergence_offset_y_b);
}
inline float2 get_convergence_offsets_r_vector()
{
return float2(convergence_offset_x_r, convergence_offset_y_r);
}
inline float2 get_convergence_offsets_g_vector()
{
return float2(convergence_offset_x_g, convergence_offset_y_g);
}
inline float2 get_convergence_offsets_b_vector()
{
return float2(convergence_offset_x_b, convergence_offset_y_b);
}
inline float2 get_aa_subpixel_r_offset()
{
#ifdef RUNTIME_ANTIALIAS_WEIGHTS
#ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
// WARNING: THIS IS EXTREMELY EXPENSIVE.
return float2(aa_subpixel_r_offset_x_runtime,
aa_subpixel_r_offset_y_runtime);
#else
return aa_subpixel_r_offset_static;
#endif
#else
return aa_subpixel_r_offset_static;
#endif
}
// Provide accessors settings which still need "cooking:"
inline float get_mask_amplify()
{
static const float mask_grille_amplify = 1.0/mask_grille_avg_color;
static const float mask_slot_amplify = 1.0/mask_slot_avg_color;
static const float mask_shadow_amplify = 1.0/mask_shadow_avg_color;
return mask_type < 0.5 ? mask_grille_amplify :
mask_type < 1.5 ? mask_slot_amplify :
mask_shadow_amplify;
}
inline float get_mask_sample_mode()
{
#ifdef RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
#ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
return mask_sample_mode_desired;
#else
return clamp(mask_sample_mode_desired, 1.0, 2.0);
#endif
#else
#ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
return mask_sample_mode_static;
#else
return clamp(mask_sample_mode_static, 1.0, 2.0);
#endif
#endif
}
#endif // BIND_SHADER_PARAMS_H
//////////////////////////// END BIND-SHADER-PARAMS ///////////////////////////
//#include "../../../../include/gamma-management.h"
//////////////////////////// BEGIN GAMMA-MANAGEMENT //////////////////////////
#ifndef GAMMA_MANAGEMENT_H
#define GAMMA_MANAGEMENT_H
///////////////////////////////// MIT LICENSE ////////////////////////////////
// Copyright (C) 2014 TroggleMonkey
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
///////////////////////////////// DESCRIPTION ////////////////////////////////
// This file provides gamma-aware tex*D*() and encode_output() functions.
// Requires: Before #include-ing this file, the including file must #define
// the following macros when applicable and follow their rules:
// 1.) #define FIRST_PASS if this is the first pass.
// 2.) #define LAST_PASS if this is the last pass.
// 3.) If sRGB is available, set srgb_framebufferN = "true" for
// every pass except the last in your .cgp preset.
// 4.) If sRGB isn't available but you want gamma-correctness with
// no banding, #define GAMMA_ENCODE_EVERY_FBO each pass.
// 5.) #define SIMULATE_CRT_ON_LCD if desired (precedence over 5-7)
// 6.) #define SIMULATE_GBA_ON_LCD if desired (precedence over 6-7)
// 7.) #define SIMULATE_LCD_ON_CRT if desired (precedence over 7)
// 8.) #define SIMULATE_GBA_ON_CRT if desired (precedence over -)
// If an option in [5, 8] is #defined in the first or last pass, it
// should be #defined for both. It shouldn't make a difference
// whether it's #defined for intermediate passes or not.
// Optional: The including file (or an earlier included file) may optionally
// #define a number of macros indicating it will override certain
// macros and associated constants are as follows:
// static constants with either static or uniform constants. The
// 1.) OVERRIDE_STANDARD_GAMMA: The user must first define:
// static const float ntsc_gamma
// static const float pal_gamma
// static const float crt_reference_gamma_high
// static const float crt_reference_gamma_low
// static const float lcd_reference_gamma
// static const float crt_office_gamma
// static const float lcd_office_gamma
// 2.) OVERRIDE_DEVICE_GAMMA: The user must first define:
// static const float crt_gamma
// static const float gba_gamma
// static const float lcd_gamma
// 3.) OVERRIDE_FINAL_GAMMA: The user must first define:
// static const float input_gamma
// static const float intermediate_gamma
// static const float output_gamma
// (intermediate_gamma is for GAMMA_ENCODE_EVERY_FBO.)
// 4.) OVERRIDE_ALPHA_ASSUMPTIONS: The user must first define:
// static const bool assume_opaque_alpha
// The gamma constant overrides must be used in every pass or none,
// and OVERRIDE_FINAL_GAMMA bypasses all of the SIMULATE* macros.
// OVERRIDE_ALPHA_ASSUMPTIONS may be set on a per-pass basis.
// Usage: After setting macros appropriately, ignore gamma correction and
// replace all tex*D*() calls with equivalent gamma-aware
// tex*D*_linearize calls, except:
// 1.) When you read an LUT, use regular tex*D or a gamma-specified
// function, depending on its gamma encoding:
// tex*D*_linearize_gamma (takes a runtime gamma parameter)
// 2.) If you must read pass0's original input in a later pass, use
// tex2D_linearize_ntsc_gamma. If you want to read pass0's
// input with gamma-corrected bilinear filtering, consider
// creating a first linearizing pass and reading from the input
// of pass1 later.
// Then, return encode_output(color) from every fragment shader.
// Finally, use the global gamma_aware_bilinear boolean if you want
// to statically branch based on whether bilinear filtering is
// gamma-correct or not (e.g. for placing Gaussian blur samples).
//
// Detailed Policy:
// tex*D*_linearize() functions enforce a consistent gamma-management policy
// based on the FIRST_PASS and GAMMA_ENCODE_EVERY_FBO settings. They assume
// their input texture has the same encoding characteristics as the input for
// the current pass (which doesn't apply to the exceptions listed above).
// Similarly, encode_output() enforces a policy based on the LAST_PASS and
// GAMMA_ENCODE_EVERY_FBO settings. Together, they result in one of the
// following two pipelines.
// Typical pipeline with intermediate sRGB framebuffers:
// linear_color = pow(pass0_encoded_color, input_gamma);
// intermediate_output = linear_color; // Automatic sRGB encoding
// linear_color = intermediate_output; // Automatic sRGB decoding
// final_output = pow(intermediate_output, 1.0/output_gamma);
// Typical pipeline without intermediate sRGB framebuffers:
// linear_color = pow(pass0_encoded_color, input_gamma);
// intermediate_output = pow(linear_color, 1.0/intermediate_gamma);
// linear_color = pow(intermediate_output, intermediate_gamma);
// final_output = pow(intermediate_output, 1.0/output_gamma);
// Using GAMMA_ENCODE_EVERY_FBO is much slower, but it's provided as a way to
// easily get gamma-correctness without banding on devices where sRGB isn't
// supported.
//
// Use This Header to Maximize Code Reuse:
// The purpose of this header is to provide a consistent interface for texture
// reads and output gamma-encoding that localizes and abstracts away all the
// annoying details. This greatly reduces the amount of code in each shader
// pass that depends on the pass number in the .cgp preset or whether sRGB
// FBO's are being used: You can trivially change the gamma behavior of your
// whole pass by commenting or uncommenting 1-3 #defines. To reuse the same
// code in your first, Nth, and last passes, you can even put it all in another
// header file and #include it from skeleton .cg files that #define the
// appropriate pass-specific settings.
//
// Rationale for Using Three Macros:
// This file uses GAMMA_ENCODE_EVERY_FBO instead of an opposite macro like
// SRGB_PIPELINE to ensure sRGB is assumed by default, which hopefully imposes
// a lower maintenance burden on each pass. At first glance it seems we could
// accomplish everything with two macros: GAMMA_CORRECT_IN / GAMMA_CORRECT_OUT.
// This works for simple use cases where input_gamma == output_gamma, but it
// breaks down for more complex scenarios like CRT simulation, where the pass
// number determines the gamma encoding of the input and output.
/////////////////////////////// BASE CONSTANTS ///////////////////////////////
// Set standard gamma constants, but allow users to override them:
#ifndef OVERRIDE_STANDARD_GAMMA
// Standard encoding gammas:
static const float ntsc_gamma = 2.2; // Best to use NTSC for PAL too?
static const float pal_gamma = 2.8; // Never actually 2.8 in practice
// Typical device decoding gammas (only use for emulating devices):
// CRT/LCD reference gammas are higher than NTSC and Rec.709 video standard
// gammas: The standards purposely undercorrected for an analog CRT's
// assumed 2.5 reference display gamma to maintain contrast in assumed
// [dark] viewing conditions: http://www.poynton.com/PDFs/GammaFAQ.pdf
// These unstated assumptions about display gamma and perceptual rendering
// intent caused a lot of confusion, and more modern CRT's seemed to target
// NTSC 2.2 gamma with circuitry. LCD displays seem to have followed suit
// (they struggle near black with 2.5 gamma anyway), especially PC/laptop
// displays designed to view sRGB in bright environments. (Standards are
// also in flux again with BT.1886, but it's underspecified for displays.)
static const float crt_reference_gamma_high = 2.5; // In (2.35, 2.55)
static const float crt_reference_gamma_low = 2.35; // In (2.35, 2.55)
static const float lcd_reference_gamma = 2.5; // To match CRT
static const float crt_office_gamma = 2.2; // Circuitry-adjusted for NTSC
static const float lcd_office_gamma = 2.2; // Approximates sRGB
#endif // OVERRIDE_STANDARD_GAMMA
// Assuming alpha == 1.0 might make it easier for users to avoid some bugs,
// but only if they're aware of it.
#ifndef OVERRIDE_ALPHA_ASSUMPTIONS
static const bool assume_opaque_alpha = false;
#endif
/////////////////////// DERIVED CONSTANTS AS FUNCTIONS ///////////////////////
// gamma-management.h should be compatible with overriding gamma values with
// runtime user parameters, but we can only define other global constants in
// terms of static constants, not uniform user parameters. To get around this
// limitation, we need to define derived constants using functions.
// Set device gamma constants, but allow users to override them:
#ifdef OVERRIDE_DEVICE_GAMMA
// The user promises to globally define the appropriate constants:
inline float get_crt_gamma() { return crt_gamma; }
inline float get_gba_gamma() { return gba_gamma; }
inline float get_lcd_gamma() { return lcd_gamma; }
#else
inline float get_crt_gamma() { return crt_reference_gamma_high; }
inline float get_gba_gamma() { return 3.5; } // Game Boy Advance; in (3.0, 4.0)
inline float get_lcd_gamma() { return lcd_office_gamma; }
#endif // OVERRIDE_DEVICE_GAMMA
// Set decoding/encoding gammas for the first/lass passes, but allow overrides:
#ifdef OVERRIDE_FINAL_GAMMA
// The user promises to globally define the appropriate constants:
inline float get_intermediate_gamma() { return intermediate_gamma; }
inline float get_input_gamma() { return input_gamma; }
inline float get_output_gamma() { return output_gamma; }
#else
// If we gamma-correct every pass, always use ntsc_gamma between passes to
// ensure middle passes don't need to care if anything is being simulated:
inline float get_intermediate_gamma() { return ntsc_gamma; }
#ifdef SIMULATE_CRT_ON_LCD
inline float get_input_gamma() { return get_crt_gamma(); }
inline float get_output_gamma() { return get_lcd_gamma(); }
#else
#ifdef SIMULATE_GBA_ON_LCD
inline float get_input_gamma() { return get_gba_gamma(); }
inline float get_output_gamma() { return get_lcd_gamma(); }
#else
#ifdef SIMULATE_LCD_ON_CRT
inline float get_input_gamma() { return get_lcd_gamma(); }
inline float get_output_gamma() { return get_crt_gamma(); }
#else
#ifdef SIMULATE_GBA_ON_CRT
inline float get_input_gamma() { return get_gba_gamma(); }
inline float get_output_gamma() { return get_crt_gamma(); }
#else // Don't simulate anything:
inline float get_input_gamma() { return ntsc_gamma; }
inline float get_output_gamma() { return ntsc_gamma; }
#endif // SIMULATE_GBA_ON_CRT
#endif // SIMULATE_LCD_ON_CRT
#endif // SIMULATE_GBA_ON_LCD
#endif // SIMULATE_CRT_ON_LCD
#endif // OVERRIDE_FINAL_GAMMA
// Set decoding/encoding gammas for the current pass. Use static constants for
// linearize_input and gamma_encode_output, because they aren't derived, and
// they let the compiler do dead-code elimination.
#ifndef GAMMA_ENCODE_EVERY_FBO
#ifdef FIRST_PASS
static const bool linearize_input = true;
inline float get_pass_input_gamma() { return get_input_gamma(); }
#else
static const bool linearize_input = false;
inline float get_pass_input_gamma() { return 1.0; }
#endif
#ifdef LAST_PASS
static const bool gamma_encode_output = true;
inline float get_pass_output_gamma() { return get_output_gamma(); }
#else
static const bool gamma_encode_output = false;
inline float get_pass_output_gamma() { return 1.0; }
#endif
#else
static const bool linearize_input = true;
static const bool gamma_encode_output = true;
#ifdef FIRST_PASS
inline float get_pass_input_gamma() { return get_input_gamma(); }
#else
inline float get_pass_input_gamma() { return get_intermediate_gamma(); }
#endif
#ifdef LAST_PASS
inline float get_pass_output_gamma() { return get_output_gamma(); }
#else
inline float get_pass_output_gamma() { return get_intermediate_gamma(); }
#endif
#endif
// Users might want to know if bilinear filtering will be gamma-correct:
static const bool gamma_aware_bilinear = !linearize_input;
////////////////////// COLOR ENCODING/DECODING FUNCTIONS /////////////////////
inline float4 encode_output(const float4 color)
{
if(gamma_encode_output)
{
if(assume_opaque_alpha)
{
return float4(pow(color.rgb, float3(1.0/get_pass_output_gamma())), 1.0);
}
else
{
return float4(pow(color.rgb, float3(1.0/get_pass_output_gamma())), color.a);
}
}
else
{
return color;
}
}
inline float4 decode_input(const float4 color)
{
if(linearize_input)
{
if(assume_opaque_alpha)
{
return float4(pow(color.rgb, float3(get_pass_input_gamma())), 1.0);
}
else
{
return float4(pow(color.rgb, float3(get_pass_input_gamma())), color.a);
}
}
else
{
return color;
}
}
inline float4 decode_gamma_input(const float4 color, const float3 gamma)
{
if(assume_opaque_alpha)
{
return float4(pow(color.rgb, gamma), 1.0);
}
else
{
return float4(pow(color.rgb, gamma), color.a);
}
}
//TODO/FIXME: I have no idea why replacing the lookup wrappers with this macro fixes the blurs being offset ¯\_(ツ)_/¯
//#define tex2D_linearize(C, D) decode_input(vec4(texture(C, D)))
// EDIT: it's the 'const' in front of the coords that's doing it
/////////////////////////// TEXTURE LOOKUP WRAPPERS //////////////////////////
// "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS:
// Provide a wide array of linearizing texture lookup wrapper functions. The
// Cg shader spec Retroarch uses only allows for 2D textures, but 1D and 3D
// lookups are provided for completeness in case that changes someday. Nobody
// is likely to use the *fetch and *proj functions, but they're included just
// in case. The only tex*D texture sampling functions omitted are:
// - tex*Dcmpbias
// - tex*Dcmplod
// - tex*DARRAY*
// - tex*DMS*
// - Variants returning integers
// Standard line length restrictions are ignored below for vertical brevity.
/*
// tex1D:
inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords)
{ return decode_input(tex1D(tex, tex_coords)); }
inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords)
{ return decode_input(tex1D(tex, tex_coords)); }
inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const int texel_off)
{ return decode_input(tex1D(tex, tex_coords, texel_off)); }
inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off)
{ return decode_input(tex1D(tex, tex_coords, texel_off)); }
inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy)
{ return decode_input(tex1D(tex, tex_coords, dx, dy)); }
inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy)
{ return decode_input(tex1D(tex, tex_coords, dx, dy)); }
inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy, const int texel_off)
{ return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); }
inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy, const int texel_off)
{ return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); }
// tex1Dbias:
inline float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords)
{ return decode_input(tex1Dbias(tex, tex_coords)); }
inline float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off)
{ return decode_input(tex1Dbias(tex, tex_coords, texel_off)); }
// tex1Dfetch:
inline float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords)
{ return decode_input(tex1Dfetch(tex, tex_coords)); }
inline float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords, const int texel_off)
{ return decode_input(tex1Dfetch(tex, tex_coords, texel_off)); }
// tex1Dlod:
inline float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords)
{ return decode_input(tex1Dlod(tex, tex_coords)); }
inline float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off)
{ return decode_input(tex1Dlod(tex, tex_coords, texel_off)); }
// tex1Dproj:
inline float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords)
{ return decode_input(tex1Dproj(tex, tex_coords)); }
inline float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords)
{ return decode_input(tex1Dproj(tex, tex_coords)); }
inline float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off)
{ return decode_input(tex1Dproj(tex, tex_coords, texel_off)); }
inline float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords, const int texel_off)
{ return decode_input(tex1Dproj(tex, tex_coords, texel_off)); }
*/
// tex2D:
inline float4 tex2D_linearize(const sampler2D tex, float2 tex_coords)
{ return decode_input(COMPAT_TEXTURE(tex, tex_coords)); }
inline float4 tex2D_linearize(const sampler2D tex, float3 tex_coords)
{ return decode_input(COMPAT_TEXTURE(tex, tex_coords.xy)); }
inline float4 tex2D_linearize(const sampler2D tex, float2 tex_coords, int texel_off)
{ return decode_input(textureLod(tex, tex_coords, texel_off)); }
inline float4 tex2D_linearize(const sampler2D tex, float3 tex_coords, int texel_off)
{ return decode_input(textureLod(tex, tex_coords.xy, texel_off)); }
//inline float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy)
//{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy)); }
//inline float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy)
//{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy)); }
//inline float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off)
//{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off)); }
//inline float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off)
//{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off)); }
// tex2Dbias:
//inline float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords)
//{ return decode_input(tex2Dbias(tex, tex_coords)); }
//inline float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off)
//{ return decode_input(tex2Dbias(tex, tex_coords, texel_off)); }
// tex2Dfetch:
//inline float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords)
//{ return decode_input(tex2Dfetch(tex, tex_coords)); }
//inline float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords, const int texel_off)
//{ return decode_input(tex2Dfetch(tex, tex_coords, texel_off)); }
// tex2Dlod:
inline float4 tex2Dlod_linearize(const sampler2D tex, float4 tex_coords)
{ return decode_input(textureLod(tex, tex_coords.xy, 0.0)); }
inline float4 tex2Dlod_linearize(const sampler2D tex, float4 tex_coords, int texel_off)
{ return decode_input(textureLod(tex, tex_coords.xy, texel_off)); }
/*
// tex2Dproj:
inline float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords)
{ return decode_input(tex2Dproj(tex, tex_coords)); }
inline float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords)
{ return decode_input(tex2Dproj(tex, tex_coords)); }
inline float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords, const int texel_off)
{ return decode_input(tex2Dproj(tex, tex_coords, texel_off)); }
inline float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off)
{ return decode_input(tex2Dproj(tex, tex_coords, texel_off)); }
*/
/*
// tex3D:
inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords)
{ return decode_input(tex3D(tex, tex_coords)); }
inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const int texel_off)
{ return decode_input(tex3D(tex, tex_coords, texel_off)); }
inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy)
{ return decode_input(tex3D(tex, tex_coords, dx, dy)); }
inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy, const int texel_off)
{ return decode_input(tex3D(tex, tex_coords, dx, dy, texel_off)); }
// tex3Dbias:
inline float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords)
{ return decode_input(tex3Dbias(tex, tex_coords)); }
inline float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
{ return decode_input(tex3Dbias(tex, tex_coords, texel_off)); }
// tex3Dfetch:
inline float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords)
{ return decode_input(tex3Dfetch(tex, tex_coords)); }
inline float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords, const int texel_off)
{ return decode_input(tex3Dfetch(tex, tex_coords, texel_off)); }
// tex3Dlod:
inline float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords)
{ return decode_input(tex3Dlod(tex, tex_coords)); }
inline float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
{ return decode_input(tex3Dlod(tex, tex_coords, texel_off)); }
// tex3Dproj:
inline float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords)
{ return decode_input(tex3Dproj(tex, tex_coords)); }
inline float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
{ return decode_input(tex3Dproj(tex, tex_coords, texel_off)); }
/////////*
// NONSTANDARD "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS:
// This narrow selection of nonstandard tex2D* functions can be useful:
// tex2Dlod0: Automatically fill in the tex2D LOD parameter for mip level 0.
//inline float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords)
//{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0))); }
//inline float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords, const int texel_off)
//{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0), texel_off)); }
// MANUALLY LINEARIZING TEXTURE LOOKUP FUNCTIONS:
// Provide a narrower selection of tex2D* wrapper functions that decode an
// input sample with a specified gamma value. These are useful for reading
// LUT's and for reading the input of pass0 in a later pass.
// tex2D:
inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float3 gamma)
{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords), gamma); }
inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float3 gamma)
{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords.xy), gamma); }
//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const int texel_off, const float3 gamma)
//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, texel_off), gamma); }
//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const int texel_off, const float3 gamma)
//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, texel_off), gamma); }
//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const float3 gamma)
//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy), gamma); }
//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const float3 gamma)
//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy), gamma); }
//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma)
//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off), gamma); }
//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma)
//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off), gamma); }
/*
// tex2Dbias:
inline float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const float3 gamma)
{ return decode_gamma_input(tex2Dbias(tex, tex_coords), gamma); }
inline float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const int texel_off, const float3 gamma)
{ return decode_gamma_input(tex2Dbias(tex, tex_coords, texel_off), gamma); }
// tex2Dfetch:
inline float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const float3 gamma)
{ return decode_gamma_input(tex2Dfetch(tex, tex_coords), gamma); }
inline float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const int texel_off, const float3 gamma)
{ return decode_gamma_input(tex2Dfetch(tex, tex_coords, texel_off), gamma); }
*/
// tex2Dlod:
inline float4 tex2Dlod_linearize_gamma(const sampler2D tex, float4 tex_coords, float3 gamma)
{ return decode_gamma_input(textureLod(tex, tex_coords.xy, 0.0), gamma); }
inline float4 tex2Dlod_linearize_gamma(const sampler2D tex, float4 tex_coords, int texel_off, float3 gamma)
{ return decode_gamma_input(textureLod(tex, tex_coords.xy, texel_off), gamma); }
#endif // GAMMA_MANAGEMENT_H
//////////////////////////// END GAMMA-MANAGEMENT //////////////////////////
//#include "scanline-functions.h"
///////////////////////////// BEGIN SCANLINE-FUNCTIONS ////////////////////////////
#ifndef SCANLINE_FUNCTIONS_H
#define SCANLINE_FUNCTIONS_H
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
// crt-royale: A full-featured CRT shader, with cheese.
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
//
// This program is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 2 of the License, or any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
// more details.
//
// You should have received a copy of the GNU General Public License along with
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
// Place, Suite 330, Boston, MA 02111-1307 USA
/////////////////////////////// BEGIN INCLUDES ///////////////////////////////
//#include "../user-settings.h"
///////////////////////////// BEGIN USER-SETTINGS ////////////////////////////
#ifndef USER_SETTINGS_H
#define USER_SETTINGS_H
///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
// The Cg compiler uses different "profiles" with different capabilities.
// This shader requires a Cg compilation profile >= arbfp1, but a few options
// require higher profiles like fp30 or fp40. The shader can't detect profile
// or driver capabilities, so instead you must comment or uncomment the lines
// below with "//" before "#define." Disable an option if you get compilation
// errors resembling those listed. Generally speaking, all of these options
// will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
// likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
// Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
// Among other things, derivatives help us fix anisotropic filtering artifacts
// with curved manually tiled phosphor mask coords. Related errors:
// error C3004: function "float2 ddx(float2);" not supported in this profile
// error C3004: function "float2 ddy(float2);" not supported in this profile
//#define DRIVERS_ALLOW_DERIVATIVES
// Fine derivatives: Unsupported on older ATI cards.
// Fine derivatives enable 2x2 fragment block communication, letting us perform
// fast single-pass blur operations. If your card uses coarse derivatives and
// these are enabled, blurs could look broken. Derivatives are a prerequisite.
#ifdef DRIVERS_ALLOW_DERIVATIVES
#define DRIVERS_ALLOW_FINE_DERIVATIVES
#endif
// Dynamic looping: Requires an fp30 or newer profile.
// This makes phosphor mask resampling faster in some cases. Related errors:
// error C5013: profile does not support "for" statements and "for" could not
// be unrolled
//#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
// Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
// Using one static loop avoids overhead if the user is right, but if the user
// is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
// binary search can potentially save some iterations. However, it may fail:
// error C6001: Temporary register limit of 32 exceeded; 35 registers
// needed to compile program
//#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
// tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
// anisotropic filtering, thereby fixing related artifacts. Related errors:
// error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
// this profile
//#define DRIVERS_ALLOW_TEX2DLOD
// tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
// artifacts from anisotropic filtering and mipmapping. Related errors:
// error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
// in this profile
//#define DRIVERS_ALLOW_TEX2DBIAS
// Integrated graphics compatibility: Integrated graphics like Intel HD 4000
// impose stricter limitations on register counts and instructions. Enable
// INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
// error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
// to compile program.
// Enabling integrated graphics compatibility mode will automatically disable:
// 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
// (This may be reenabled in a later release.)
// 2.) RUNTIME_GEOMETRY_MODE
// 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
//#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
//////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
// To disable a #define option, turn its line into a comment with "//."
// RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
// Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
// many of the options in this file and allow real-time tuning, but many of
// them are slower. Disabling them and using this text file will boost FPS.
#define RUNTIME_SHADER_PARAMS_ENABLE
// Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
// it's the only way to do a wide-enough full bloom with a runtime dot pitch.
#define RUNTIME_PHOSPHOR_BLOOM_SIGMA
// Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
#define RUNTIME_ANTIALIAS_WEIGHTS
// Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
//#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
// Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
// parameters? This will require more math or dynamic branching.
#define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
// Specify the tilt at runtime? This makes things about 3% slower.
#define RUNTIME_GEOMETRY_TILT
// Specify the geometry mode at runtime?
#define RUNTIME_GEOMETRY_MODE
// Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
// mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
// dynamic branches? This is cheap if mask_resize_viewport_scale is small.
#define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
// PHOSPHOR MASK:
// Manually resize the phosphor mask for best results (slower)? Disabling this
// removes the option to do so, but it may be faster without dynamic branches.
#define PHOSPHOR_MASK_MANUALLY_RESIZE
// If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
#define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
// Larger blurs are expensive, but we need them to blur larger triads. We can
// detect the right blur if the triad size is static or our profile allows
// dynamic branches, but otherwise we use the largest blur the user indicates
// they might need:
#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
// Here's a helpful chart:
// MaxTriadSize BlurSize MinTriadCountsByResolution
// 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
// 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
// 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
// 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
// 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
/////////////////////////////// USER PARAMETERS //////////////////////////////
// Note: Many of these static parameters are overridden by runtime shader
// parameters when those are enabled. However, many others are static codepath
// options that were cleaner or more convert to code as static constants.
// GAMMA:
static const float crt_gamma_static = 2.5; // range [1, 5]
static const float lcd_gamma_static = 2.2; // range [1, 5]
// LEVELS MANAGEMENT:
// Control the final multiplicative image contrast:
static const float levels_contrast_static = 1.0; // range [0, 4)
// We auto-dim to avoid clipping between passes and restore brightness
// later. Control the dim factor here: Lower values clip less but crush
// blacks more (static only for now).
static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0
// HALATION/DIFFUSION/BLOOM:
// Halation weight: How much energy should be lost to electrons bounding
// around under the CRT glass and exciting random phosphors?
static const float halation_weight_static = 0.0; // range [0, 1]
// Refractive diffusion weight: How much light should spread/diffuse from
// refracting through the CRT glass?
static const float diffusion_weight_static = 0.075; // range [0, 1]
// Underestimate brightness: Bright areas bloom more, but we can base the
// bloom brightpass on a lower brightness to sharpen phosphors, or a higher
// brightness to soften them. Low values clip, but >= 0.8 looks okay.
static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
// Blur all colors more than necessary for a softer phosphor bloom?
static const float bloom_excess_static = 0.0; // range [0, 1]
// The BLOOM_APPROX pass approximates a phosphor blur early on with a small
// blurred resize of the input (convergence offsets are applied as well).
// There are three filter options (static option only for now):
// 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
// if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
// and beam_max_sigma is low.
// 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
// always uses a static sigma regardless of beam_max_sigma or
// mask_num_triads_desired.
// 2.) True 4x4 Gaussian resize: Slowest, technically correct.
// These options are more pronounced for the fast, unbloomed shader version.
#ifndef RADEON_FIX
static const float bloom_approx_filter_static = 2.0;
#else
static const float bloom_approx_filter_static = 1.0;
#endif
// ELECTRON BEAM SCANLINE DISTRIBUTION:
// How many scanlines should contribute light to each pixel? Using more
// scanlines is slower (especially for a generalized Gaussian) but less
// distorted with larger beam sigmas (especially for a pure Gaussian). The
// max_beam_sigma at which the closest unused weight is guaranteed <
// 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
// 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
// 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
// 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
// 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
// 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
static const float beam_num_scanlines = 3.0; // range [2, 6]
// A generalized Gaussian beam varies shape with color too, now just width.
// It's slower but more flexible (static option only for now).
static const bool beam_generalized_gaussian = true;
// What kind of scanline antialiasing do you want?
// 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
// Integrals are slow (especially for generalized Gaussians) and rarely any
// better than 3x antialiasing (static option only for now).
static const float beam_antialias_level = 1.0; // range [0, 2]
// Min/max standard deviations for scanline beams: Higher values widen and
// soften scanlines. Depending on other options, low min sigmas can alias.
static const float beam_min_sigma_static = 0.02; // range (0, 1]
static const float beam_max_sigma_static = 0.3; // range (0, 1]
// Beam width varies as a function of color: A power function (0) is more
// configurable, but a spherical function (1) gives the widest beam
// variability without aliasing (static option only for now).
static const float beam_spot_shape_function = 0.0;
// Spot shape power: Powers <= 1 give smoother spot shapes but lower
// sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
// Generalized Gaussian max shape parameters: Higher values give flatter
// scanline plateaus and steeper dropoffs, simultaneously widening and
// sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
// values > ~40.0 cause artifacts with integrals.
static const float beam_min_shape_static = 2.0; // range [2, 32]
static const float beam_max_shape_static = 4.0; // range [2, 32]
// Generalized Gaussian shape power: Affects how quickly the distribution
// changes shape from Gaussian to steep/plateaued as color increases from 0
// to 1.0. Higher powers appear softer for most colors, and lower powers
// appear sharper for most colors.
static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
// What filter should be used to sample scanlines horizontally?
// 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
static const float beam_horiz_filter_static = 0.0;
// Standard deviation for horizontal Gaussian resampling:
static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
// Do horizontal scanline sampling in linear RGB (correct light mixing),
// gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
// limiting circuitry in some CRT's), or a weighted avg.?
static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
// Simulate scanline misconvergence? This needs 3x horizontal texture
// samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
// later passes (static option only for now).
static const bool beam_misconvergence = true;
// Convergence offsets in x/y directions for R/G/B scanline beams in units
// of scanlines. Positive offsets go right/down; ranges [-2, 2]
static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
// Detect interlacing (static option only for now)?
static const bool interlace_detect = true;
// Assume 1080-line sources are interlaced?
static const bool interlace_1080i_static = false;
// For interlaced sources, assume TFF (top-field first) or BFF order?
// (Whether this matters depends on the nature of the interlaced input.)
static const bool interlace_bff_static = false;
// ANTIALIASING:
// What AA level do you want for curvature/overscan/subpixels? Options:
// 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
// (Static option only for now)
static const float aa_level = 12.0; // range [0, 24]
// What antialiasing filter do you want (static option only)? Options:
// 0: Box (separable), 1: Box (cylindrical),
// 2: Tent (separable), 3: Tent (cylindrical),
// 4: Gaussian (separable), 5: Gaussian (cylindrical),
// 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
// 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
// * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
static const float aa_filter = 6.0; // range [0, 9]
// Flip the sample grid on odd/even frames (static option only for now)?
static const bool aa_temporal = false;
// Use RGB subpixel offsets for antialiasing? The pixel is at green, and
// the blue offset is the negative r offset; range [0, 0.5]
static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
// Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
// 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
// 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
// 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
// 4.) C = 0.0 is a soft spline filter.
static const float aa_cubic_c_static = 0.5; // range [0, 4]
// Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
// PHOSPHOR MASK:
// Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
static const float mask_type_static = 1.0; // range [0, 2]
// We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
// 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
// This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
// 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
// is halfway decent with LUT mipmapping but atrocious without it.
// 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
// (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
// This mode reuses the same masks, so triads will be enormous unless
// you change the mask LUT filenames in your .cgp file.
static const float mask_sample_mode_static = 0.0; // range [0, 2]
// Prefer setting the triad size (0.0) or number on the screen (1.0)?
// If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
// will always be used to calculate the full bloom sigma statically.
static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
// Specify the phosphor triad size, in pixels. Each tile (usually with 8
// triads) will be rounded to the nearest integer tile size and clamped to
// obey minimum size constraints (imposed to reduce downsize taps) and
// maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
// To increase the size limit, double the viewport-relative scales for the
// two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
// range [1, mask_texture_small_size/mask_triads_per_tile]
static const float mask_triad_size_desired_static = 24.0 / 8.0;
// If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
// final size will be rounded and constrained as above); default 480.0
static const float mask_num_triads_desired_static = 480.0;
// How many lobes should the sinc/Lanczos resizer use? More lobes require
// more samples and avoid moire a bit better, but some is unavoidable
// depending on the destination size (static option for now).
static const float mask_sinc_lobes = 3.0; // range [2, 4]
// The mask is resized using a variable number of taps in each dimension,
// but some Cg profiles always fetch a constant number of taps no matter
// what (no dynamic branching). We can limit the maximum number of taps if
// we statically limit the minimum phosphor triad size. Larger values are
// faster, but the limit IS enforced (static option only, forever);
// range [1, mask_texture_small_size/mask_triads_per_tile]
// TODO: Make this 1.0 and compensate with smarter sampling!
static const float mask_min_allowed_triad_size = 2.0;
// GEOMETRY:
// Geometry mode:
// 0: Off (default), 1: Spherical mapping (like cgwg's),
// 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
static const float geom_mode_static = 0.0; // range [0, 3]
// Radius of curvature: Measured in units of your viewport's diagonal size.
static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
// View dist is the distance from the player to their physical screen, in
// units of the viewport's diagonal size. It controls the field of view.
static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
// Tilt angle in radians (clockwise around up and right vectors):
static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
// Aspect ratio: When the true viewport size is unknown, this value is used
// to help convert between the phosphor triad size and count, along with
// the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
// this equal to Retroarch's display aspect ratio (DAR) for best results;
// range [1, geom_max_aspect_ratio from user-cgp-constants.h];
// default (256/224)*(54/47) = 1.313069909 (see below)
static const float geom_aspect_ratio_static = 1.313069909;
// Before getting into overscan, here's some general aspect ratio info:
// - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
// - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
// - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
// Geometry processing has to "undo" the screen-space 2D DAR to calculate
// 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
// uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
// a.) Enable Retroarch's "Crop Overscan"
// b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
// Real consoles use horizontal black padding in the signal, but emulators
// often crop this without cropping the vertical padding; a 256x224 [S]NES
// frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
// The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
// http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
// http://forums.nesdev.com/viewtopic.php?p=24815#p24815
// For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
// without doing a. or b., but horizontal image borders will be tighter
// than vertical ones, messing up curvature and overscan. Fixing the
// padding first corrects this.
// Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
// or adjust x/y independently to e.g. readd horizontal padding, as noted
// above: Values < 1.0 zoom out; range (0, inf)
static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
// Compute a proper pixel-space to texture-space matrix even without ddx()/
// ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
// with strong curvature (static option only for now).
static const bool geom_force_correct_tangent_matrix = true;
// BORDERS:
// Rounded border size in texture uv coords:
static const float border_size_static = 0.015; // range [0, 0.5]
// Border darkness: Moderate values darken the border smoothly, and high
// values make the image very dark just inside the border:
static const float border_darkness_static = 2.0; // range [0, inf)
// Border compression: High numbers compress border transitions, narrowing
// the dark border area.
static const float border_compress_static = 2.5; // range [1, inf)
#endif // USER_SETTINGS_H
//////////////////////////// END USER-SETTINGS //////////////////////////
//#include "derived-settings-and-constants.h"
//////////////////// BEGIN DERIVED-SETTINGS-AND-CONSTANTS ////////////////////
#ifndef DERIVED_SETTINGS_AND_CONSTANTS_H
#define DERIVED_SETTINGS_AND_CONSTANTS_H
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
// crt-royale: A full-featured CRT shader, with cheese.
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
//
// This program is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 2 of the License, or any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
// more details.
//
// You should have received a copy of the GNU General Public License along with
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
// Place, Suite 330, Boston, MA 02111-1307 USA
///////////////////////////////// DESCRIPTION ////////////////////////////////
// These macros and constants can be used across the whole codebase.
// Unlike the values in user-settings.cgh, end users shouldn't modify these.
/////////////////////////////// BEGIN INCLUDES ///////////////////////////////
//#include "../user-settings.h"
///////////////////////////// BEGIN USER-SETTINGS ////////////////////////////
#ifndef USER_SETTINGS_H
#define USER_SETTINGS_H
///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
// The Cg compiler uses different "profiles" with different capabilities.
// This shader requires a Cg compilation profile >= arbfp1, but a few options
// require higher profiles like fp30 or fp40. The shader can't detect profile
// or driver capabilities, so instead you must comment or uncomment the lines
// below with "//" before "#define." Disable an option if you get compilation
// errors resembling those listed. Generally speaking, all of these options
// will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
// likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
// Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
// Among other things, derivatives help us fix anisotropic filtering artifacts
// with curved manually tiled phosphor mask coords. Related errors:
// error C3004: function "float2 ddx(float2);" not supported in this profile
// error C3004: function "float2 ddy(float2);" not supported in this profile
//#define DRIVERS_ALLOW_DERIVATIVES
// Fine derivatives: Unsupported on older ATI cards.
// Fine derivatives enable 2x2 fragment block communication, letting us perform
// fast single-pass blur operations. If your card uses coarse derivatives and
// these are enabled, blurs could look broken. Derivatives are a prerequisite.
#ifdef DRIVERS_ALLOW_DERIVATIVES
#define DRIVERS_ALLOW_FINE_DERIVATIVES
#endif
// Dynamic looping: Requires an fp30 or newer profile.
// This makes phosphor mask resampling faster in some cases. Related errors:
// error C5013: profile does not support "for" statements and "for" could not
// be unrolled
//#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
// Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
// Using one static loop avoids overhead if the user is right, but if the user
// is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
// binary search can potentially save some iterations. However, it may fail:
// error C6001: Temporary register limit of 32 exceeded; 35 registers
// needed to compile program
//#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
// tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
// anisotropic filtering, thereby fixing related artifacts. Related errors:
// error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
// this profile
//#define DRIVERS_ALLOW_TEX2DLOD
// tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
// artifacts from anisotropic filtering and mipmapping. Related errors:
// error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
// in this profile
//#define DRIVERS_ALLOW_TEX2DBIAS
// Integrated graphics compatibility: Integrated graphics like Intel HD 4000
// impose stricter limitations on register counts and instructions. Enable
// INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
// error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
// to compile program.
// Enabling integrated graphics compatibility mode will automatically disable:
// 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
// (This may be reenabled in a later release.)
// 2.) RUNTIME_GEOMETRY_MODE
// 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
//#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
//////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
// To disable a #define option, turn its line into a comment with "//."
// RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
// Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
// many of the options in this file and allow real-time tuning, but many of
// them are slower. Disabling them and using this text file will boost FPS.
#define RUNTIME_SHADER_PARAMS_ENABLE
// Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
// it's the only way to do a wide-enough full bloom with a runtime dot pitch.
#define RUNTIME_PHOSPHOR_BLOOM_SIGMA
// Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
#define RUNTIME_ANTIALIAS_WEIGHTS
// Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
//#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
// Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
// parameters? This will require more math or dynamic branching.
#define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
// Specify the tilt at runtime? This makes things about 3% slower.
#define RUNTIME_GEOMETRY_TILT
// Specify the geometry mode at runtime?
#define RUNTIME_GEOMETRY_MODE
// Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
// mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
// dynamic branches? This is cheap if mask_resize_viewport_scale is small.
#define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
// PHOSPHOR MASK:
// Manually resize the phosphor mask for best results (slower)? Disabling this
// removes the option to do so, but it may be faster without dynamic branches.
#define PHOSPHOR_MASK_MANUALLY_RESIZE
// If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
#define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
// Larger blurs are expensive, but we need them to blur larger triads. We can
// detect the right blur if the triad size is static or our profile allows
// dynamic branches, but otherwise we use the largest blur the user indicates
// they might need:
#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
// Here's a helpful chart:
// MaxTriadSize BlurSize MinTriadCountsByResolution
// 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
// 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
// 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
// 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
// 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
/////////////////////////////// USER PARAMETERS //////////////////////////////
// Note: Many of these static parameters are overridden by runtime shader
// parameters when those are enabled. However, many others are static codepath
// options that were cleaner or more convert to code as static constants.
// GAMMA:
static const float crt_gamma_static = 2.5; // range [1, 5]
static const float lcd_gamma_static = 2.2; // range [1, 5]
// LEVELS MANAGEMENT:
// Control the final multiplicative image contrast:
static const float levels_contrast_static = 1.0; // range [0, 4)
// We auto-dim to avoid clipping between passes and restore brightness
// later. Control the dim factor here: Lower values clip less but crush
// blacks more (static only for now).
static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0
// HALATION/DIFFUSION/BLOOM:
// Halation weight: How much energy should be lost to electrons bounding
// around under the CRT glass and exciting random phosphors?
static const float halation_weight_static = 0.0; // range [0, 1]
// Refractive diffusion weight: How much light should spread/diffuse from
// refracting through the CRT glass?
static const float diffusion_weight_static = 0.075; // range [0, 1]
// Underestimate brightness: Bright areas bloom more, but we can base the
// bloom brightpass on a lower brightness to sharpen phosphors, or a higher
// brightness to soften them. Low values clip, but >= 0.8 looks okay.
static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
// Blur all colors more than necessary for a softer phosphor bloom?
static const float bloom_excess_static = 0.0; // range [0, 1]
// The BLOOM_APPROX pass approximates a phosphor blur early on with a small
// blurred resize of the input (convergence offsets are applied as well).
// There are three filter options (static option only for now):
// 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
// if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
// and beam_max_sigma is low.
// 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
// always uses a static sigma regardless of beam_max_sigma or
// mask_num_triads_desired.
// 2.) True 4x4 Gaussian resize: Slowest, technically correct.
// These options are more pronounced for the fast, unbloomed shader version.
#ifndef RADEON_FIX
static const float bloom_approx_filter_static = 2.0;
#else
static const float bloom_approx_filter_static = 1.0;
#endif
// ELECTRON BEAM SCANLINE DISTRIBUTION:
// How many scanlines should contribute light to each pixel? Using more
// scanlines is slower (especially for a generalized Gaussian) but less
// distorted with larger beam sigmas (especially for a pure Gaussian). The
// max_beam_sigma at which the closest unused weight is guaranteed <
// 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
// 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
// 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
// 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
// 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
// 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
static const float beam_num_scanlines = 3.0; // range [2, 6]
// A generalized Gaussian beam varies shape with color too, now just width.
// It's slower but more flexible (static option only for now).
static const bool beam_generalized_gaussian = true;
// What kind of scanline antialiasing do you want?
// 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
// Integrals are slow (especially for generalized Gaussians) and rarely any
// better than 3x antialiasing (static option only for now).
static const float beam_antialias_level = 1.0; // range [0, 2]
// Min/max standard deviations for scanline beams: Higher values widen and
// soften scanlines. Depending on other options, low min sigmas can alias.
static const float beam_min_sigma_static = 0.02; // range (0, 1]
static const float beam_max_sigma_static = 0.3; // range (0, 1]
// Beam width varies as a function of color: A power function (0) is more
// configurable, but a spherical function (1) gives the widest beam
// variability without aliasing (static option only for now).
static const float beam_spot_shape_function = 0.0;
// Spot shape power: Powers <= 1 give smoother spot shapes but lower
// sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
// Generalized Gaussian max shape parameters: Higher values give flatter
// scanline plateaus and steeper dropoffs, simultaneously widening and
// sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
// values > ~40.0 cause artifacts with integrals.
static const float beam_min_shape_static = 2.0; // range [2, 32]
static const float beam_max_shape_static = 4.0; // range [2, 32]
// Generalized Gaussian shape power: Affects how quickly the distribution
// changes shape from Gaussian to steep/plateaued as color increases from 0
// to 1.0. Higher powers appear softer for most colors, and lower powers
// appear sharper for most colors.
static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
// What filter should be used to sample scanlines horizontally?
// 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
static const float beam_horiz_filter_static = 0.0;
// Standard deviation for horizontal Gaussian resampling:
static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
// Do horizontal scanline sampling in linear RGB (correct light mixing),
// gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
// limiting circuitry in some CRT's), or a weighted avg.?
static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
// Simulate scanline misconvergence? This needs 3x horizontal texture
// samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
// later passes (static option only for now).
static const bool beam_misconvergence = true;
// Convergence offsets in x/y directions for R/G/B scanline beams in units
// of scanlines. Positive offsets go right/down; ranges [-2, 2]
static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
// Detect interlacing (static option only for now)?
static const bool interlace_detect = true;
// Assume 1080-line sources are interlaced?
static const bool interlace_1080i_static = false;
// For interlaced sources, assume TFF (top-field first) or BFF order?
// (Whether this matters depends on the nature of the interlaced input.)
static const bool interlace_bff_static = false;
// ANTIALIASING:
// What AA level do you want for curvature/overscan/subpixels? Options:
// 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
// (Static option only for now)
static const float aa_level = 12.0; // range [0, 24]
// What antialiasing filter do you want (static option only)? Options:
// 0: Box (separable), 1: Box (cylindrical),
// 2: Tent (separable), 3: Tent (cylindrical),
// 4: Gaussian (separable), 5: Gaussian (cylindrical),
// 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
// 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
// * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
static const float aa_filter = 6.0; // range [0, 9]
// Flip the sample grid on odd/even frames (static option only for now)?
static const bool aa_temporal = false;
// Use RGB subpixel offsets for antialiasing? The pixel is at green, and
// the blue offset is the negative r offset; range [0, 0.5]
static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
// Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
// 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
// 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
// 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
// 4.) C = 0.0 is a soft spline filter.
static const float aa_cubic_c_static = 0.5; // range [0, 4]
// Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
// PHOSPHOR MASK:
// Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
static const float mask_type_static = 1.0; // range [0, 2]
// We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
// 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
// This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
// 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
// is halfway decent with LUT mipmapping but atrocious without it.
// 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
// (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
// This mode reuses the same masks, so triads will be enormous unless
// you change the mask LUT filenames in your .cgp file.
static const float mask_sample_mode_static = 0.0; // range [0, 2]
// Prefer setting the triad size (0.0) or number on the screen (1.0)?
// If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
// will always be used to calculate the full bloom sigma statically.
static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
// Specify the phosphor triad size, in pixels. Each tile (usually with 8
// triads) will be rounded to the nearest integer tile size and clamped to
// obey minimum size constraints (imposed to reduce downsize taps) and
// maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
// To increase the size limit, double the viewport-relative scales for the
// two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
// range [1, mask_texture_small_size/mask_triads_per_tile]
static const float mask_triad_size_desired_static = 24.0 / 8.0;
// If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
// final size will be rounded and constrained as above); default 480.0
static const float mask_num_triads_desired_static = 480.0;
// How many lobes should the sinc/Lanczos resizer use? More lobes require
// more samples and avoid moire a bit better, but some is unavoidable
// depending on the destination size (static option for now).
static const float mask_sinc_lobes = 3.0; // range [2, 4]
// The mask is resized using a variable number of taps in each dimension,
// but some Cg profiles always fetch a constant number of taps no matter
// what (no dynamic branching). We can limit the maximum number of taps if
// we statically limit the minimum phosphor triad size. Larger values are
// faster, but the limit IS enforced (static option only, forever);
// range [1, mask_texture_small_size/mask_triads_per_tile]
// TODO: Make this 1.0 and compensate with smarter sampling!
static const float mask_min_allowed_triad_size = 2.0;
// GEOMETRY:
// Geometry mode:
// 0: Off (default), 1: Spherical mapping (like cgwg's),
// 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
static const float geom_mode_static = 0.0; // range [0, 3]
// Radius of curvature: Measured in units of your viewport's diagonal size.
static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
// View dist is the distance from the player to their physical screen, in
// units of the viewport's diagonal size. It controls the field of view.
static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
// Tilt angle in radians (clockwise around up and right vectors):
static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
// Aspect ratio: When the true viewport size is unknown, this value is used
// to help convert between the phosphor triad size and count, along with
// the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
// this equal to Retroarch's display aspect ratio (DAR) for best results;
// range [1, geom_max_aspect_ratio from user-cgp-constants.h];
// default (256/224)*(54/47) = 1.313069909 (see below)
static const float geom_aspect_ratio_static = 1.313069909;
// Before getting into overscan, here's some general aspect ratio info:
// - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
// - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
// - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
// Geometry processing has to "undo" the screen-space 2D DAR to calculate
// 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
// uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
// a.) Enable Retroarch's "Crop Overscan"
// b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
// Real consoles use horizontal black padding in the signal, but emulators
// often crop this without cropping the vertical padding; a 256x224 [S]NES
// frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
// The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
// http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
// http://forums.nesdev.com/viewtopic.php?p=24815#p24815
// For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
// without doing a. or b., but horizontal image borders will be tighter
// than vertical ones, messing up curvature and overscan. Fixing the
// padding first corrects this.
// Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
// or adjust x/y independently to e.g. readd horizontal padding, as noted
// above: Values < 1.0 zoom out; range (0, inf)
static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
// Compute a proper pixel-space to texture-space matrix even without ddx()/
// ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
// with strong curvature (static option only for now).
static const bool geom_force_correct_tangent_matrix = true;
// BORDERS:
// Rounded border size in texture uv coords:
static const float border_size_static = 0.015; // range [0, 0.5]
// Border darkness: Moderate values darken the border smoothly, and high
// values make the image very dark just inside the border:
static const float border_darkness_static = 2.0; // range [0, inf)
// Border compression: High numbers compress border transitions, narrowing
// the dark border area.
static const float border_compress_static = 2.5; // range [1, inf)
#endif // USER_SETTINGS_H
///////////////////////////// END USER-SETTINGS ////////////////////////////
//#include "user-cgp-constants.h"
///////////////////////// BEGIN USER-CGP-CONSTANTS /////////////////////////
#ifndef USER_CGP_CONSTANTS_H
#define USER_CGP_CONSTANTS_H
// IMPORTANT:
// These constants MUST be set appropriately for the settings in crt-royale.cgp
// (or whatever related .cgp file you're using). If they aren't, you're likely
// to get artifacts, the wrong phosphor mask size, etc. I wish these could be
// set directly in the .cgp file to make things easier, but...they can't.
// PASS SCALES AND RELATED CONSTANTS:
// Copy the absolute scale_x for BLOOM_APPROX. There are two major versions of
// this shader: One does a viewport-scale bloom, and the other skips it. The
// latter benefits from a higher bloom_approx_scale_x, so save both separately:
static const float bloom_approx_size_x = 320.0;
static const float bloom_approx_size_x_for_fake = 400.0;
// Copy the viewport-relative scales of the phosphor mask resize passes
// (MASK_RESIZE and the pass immediately preceding it):
static const float2 mask_resize_viewport_scale = float2(0.0625, 0.0625);
// Copy the geom_max_aspect_ratio used to calculate the MASK_RESIZE scales, etc.:
static const float geom_max_aspect_ratio = 4.0/3.0;
// PHOSPHOR MASK TEXTURE CONSTANTS:
// Set the following constants to reflect the properties of the phosphor mask
// texture named in crt-royale.cgp. The shader optionally resizes a mask tile
// based on user settings, then repeats a single tile until filling the screen.
// The shader must know the input texture size (default 64x64), and to manually
// resize, it must also know the horizontal triads per tile (default 8).
static const float2 mask_texture_small_size = float2(64.0, 64.0);
static const float2 mask_texture_large_size = float2(512.0, 512.0);
static const float mask_triads_per_tile = 8.0;
// We need the average brightness of the phosphor mask to compensate for the
// dimming it causes. The following four values are roughly correct for the
// masks included with the shader. Update the value for any LUT texture you
// change. [Un]comment "#define PHOSPHOR_MASK_GRILLE14" depending on whether
// the loaded aperture grille uses 14-pixel or 15-pixel stripes (default 15).
//#define PHOSPHOR_MASK_GRILLE14
static const float mask_grille14_avg_color = 50.6666666/255.0;
// TileableLinearApertureGrille14Wide7d33Spacing*.png
// TileableLinearApertureGrille14Wide10And6Spacing*.png
static const float mask_grille15_avg_color = 53.0/255.0;
// TileableLinearApertureGrille15Wide6d33Spacing*.png
// TileableLinearApertureGrille15Wide8And5d5Spacing*.png
static const float mask_slot_avg_color = 46.0/255.0;
// TileableLinearSlotMask15Wide9And4d5Horizontal8VerticalSpacing*.png
// TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacing*.png
static const float mask_shadow_avg_color = 41.0/255.0;
// TileableLinearShadowMask*.png
// TileableLinearShadowMaskEDP*.png
#ifdef PHOSPHOR_MASK_GRILLE14
static const float mask_grille_avg_color = mask_grille14_avg_color;
#else
static const float mask_grille_avg_color = mask_grille15_avg_color;
#endif
#endif // USER_CGP_CONSTANTS_H
////////////////////////// END USER-CGP-CONSTANTS //////////////////////////
//////////////////////////////// END INCLUDES ////////////////////////////////
/////////////////////////////// FIXED SETTINGS ///////////////////////////////
// Avoid dividing by zero; using a macro overloads for float, float2, etc.:
#define FIX_ZERO(c) (max(abs(c), 0.0000152587890625)) // 2^-16
// Ensure the first pass decodes CRT gamma and the last encodes LCD gamma.
#ifndef SIMULATE_CRT_ON_LCD
#define SIMULATE_CRT_ON_LCD
#endif
// Manually tiling a manually resized texture creates texture coord derivative
// discontinuities and confuses anisotropic filtering, causing discolored tile
// seams in the phosphor mask. Workarounds:
// a.) Using tex2Dlod disables anisotropic filtering for tiled masks. It's
// downgraded to tex2Dbias without DRIVERS_ALLOW_TEX2DLOD #defined and
// disabled without DRIVERS_ALLOW_TEX2DBIAS #defined either.
// b.) "Tile flat twice" requires drawing two full tiles without border padding
// to the resized mask FBO, and it's incompatible with same-pass curvature.
// (Same-pass curvature isn't used but could be in the future...maybe.)
// c.) "Fix discontinuities" requires derivatives and drawing one tile with
// border padding to the resized mask FBO, but it works with same-pass
// curvature. It's disabled without DRIVERS_ALLOW_DERIVATIVES #defined.
// Precedence: a, then, b, then c (if multiple strategies are #defined).
#define ANISOTROPIC_TILING_COMPAT_TEX2DLOD // 129.7 FPS, 4x, flat; 101.8 at fullscreen
#define ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE // 128.1 FPS, 4x, flat; 101.5 at fullscreen
#define ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES // 124.4 FPS, 4x, flat; 97.4 at fullscreen
// Also, manually resampling the phosphor mask is slightly blurrier with
// anisotropic filtering. (Resampling with mipmapping is even worse: It
// creates artifacts, but only with the fully bloomed shader.) The difference
// is subtle with small triads, but you can fix it for a small cost.
//#define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
////////////////////////////// DERIVED SETTINGS //////////////////////////////
// Intel HD 4000 GPU's can't handle manual mask resizing (for now), setting the
// geometry mode at runtime, or a 4x4 true Gaussian resize. Disable
// incompatible settings ASAP. (INTEGRATED_GRAPHICS_COMPATIBILITY_MODE may be
// #defined by either user-settings.h or a wrapper .cg that #includes the
// current .cg pass.)
#ifdef INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
#ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
#undef PHOSPHOR_MASK_MANUALLY_RESIZE
#endif
#ifdef RUNTIME_GEOMETRY_MODE
#undef RUNTIME_GEOMETRY_MODE
#endif
// Mode 2 (4x4 Gaussian resize) won't work, and mode 1 (3x3 blur) is
// inferior in most cases, so replace 2.0 with 0.0:
static const float bloom_approx_filter =
bloom_approx_filter_static > 1.5 ? 0.0 : bloom_approx_filter_static;
#else
static const float bloom_approx_filter = bloom_approx_filter_static;
#endif
// Disable slow runtime paths if static parameters are used. Most of these
// won't be a problem anyway once the params are disabled, but some will.
#ifndef RUNTIME_SHADER_PARAMS_ENABLE
#ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA
#undef RUNTIME_PHOSPHOR_BLOOM_SIGMA
#endif
#ifdef RUNTIME_ANTIALIAS_WEIGHTS
#undef RUNTIME_ANTIALIAS_WEIGHTS
#endif
#ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
#undef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
#endif
#ifdef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
#undef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
#endif
#ifdef RUNTIME_GEOMETRY_TILT
#undef RUNTIME_GEOMETRY_TILT
#endif
#ifdef RUNTIME_GEOMETRY_MODE
#undef RUNTIME_GEOMETRY_MODE
#endif
#ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
#undef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
#endif
#endif
// Make tex2Dbias a backup for tex2Dlod for wider compatibility.
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
#define ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
#endif
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
#define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
#endif
// Rule out unavailable anisotropic compatibility strategies:
#ifndef DRIVERS_ALLOW_DERIVATIVES
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
#endif
#endif
#ifndef DRIVERS_ALLOW_TEX2DLOD
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
#undef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
#endif
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
#undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
#endif
#ifdef ANTIALIAS_DISABLE_ANISOTROPIC
#undef ANTIALIAS_DISABLE_ANISOTROPIC
#endif
#endif
#ifndef DRIVERS_ALLOW_TEX2DBIAS
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
#undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
#endif
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
#undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
#endif
#endif
// Prioritize anisotropic tiling compatibility strategies by performance and
// disable unused strategies. This concentrates all the nesting in one place.
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
#undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
#endif
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
#undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
#endif
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
#endif
#else
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
#undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
#endif
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
#endif
#else
// ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE is only compatible with
// flat texture coords in the same pass, but that's all we use.
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
#endif
#endif
#endif
#endif
// The tex2Dlod and tex2Dbias strategies share a lot in common, and we can
// reduce some #ifdef nesting in the next section by essentially OR'ing them:
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
#define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
#endif
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
#define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
#endif
// Prioritize anisotropic resampling compatibility strategies the same way:
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
#undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
#endif
#endif
/////////////////////// DERIVED PHOSPHOR MASK CONSTANTS //////////////////////
// If we can use the large mipmapped LUT without mipmapping artifacts, we
// should: It gives us more options for using fewer samples.
#ifdef DRIVERS_ALLOW_TEX2DLOD
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
// TODO: Take advantage of this!
#define PHOSPHOR_MASK_RESIZE_MIPMAPPED_LUT
static const float2 mask_resize_src_lut_size = mask_texture_large_size;
#else
static const float2 mask_resize_src_lut_size = mask_texture_small_size;
#endif
#else
static const float2 mask_resize_src_lut_size = mask_texture_small_size;
#endif
// tex2D's sampler2D parameter MUST be a uniform global, a uniform input to
// main_fragment, or a static alias of one of the above. This makes it hard
// to select the phosphor mask at runtime: We can't even assign to a uniform
// global in the vertex shader or select a sampler2D in the vertex shader and
// pass it to the fragment shader (even with explicit TEXUNIT# bindings),
// because it just gives us the input texture or a black screen. However, we
// can get around these limitations by calling tex2D three times with different
// uniform samplers (or resizing the phosphor mask three times altogether).
// With dynamic branches, we can process only one of these branches on top of
// quickly discarding fragments we don't need (cgc seems able to overcome
// limigations around dependent texture fetches inside of branches). Without
// dynamic branches, we have to process every branch for every fragment...which
// is slower. Runtime sampling mode selection is slower without dynamic
// branches as well. Let the user's static #defines decide if it's worth it.
#ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES
#define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
#else
#ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
#define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
#endif
#endif
// We need to render some minimum number of tiles in the resize passes.
// We need at least 1.0 just to repeat a single tile, and we need extra
// padding beyond that for anisotropic filtering, discontinuitity fixing,
// antialiasing, same-pass curvature (not currently used), etc. First
// determine how many border texels and tiles we need, based on how the result
// will be sampled:
#ifdef GEOMETRY_EARLY
static const float max_subpixel_offset = aa_subpixel_r_offset_static.x;
// Most antialiasing filters have a base radius of 4.0 pixels:
static const float max_aa_base_pixel_border = 4.0 +
max_subpixel_offset;
#else
static const float max_aa_base_pixel_border = 0.0;
#endif
// Anisotropic filtering adds about 0.5 to the pixel border:
#ifndef ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
static const float max_aniso_pixel_border = max_aa_base_pixel_border + 0.5;
#else
static const float max_aniso_pixel_border = max_aa_base_pixel_border;
#endif
// Fixing discontinuities adds 1.0 more to the pixel border:
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
static const float max_tiled_pixel_border = max_aniso_pixel_border + 1.0;
#else
static const float max_tiled_pixel_border = max_aniso_pixel_border;
#endif
// Convert the pixel border to an integer texel border. Assume same-pass
// curvature about triples the texel frequency:
#ifdef GEOMETRY_EARLY
static const float max_mask_texel_border =
ceil(max_tiled_pixel_border * 3.0);
#else
static const float max_mask_texel_border = ceil(max_tiled_pixel_border);
#endif
// Convert the texel border to a tile border using worst-case assumptions:
static const float max_mask_tile_border = max_mask_texel_border/
(mask_min_allowed_triad_size * mask_triads_per_tile);
// Finally, set the number of resized tiles to render to MASK_RESIZE, and set
// the starting texel (inside borders) for sampling it.
#ifndef GEOMETRY_EARLY
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
// Special case: Render two tiles without borders. Anisotropic
// filtering doesn't seem to be a problem here.
static const float mask_resize_num_tiles = 1.0 + 1.0;
static const float mask_start_texels = 0.0;
#else
static const float mask_resize_num_tiles = 1.0 +
2.0 * max_mask_tile_border;
static const float mask_start_texels = max_mask_texel_border;
#endif
#else
static const float mask_resize_num_tiles = 1.0 + 2.0*max_mask_tile_border;
static const float mask_start_texels = max_mask_texel_border;
#endif
// We have to fit mask_resize_num_tiles into an FBO with a viewport scale of
// mask_resize_viewport_scale. This limits the maximum final triad size.
// Estimate the minimum number of triads we can split the screen into in each
// dimension (we'll be as correct as mask_resize_viewport_scale is):
static const float mask_resize_num_triads =
mask_resize_num_tiles * mask_triads_per_tile;
static const float2 min_allowed_viewport_triads =
float2(mask_resize_num_triads) / mask_resize_viewport_scale;
//////////////////////// COMMON MATHEMATICAL CONSTANTS ///////////////////////
static const float pi = 3.141592653589;
// We often want to find the location of the previous texel, e.g.:
// const float2 curr_texel = uv * texture_size;
// const float2 prev_texel = floor(curr_texel - float2(0.5)) + float2(0.5);
// const float2 prev_texel_uv = prev_texel / texture_size;
// However, many GPU drivers round incorrectly around exact texel locations.
// We need to subtract a little less than 0.5 before flooring, and some GPU's
// require this value to be farther from 0.5 than others; define it here.
// const float2 prev_texel =
// floor(curr_texel - float2(under_half)) + float2(0.5);
static const float under_half = 0.4995;
#endif // DERIVED_SETTINGS_AND_CONSTANTS_H
///////////////////////////// END DERIVED-SETTINGS-AND-CONSTANTS ////////////////////////////
//#include "../../../../include/special-functions.h"
/////////////////////////// BEGIN SPECIAL-FUNCTIONS //////////////////////////
#ifndef SPECIAL_FUNCTIONS_H
#define SPECIAL_FUNCTIONS_H
///////////////////////////////// MIT LICENSE ////////////////////////////////
// Copyright (C) 2014 TroggleMonkey
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
///////////////////////////////// DESCRIPTION ////////////////////////////////
// This file implements the following mathematical special functions:
// 1.) erf() = 2/sqrt(pi) * indefinite_integral(e**(-x**2))
// 2.) gamma(s), a real-numbered extension of the integer factorial function
// It also implements normalized_ligamma(s, z), a normalized lower incomplete
// gamma function for s < 0.5 only. Both gamma() and normalized_ligamma() can
// be called with an _impl suffix to use an implementation version with a few
// extra precomputed parameters (which may be useful for the caller to reuse).
// See below for details.
//
// Design Rationale:
// Pretty much every line of code in this file is duplicated four times for
// different input types (float4/float3/float2/float). This is unfortunate,
// but Cg doesn't allow function templates. Macros would be far less verbose,
// but they would make the code harder to document and read. I don't expect
// these functions will require a whole lot of maintenance changes unless
// someone ever has need for more robust incomplete gamma functions, so code
// duplication seems to be the lesser evil in this case.
/////////////////////////// GAUSSIAN ERROR FUNCTION //////////////////////////
float4 erf6(float4 x)
{
// Requires: x is the standard parameter to erf().
// Returns: Return an Abramowitz/Stegun approximation of erf(), where:
// erf(x) = 2/sqrt(pi) * integral(e**(-x**2))
// This approximation has a max absolute error of 2.5*10**-5
// with solid numerical robustness and efficiency. See:
// https://en.wikipedia.org/wiki/Error_function#Approximation_with_elementary_functions
static const float4 one = float4(1.0);
const float4 sign_x = sign(x);
const float4 t = one/(one + 0.47047*abs(x));
const float4 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
exp(-(x*x));
return result * sign_x;
}
float3 erf6(const float3 x)
{
// Float3 version:
static const float3 one = float3(1.0);
const float3 sign_x = sign(x);
const float3 t = one/(one + 0.47047*abs(x));
const float3 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
exp(-(x*x));
return result * sign_x;
}
float2 erf6(const float2 x)
{
// Float2 version:
static const float2 one = float2(1.0);
const float2 sign_x = sign(x);
const float2 t = one/(one + 0.47047*abs(x));
const float2 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
exp(-(x*x));
return result * sign_x;
}
float erf6(const float x)
{
// Float version:
const float sign_x = sign(x);
const float t = 1.0/(1.0 + 0.47047*abs(x));
const float result = 1.0 - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
exp(-(x*x));
return result * sign_x;
}
float4 erft(const float4 x)
{
// Requires: x is the standard parameter to erf().
// Returns: Approximate erf() with the hyperbolic tangent. The error is
// visually noticeable, but it's blazing fast and perceptually
// close...at least on ATI hardware. See:
// http://www.maplesoft.com/applications/view.aspx?SID=5525&view=html
// Warning: Only use this if your hardware drivers correctly implement
// tanh(): My nVidia 8800GTS returns garbage output.
return tanh(1.202760580 * x);
}
float3 erft(const float3 x)
{
// Float3 version:
return tanh(1.202760580 * x);
}
float2 erft(const float2 x)
{
// Float2 version:
return tanh(1.202760580 * x);
}
float erft(const float x)
{
// Float version:
return tanh(1.202760580 * x);
}
inline float4 erf(const float4 x)
{
// Requires: x is the standard parameter to erf().
// Returns: Some approximation of erf(x), depending on user settings.
#ifdef ERF_FAST_APPROXIMATION
return erft(x);
#else
return erf6(x);
#endif
}
inline float3 erf(const float3 x)
{
// Float3 version:
#ifdef ERF_FAST_APPROXIMATION
return erft(x);
#else
return erf6(x);
#endif
}
inline float2 erf(const float2 x)
{
// Float2 version:
#ifdef ERF_FAST_APPROXIMATION
return erft(x);
#else
return erf6(x);
#endif
}
inline float erf(const float x)
{
// Float version:
#ifdef ERF_FAST_APPROXIMATION
return erft(x);
#else
return erf6(x);
#endif
}
/////////////////////////// COMPLETE GAMMA FUNCTION //////////////////////////
float4 gamma_impl(const float4 s, const float4 s_inv)
{
// Requires: 1.) s is the standard parameter to the gamma function, and
// it should lie in the [0, 36] range.
// 2.) s_inv = 1.0/s. This implementation function requires
// the caller to precompute this value, giving users the
// opportunity to reuse it.
// Returns: Return approximate gamma function (real-numbered factorial)
// output using the Lanczos approximation with two coefficients
// calculated using Paul Godfrey's method here:
// http://my.fit.edu/~gabdo/gamma.txt
// An optimal g value for s in [0, 36] is ~1.12906830989, with
// a maximum relative error of 0.000463 for 2**16 equally
// evals. We could use three coeffs (0.0000346 error) without
// hurting latency, but this allows more parallelism with
// outside instructions.
static const float4 g = float4(1.12906830989);
static const float4 c0 = float4(0.8109119309638332633713423362694399653724431);
static const float4 c1 = float4(0.4808354605142681877121661197951496120000040);
static const float4 e = float4(2.71828182845904523536028747135266249775724709);
const float4 sph = s + float4(0.5);
const float4 lanczos_sum = c0 + c1/(s + float4(1.0));
const float4 base = (sph + g)/e; // or (s + g + float4(0.5))/e
// gamma(s + 1) = base**sph * lanczos_sum; divide by s for gamma(s).
// This has less error for small s's than (s -= 1.0) at the beginning.
return (pow(base, sph) * lanczos_sum) * s_inv;
}
float3 gamma_impl(const float3 s, const float3 s_inv)
{
// Float3 version:
static const float3 g = float3(1.12906830989);
static const float3 c0 = float3(0.8109119309638332633713423362694399653724431);
static const float3 c1 = float3(0.4808354605142681877121661197951496120000040);
static const float3 e = float3(2.71828182845904523536028747135266249775724709);
const float3 sph = s + float3(0.5);
const float3 lanczos_sum = c0 + c1/(s + float3(1.0));
const float3 base = (sph + g)/e;
return (pow(base, sph) * lanczos_sum) * s_inv;
}
float2 gamma_impl(const float2 s, const float2 s_inv)
{
// Float2 version:
static const float2 g = float2(1.12906830989);
static const float2 c0 = float2(0.8109119309638332633713423362694399653724431);
static const float2 c1 = float2(0.4808354605142681877121661197951496120000040);
static const float2 e = float2(2.71828182845904523536028747135266249775724709);
const float2 sph = s + float2(0.5);
const float2 lanczos_sum = c0 + c1/(s + float2(1.0));
const float2 base = (sph + g)/e;
return (pow(base, sph) * lanczos_sum) * s_inv;
}
float gamma_impl(const float s, const float s_inv)
{
// Float version:
static const float g = 1.12906830989;
static const float c0 = 0.8109119309638332633713423362694399653724431;
static const float c1 = 0.4808354605142681877121661197951496120000040;
static const float e = 2.71828182845904523536028747135266249775724709;
const float sph = s + 0.5;
const float lanczos_sum = c0 + c1/(s + 1.0);
const float base = (sph + g)/e;
return (pow(base, sph) * lanczos_sum) * s_inv;
}
float4 gamma(const float4 s)
{
// Requires: s is the standard parameter to the gamma function, and it
// should lie in the [0, 36] range.
// Returns: Return approximate gamma function output with a maximum
// relative error of 0.000463. See gamma_impl for details.
return gamma_impl(s, float4(1.0)/s);
}
float3 gamma(const float3 s)
{
// Float3 version:
return gamma_impl(s, float3(1.0)/s);
}
float2 gamma(const float2 s)
{
// Float2 version:
return gamma_impl(s, float2(1.0)/s);
}
float gamma(const float s)
{
// Float version:
return gamma_impl(s, 1.0/s);
}
//////////////// INCOMPLETE GAMMA FUNCTIONS (RESTRICTED INPUT) ///////////////
// Lower incomplete gamma function for small s and z (implementation):
float4 ligamma_small_z_impl(const float4 s, const float4 z, const float4 s_inv)
{
// Requires: 1.) s < ~0.5
// 2.) z <= ~0.775075
// 3.) s_inv = 1.0/s (precomputed for outside reuse)
// Returns: A series representation for the lower incomplete gamma
// function for small s and small z (4 terms).
// The actual "rolled up" summation looks like:
// last_sign = 1.0; last_pow = 1.0; last_factorial = 1.0;
// sum = last_sign * last_pow / ((s + k) * last_factorial)
// for(int i = 0; i < 4; ++i)
// {
// last_sign *= -1.0; last_pow *= z; last_factorial *= i;
// sum += last_sign * last_pow / ((s + k) * last_factorial);
// }
// Unrolled, constant-unfolded and arranged for madds and parallelism:
const float4 scale = pow(z, s);
float4 sum = s_inv; // Summation iteration 0 result
// Summation iterations 1, 2, and 3:
const float4 z_sq = z*z;
const float4 denom1 = s + float4(1.0);
const float4 denom2 = 2.0*s + float4(4.0);
const float4 denom3 = 6.0*s + float4(18.0);
//float4 denom4 = 24.0*s + float4(96.0);
sum -= z/denom1;
sum += z_sq/denom2;
sum -= z * z_sq/denom3;
//sum += z_sq * z_sq / denom4;
// Scale and return:
return scale * sum;
}
float3 ligamma_small_z_impl(const float3 s, const float3 z, const float3 s_inv)
{
// Float3 version:
const float3 scale = pow(z, s);
float3 sum = s_inv;
const float3 z_sq = z*z;
const float3 denom1 = s + float3(1.0);
const float3 denom2 = 2.0*s + float3(4.0);
const float3 denom3 = 6.0*s + float3(18.0);
sum -= z/denom1;
sum += z_sq/denom2;
sum -= z * z_sq/denom3;
return scale * sum;
}
float2 ligamma_small_z_impl(const float2 s, const float2 z, const float2 s_inv)
{
// Float2 version:
const float2 scale = pow(z, s);
float2 sum = s_inv;
const float2 z_sq = z*z;
const float2 denom1 = s + float2(1.0);
const float2 denom2 = 2.0*s + float2(4.0);
const float2 denom3 = 6.0*s + float2(18.0);
sum -= z/denom1;
sum += z_sq/denom2;
sum -= z * z_sq/denom3;
return scale * sum;
}
float ligamma_small_z_impl(const float s, const float z, const float s_inv)
{
// Float version:
const float scale = pow(z, s);
float sum = s_inv;
const float z_sq = z*z;
const float denom1 = s + 1.0;
const float denom2 = 2.0*s + 4.0;
const float denom3 = 6.0*s + 18.0;
sum -= z/denom1;
sum += z_sq/denom2;
sum -= z * z_sq/denom3;
return scale * sum;
}
// Upper incomplete gamma function for small s and large z (implementation):
float4 uigamma_large_z_impl(const float4 s, const float4 z)
{
// Requires: 1.) s < ~0.5
// 2.) z > ~0.775075
// Returns: Gauss's continued fraction representation for the upper
// incomplete gamma function (4 terms).
// The "rolled up" continued fraction looks like this. The denominator
// is truncated, and it's calculated "from the bottom up:"
// denom = float4('inf');
// float4 one = float4(1.0);
// for(int i = 4; i > 0; --i)
// {
// denom = ((i * 2.0) - one) + z - s + (i * (s - i))/denom;
// }
// Unrolled and constant-unfolded for madds and parallelism:
const float4 numerator = pow(z, s) * exp(-z);
float4 denom = float4(7.0) + z - s;
denom = float4(5.0) + z - s + (3.0*s - float4(9.0))/denom;
denom = float4(3.0) + z - s + (2.0*s - float4(4.0))/denom;
denom = float4(1.0) + z - s + (s - float4(1.0))/denom;
return numerator / denom;
}
float3 uigamma_large_z_impl(const float3 s, const float3 z)
{
// Float3 version:
const float3 numerator = pow(z, s) * exp(-z);
float3 denom = float3(7.0) + z - s;
denom = float3(5.0) + z - s + (3.0*s - float3(9.0))/denom;
denom = float3(3.0) + z - s + (2.0*s - float3(4.0))/denom;
denom = float3(1.0) + z - s + (s - float3(1.0))/denom;
return numerator / denom;
}
float2 uigamma_large_z_impl(const float2 s, const float2 z)
{
// Float2 version:
const float2 numerator = pow(z, s) * exp(-z);
float2 denom = float2(7.0) + z - s;
denom = float2(5.0) + z - s + (3.0*s - float2(9.0))/denom;
denom = float2(3.0) + z - s + (2.0*s - float2(4.0))/denom;
denom = float2(1.0) + z - s + (s - float2(1.0))/denom;
return numerator / denom;
}
float uigamma_large_z_impl(const float s, const float z)
{
// Float version:
const float numerator = pow(z, s) * exp(-z);
float denom = 7.0 + z - s;
denom = 5.0 + z - s + (3.0*s - 9.0)/denom;
denom = 3.0 + z - s + (2.0*s - 4.0)/denom;
denom = 1.0 + z - s + (s - 1.0)/denom;
return numerator / denom;
}
// Normalized lower incomplete gamma function for small s (implementation):
float4 normalized_ligamma_impl(const float4 s, const float4 z,
const float4 s_inv, const float4 gamma_s_inv)
{
// Requires: 1.) s < ~0.5
// 2.) s_inv = 1/s (precomputed for outside reuse)
// 3.) gamma_s_inv = 1/gamma(s) (precomputed for outside reuse)
// Returns: Approximate the normalized lower incomplete gamma function
// for s < 0.5. Since we only care about s < 0.5, we only need
// to evaluate two branches (not four) based on z. Each branch
// uses four terms, with a max relative error of ~0.00182. The
// branch threshold and specifics were adapted for fewer terms
// from Gil/Segura/Temme's paper here:
// http://oai.cwi.nl/oai/asset/20433/20433B.pdf
// Evaluate both branches: Real branches test slower even when available.
static const float4 thresh = float4(0.775075);
bool4 z_is_large;
z_is_large.x = z.x > thresh.x;
z_is_large.y = z.y > thresh.y;
z_is_large.z = z.z > thresh.z;
z_is_large.w = z.w > thresh.w;
const float4 large_z = float4(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv;
const float4 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
// Combine the results from both branches:
bool4 inverse_z_is_large = not(z_is_large);
return large_z * float4(z_is_large) + small_z * float4(inverse_z_is_large);
}
float3 normalized_ligamma_impl(const float3 s, const float3 z,
const float3 s_inv, const float3 gamma_s_inv)
{
// Float3 version:
static const float3 thresh = float3(0.775075);
bool3 z_is_large;
z_is_large.x = z.x > thresh.x;
z_is_large.y = z.y > thresh.y;
z_is_large.z = z.z > thresh.z;
const float3 large_z = float3(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv;
const float3 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
bool3 inverse_z_is_large = not(z_is_large);
return large_z * float3(z_is_large) + small_z * float3(inverse_z_is_large);
}
float2 normalized_ligamma_impl(const float2 s, const float2 z,
const float2 s_inv, const float2 gamma_s_inv)
{
// Float2 version:
static const float2 thresh = float2(0.775075);
bool2 z_is_large;
z_is_large.x = z.x > thresh.x;
z_is_large.y = z.y > thresh.y;
const float2 large_z = float2(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv;
const float2 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
bool2 inverse_z_is_large = not(z_is_large);
return large_z * float2(z_is_large) + small_z * float2(inverse_z_is_large);
}
float normalized_ligamma_impl(const float s, const float z,
const float s_inv, const float gamma_s_inv)
{
// Float version:
static const float thresh = 0.775075;
const bool z_is_large = z > thresh;
const float large_z = 1.0 - uigamma_large_z_impl(s, z) * gamma_s_inv;
const float small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
return large_z * float(z_is_large) + small_z * float(!z_is_large);
}
// Normalized lower incomplete gamma function for small s:
float4 normalized_ligamma(const float4 s, const float4 z)
{
// Requires: s < ~0.5
// Returns: Approximate the normalized lower incomplete gamma function
// for s < 0.5. See normalized_ligamma_impl() for details.
const float4 s_inv = float4(1.0)/s;
const float4 gamma_s_inv = float4(1.0)/gamma_impl(s, s_inv);
return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
}
float3 normalized_ligamma(const float3 s, const float3 z)
{
// Float3 version:
const float3 s_inv = float3(1.0)/s;
const float3 gamma_s_inv = float3(1.0)/gamma_impl(s, s_inv);
return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
}
float2 normalized_ligamma(const float2 s, const float2 z)
{
// Float2 version:
const float2 s_inv = float2(1.0)/s;
const float2 gamma_s_inv = float2(1.0)/gamma_impl(s, s_inv);
return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
}
float normalized_ligamma(const float s, const float z)
{
// Float version:
const float s_inv = 1.0/s;
const float gamma_s_inv = 1.0/gamma_impl(s, s_inv);
return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
}
#endif // SPECIAL_FUNCTIONS_H
//////////////////////////// END SPECIAL-FUNCTIONS ///////////////////////////
//#include "../../../../include/gamma-management.h"
//////////////////////////// BEGIN GAMMA-MANAGEMENT //////////////////////////
#ifndef GAMMA_MANAGEMENT_H
#define GAMMA_MANAGEMENT_H
///////////////////////////////// MIT LICENSE ////////////////////////////////
// Copyright (C) 2014 TroggleMonkey
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
///////////////////////////////// DESCRIPTION ////////////////////////////////
// This file provides gamma-aware tex*D*() and encode_output() functions.
// Requires: Before #include-ing this file, the including file must #define
// the following macros when applicable and follow their rules:
// 1.) #define FIRST_PASS if this is the first pass.
// 2.) #define LAST_PASS if this is the last pass.
// 3.) If sRGB is available, set srgb_framebufferN = "true" for
// every pass except the last in your .cgp preset.
// 4.) If sRGB isn't available but you want gamma-correctness with
// no banding, #define GAMMA_ENCODE_EVERY_FBO each pass.
// 5.) #define SIMULATE_CRT_ON_LCD if desired (precedence over 5-7)
// 6.) #define SIMULATE_GBA_ON_LCD if desired (precedence over 6-7)
// 7.) #define SIMULATE_LCD_ON_CRT if desired (precedence over 7)
// 8.) #define SIMULATE_GBA_ON_CRT if desired (precedence over -)
// If an option in [5, 8] is #defined in the first or last pass, it
// should be #defined for both. It shouldn't make a difference
// whether it's #defined for intermediate passes or not.
// Optional: The including file (or an earlier included file) may optionally
// #define a number of macros indicating it will override certain
// macros and associated constants are as follows:
// static constants with either static or uniform constants. The
// 1.) OVERRIDE_STANDARD_GAMMA: The user must first define:
// static const float ntsc_gamma
// static const float pal_gamma
// static const float crt_reference_gamma_high
// static const float crt_reference_gamma_low
// static const float lcd_reference_gamma
// static const float crt_office_gamma
// static const float lcd_office_gamma
// 2.) OVERRIDE_DEVICE_GAMMA: The user must first define:
// static const float crt_gamma
// static const float gba_gamma
// static const float lcd_gamma
// 3.) OVERRIDE_FINAL_GAMMA: The user must first define:
// static const float input_gamma
// static const float intermediate_gamma
// static const float output_gamma
// (intermediate_gamma is for GAMMA_ENCODE_EVERY_FBO.)
// 4.) OVERRIDE_ALPHA_ASSUMPTIONS: The user must first define:
// static const bool assume_opaque_alpha
// The gamma constant overrides must be used in every pass or none,
// and OVERRIDE_FINAL_GAMMA bypasses all of the SIMULATE* macros.
// OVERRIDE_ALPHA_ASSUMPTIONS may be set on a per-pass basis.
// Usage: After setting macros appropriately, ignore gamma correction and
// replace all tex*D*() calls with equivalent gamma-aware
// tex*D*_linearize calls, except:
// 1.) When you read an LUT, use regular tex*D or a gamma-specified
// function, depending on its gamma encoding:
// tex*D*_linearize_gamma (takes a runtime gamma parameter)
// 2.) If you must read pass0's original input in a later pass, use
// tex2D_linearize_ntsc_gamma. If you want to read pass0's
// input with gamma-corrected bilinear filtering, consider
// creating a first linearizing pass and reading from the input
// of pass1 later.
// Then, return encode_output(color) from every fragment shader.
// Finally, use the global gamma_aware_bilinear boolean if you want
// to statically branch based on whether bilinear filtering is
// gamma-correct or not (e.g. for placing Gaussian blur samples).
//
// Detailed Policy:
// tex*D*_linearize() functions enforce a consistent gamma-management policy
// based on the FIRST_PASS and GAMMA_ENCODE_EVERY_FBO settings. They assume
// their input texture has the same encoding characteristics as the input for
// the current pass (which doesn't apply to the exceptions listed above).
// Similarly, encode_output() enforces a policy based on the LAST_PASS and
// GAMMA_ENCODE_EVERY_FBO settings. Together, they result in one of the
// following two pipelines.
// Typical pipeline with intermediate sRGB framebuffers:
// linear_color = pow(pass0_encoded_color, input_gamma);
// intermediate_output = linear_color; // Automatic sRGB encoding
// linear_color = intermediate_output; // Automatic sRGB decoding
// final_output = pow(intermediate_output, 1.0/output_gamma);
// Typical pipeline without intermediate sRGB framebuffers:
// linear_color = pow(pass0_encoded_color, input_gamma);
// intermediate_output = pow(linear_color, 1.0/intermediate_gamma);
// linear_color = pow(intermediate_output, intermediate_gamma);
// final_output = pow(intermediate_output, 1.0/output_gamma);
// Using GAMMA_ENCODE_EVERY_FBO is much slower, but it's provided as a way to
// easily get gamma-correctness without banding on devices where sRGB isn't
// supported.
//
// Use This Header to Maximize Code Reuse:
// The purpose of this header is to provide a consistent interface for texture
// reads and output gamma-encoding that localizes and abstracts away all the
// annoying details. This greatly reduces the amount of code in each shader
// pass that depends on the pass number in the .cgp preset or whether sRGB
// FBO's are being used: You can trivially change the gamma behavior of your
// whole pass by commenting or uncommenting 1-3 #defines. To reuse the same
// code in your first, Nth, and last passes, you can even put it all in another
// header file and #include it from skeleton .cg files that #define the
// appropriate pass-specific settings.
//
// Rationale for Using Three Macros:
// This file uses GAMMA_ENCODE_EVERY_FBO instead of an opposite macro like
// SRGB_PIPELINE to ensure sRGB is assumed by default, which hopefully imposes
// a lower maintenance burden on each pass. At first glance it seems we could
// accomplish everything with two macros: GAMMA_CORRECT_IN / GAMMA_CORRECT_OUT.
// This works for simple use cases where input_gamma == output_gamma, but it
// breaks down for more complex scenarios like CRT simulation, where the pass
// number determines the gamma encoding of the input and output.
/////////////////////////////// BASE CONSTANTS ///////////////////////////////
// Set standard gamma constants, but allow users to override them:
#ifndef OVERRIDE_STANDARD_GAMMA
// Standard encoding gammas:
static const float ntsc_gamma = 2.2; // Best to use NTSC for PAL too?
static const float pal_gamma = 2.8; // Never actually 2.8 in practice
// Typical device decoding gammas (only use for emulating devices):
// CRT/LCD reference gammas are higher than NTSC and Rec.709 video standard
// gammas: The standards purposely undercorrected for an analog CRT's
// assumed 2.5 reference display gamma to maintain contrast in assumed
// [dark] viewing conditions: http://www.poynton.com/PDFs/GammaFAQ.pdf
// These unstated assumptions about display gamma and perceptual rendering
// intent caused a lot of confusion, and more modern CRT's seemed to target
// NTSC 2.2 gamma with circuitry. LCD displays seem to have followed suit
// (they struggle near black with 2.5 gamma anyway), especially PC/laptop
// displays designed to view sRGB in bright environments. (Standards are
// also in flux again with BT.1886, but it's underspecified for displays.)
static const float crt_reference_gamma_high = 2.5; // In (2.35, 2.55)
static const float crt_reference_gamma_low = 2.35; // In (2.35, 2.55)
static const float lcd_reference_gamma = 2.5; // To match CRT
static const float crt_office_gamma = 2.2; // Circuitry-adjusted for NTSC
static const float lcd_office_gamma = 2.2; // Approximates sRGB
#endif // OVERRIDE_STANDARD_GAMMA
// Assuming alpha == 1.0 might make it easier for users to avoid some bugs,
// but only if they're aware of it.
#ifndef OVERRIDE_ALPHA_ASSUMPTIONS
static const bool assume_opaque_alpha = false;
#endif
/////////////////////// DERIVED CONSTANTS AS FUNCTIONS ///////////////////////
// gamma-management.h should be compatible with overriding gamma values with
// runtime user parameters, but we can only define other global constants in
// terms of static constants, not uniform user parameters. To get around this
// limitation, we need to define derived constants using functions.
// Set device gamma constants, but allow users to override them:
#ifdef OVERRIDE_DEVICE_GAMMA
// The user promises to globally define the appropriate constants:
inline float get_crt_gamma() { return crt_gamma; }
inline float get_gba_gamma() { return gba_gamma; }
inline float get_lcd_gamma() { return lcd_gamma; }
#else
inline float get_crt_gamma() { return crt_reference_gamma_high; }
inline float get_gba_gamma() { return 3.5; } // Game Boy Advance; in (3.0, 4.0)
inline float get_lcd_gamma() { return lcd_office_gamma; }
#endif // OVERRIDE_DEVICE_GAMMA
// Set decoding/encoding gammas for the first/lass passes, but allow overrides:
#ifdef OVERRIDE_FINAL_GAMMA
// The user promises to globally define the appropriate constants:
inline float get_intermediate_gamma() { return intermediate_gamma; }
inline float get_input_gamma() { return input_gamma; }
inline float get_output_gamma() { return output_gamma; }
#else
// If we gamma-correct every pass, always use ntsc_gamma between passes to
// ensure middle passes don't need to care if anything is being simulated:
inline float get_intermediate_gamma() { return ntsc_gamma; }
#ifdef SIMULATE_CRT_ON_LCD
inline float get_input_gamma() { return get_crt_gamma(); }
inline float get_output_gamma() { return get_lcd_gamma(); }
#else
#ifdef SIMULATE_GBA_ON_LCD
inline float get_input_gamma() { return get_gba_gamma(); }
inline float get_output_gamma() { return get_lcd_gamma(); }
#else
#ifdef SIMULATE_LCD_ON_CRT
inline float get_input_gamma() { return get_lcd_gamma(); }
inline float get_output_gamma() { return get_crt_gamma(); }
#else
#ifdef SIMULATE_GBA_ON_CRT
inline float get_input_gamma() { return get_gba_gamma(); }
inline float get_output_gamma() { return get_crt_gamma(); }
#else // Don't simulate anything:
inline float get_input_gamma() { return ntsc_gamma; }
inline float get_output_gamma() { return ntsc_gamma; }
#endif // SIMULATE_GBA_ON_CRT
#endif // SIMULATE_LCD_ON_CRT
#endif // SIMULATE_GBA_ON_LCD
#endif // SIMULATE_CRT_ON_LCD
#endif // OVERRIDE_FINAL_GAMMA
// Set decoding/encoding gammas for the current pass. Use static constants for
// linearize_input and gamma_encode_output, because they aren't derived, and
// they let the compiler do dead-code elimination.
#ifndef GAMMA_ENCODE_EVERY_FBO
#ifdef FIRST_PASS
static const bool linearize_input = true;
inline float get_pass_input_gamma() { return get_input_gamma(); }
#else
static const bool linearize_input = false;
inline float get_pass_input_gamma() { return 1.0; }
#endif
#ifdef LAST_PASS
static const bool gamma_encode_output = true;
inline float get_pass_output_gamma() { return get_output_gamma(); }
#else
static const bool gamma_encode_output = false;
inline float get_pass_output_gamma() { return 1.0; }
#endif
#else
static const bool linearize_input = true;
static const bool gamma_encode_output = true;
#ifdef FIRST_PASS
inline float get_pass_input_gamma() { return get_input_gamma(); }
#else
inline float get_pass_input_gamma() { return get_intermediate_gamma(); }
#endif
#ifdef LAST_PASS
inline float get_pass_output_gamma() { return get_output_gamma(); }
#else
inline float get_pass_output_gamma() { return get_intermediate_gamma(); }
#endif
#endif
// Users might want to know if bilinear filtering will be gamma-correct:
static const bool gamma_aware_bilinear = !linearize_input;
////////////////////// COLOR ENCODING/DECODING FUNCTIONS /////////////////////
inline float4 encode_output(const float4 color)
{
if(gamma_encode_output)
{
if(assume_opaque_alpha)
{
return float4(pow(color.rgb, float3(1.0/get_pass_output_gamma())), 1.0);
}
else
{
return float4(pow(color.rgb, float3(1.0/get_pass_output_gamma())), color.a);
}
}
else
{
return color;
}
}
inline float4 decode_input(const float4 color)
{
if(linearize_input)
{
if(assume_opaque_alpha)
{
return float4(pow(color.rgb, float3(get_pass_input_gamma())), 1.0);
}
else
{
return float4(pow(color.rgb, float3(get_pass_input_gamma())), color.a);
}
}
else
{
return color;
}
}
inline float4 decode_gamma_input(const float4 color, const float3 gamma)
{
if(assume_opaque_alpha)
{
return float4(pow(color.rgb, gamma), 1.0);
}
else
{
return float4(pow(color.rgb, gamma), color.a);
}
}
//TODO/FIXME: I have no idea why replacing the lookup wrappers with this macro fixes the blurs being offset ¯\_(ツ)_/¯
//#define tex2D_linearize(C, D) decode_input(vec4(texture(C, D)))
// EDIT: it's the 'const' in front of the coords that's doing it
/////////////////////////// TEXTURE LOOKUP WRAPPERS //////////////////////////
// "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS:
// Provide a wide array of linearizing texture lookup wrapper functions. The
// Cg shader spec Retroarch uses only allows for 2D textures, but 1D and 3D
// lookups are provided for completeness in case that changes someday. Nobody
// is likely to use the *fetch and *proj functions, but they're included just
// in case. The only tex*D texture sampling functions omitted are:
// - tex*Dcmpbias
// - tex*Dcmplod
// - tex*DARRAY*
// - tex*DMS*
// - Variants returning integers
// Standard line length restrictions are ignored below for vertical brevity.
/*
// tex1D:
inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords)
{ return decode_input(tex1D(tex, tex_coords)); }
inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords)
{ return decode_input(tex1D(tex, tex_coords)); }
inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const int texel_off)
{ return decode_input(tex1D(tex, tex_coords, texel_off)); }
inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off)
{ return decode_input(tex1D(tex, tex_coords, texel_off)); }
inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy)
{ return decode_input(tex1D(tex, tex_coords, dx, dy)); }
inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy)
{ return decode_input(tex1D(tex, tex_coords, dx, dy)); }
inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy, const int texel_off)
{ return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); }
inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy, const int texel_off)
{ return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); }
// tex1Dbias:
inline float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords)
{ return decode_input(tex1Dbias(tex, tex_coords)); }
inline float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off)
{ return decode_input(tex1Dbias(tex, tex_coords, texel_off)); }
// tex1Dfetch:
inline float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords)
{ return decode_input(tex1Dfetch(tex, tex_coords)); }
inline float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords, const int texel_off)
{ return decode_input(tex1Dfetch(tex, tex_coords, texel_off)); }
// tex1Dlod:
inline float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords)
{ return decode_input(tex1Dlod(tex, tex_coords)); }
inline float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off)
{ return decode_input(tex1Dlod(tex, tex_coords, texel_off)); }
// tex1Dproj:
inline float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords)
{ return decode_input(tex1Dproj(tex, tex_coords)); }
inline float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords)
{ return decode_input(tex1Dproj(tex, tex_coords)); }
inline float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off)
{ return decode_input(tex1Dproj(tex, tex_coords, texel_off)); }
inline float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords, const int texel_off)
{ return decode_input(tex1Dproj(tex, tex_coords, texel_off)); }
*/
// tex2D:
inline float4 tex2D_linearize(const sampler2D tex, float2 tex_coords)
{ return decode_input(COMPAT_TEXTURE(tex, tex_coords)); }
inline float4 tex2D_linearize(const sampler2D tex, float3 tex_coords)
{ return decode_input(COMPAT_TEXTURE(tex, tex_coords.xy)); }
inline float4 tex2D_linearize(const sampler2D tex, float2 tex_coords, int texel_off)
{ return decode_input(textureLod(tex, tex_coords, texel_off)); }
inline float4 tex2D_linearize(const sampler2D tex, float3 tex_coords, int texel_off)
{ return decode_input(textureLod(tex, tex_coords.xy, texel_off)); }
//inline float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy)
//{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy)); }
//inline float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy)
//{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy)); }
//inline float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off)
//{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off)); }
//inline float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off)
//{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off)); }
// tex2Dbias:
//inline float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords)
//{ return decode_input(tex2Dbias(tex, tex_coords)); }
//inline float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off)
//{ return decode_input(tex2Dbias(tex, tex_coords, texel_off)); }
// tex2Dfetch:
//inline float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords)
//{ return decode_input(tex2Dfetch(tex, tex_coords)); }
//inline float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords, const int texel_off)
//{ return decode_input(tex2Dfetch(tex, tex_coords, texel_off)); }
// tex2Dlod:
inline float4 tex2Dlod_linearize(const sampler2D tex, float4 tex_coords)
{ return decode_input(textureLod(tex, tex_coords.xy, 0.0)); }
inline float4 tex2Dlod_linearize(const sampler2D tex, float4 tex_coords, int texel_off)
{ return decode_input(textureLod(tex, tex_coords.xy, texel_off)); }
/*
// tex2Dproj:
inline float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords)
{ return decode_input(tex2Dproj(tex, tex_coords)); }
inline float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords)
{ return decode_input(tex2Dproj(tex, tex_coords)); }
inline float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords, const int texel_off)
{ return decode_input(tex2Dproj(tex, tex_coords, texel_off)); }
inline float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off)
{ return decode_input(tex2Dproj(tex, tex_coords, texel_off)); }
*/
/*
// tex3D:
inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords)
{ return decode_input(tex3D(tex, tex_coords)); }
inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const int texel_off)
{ return decode_input(tex3D(tex, tex_coords, texel_off)); }
inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy)
{ return decode_input(tex3D(tex, tex_coords, dx, dy)); }
inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy, const int texel_off)
{ return decode_input(tex3D(tex, tex_coords, dx, dy, texel_off)); }
// tex3Dbias:
inline float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords)
{ return decode_input(tex3Dbias(tex, tex_coords)); }
inline float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
{ return decode_input(tex3Dbias(tex, tex_coords, texel_off)); }
// tex3Dfetch:
inline float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords)
{ return decode_input(tex3Dfetch(tex, tex_coords)); }
inline float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords, const int texel_off)
{ return decode_input(tex3Dfetch(tex, tex_coords, texel_off)); }
// tex3Dlod:
inline float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords)
{ return decode_input(tex3Dlod(tex, tex_coords)); }
inline float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
{ return decode_input(tex3Dlod(tex, tex_coords, texel_off)); }
// tex3Dproj:
inline float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords)
{ return decode_input(tex3Dproj(tex, tex_coords)); }
inline float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
{ return decode_input(tex3Dproj(tex, tex_coords, texel_off)); }
/////////*
// NONSTANDARD "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS:
// This narrow selection of nonstandard tex2D* functions can be useful:
// tex2Dlod0: Automatically fill in the tex2D LOD parameter for mip level 0.
//inline float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords)
//{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0))); }
//inline float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords, const int texel_off)
//{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0), texel_off)); }
// MANUALLY LINEARIZING TEXTURE LOOKUP FUNCTIONS:
// Provide a narrower selection of tex2D* wrapper functions that decode an
// input sample with a specified gamma value. These are useful for reading
// LUT's and for reading the input of pass0 in a later pass.
// tex2D:
inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float3 gamma)
{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords), gamma); }
inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float3 gamma)
{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords.xy), gamma); }
//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const int texel_off, const float3 gamma)
//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, texel_off), gamma); }
//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const int texel_off, const float3 gamma)
//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, texel_off), gamma); }
//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const float3 gamma)
//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy), gamma); }
//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const float3 gamma)
//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy), gamma); }
//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma)
//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off), gamma); }
//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma)
//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off), gamma); }
/*
// tex2Dbias:
inline float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const float3 gamma)
{ return decode_gamma_input(tex2Dbias(tex, tex_coords), gamma); }
inline float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const int texel_off, const float3 gamma)
{ return decode_gamma_input(tex2Dbias(tex, tex_coords, texel_off), gamma); }
// tex2Dfetch:
inline float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const float3 gamma)
{ return decode_gamma_input(tex2Dfetch(tex, tex_coords), gamma); }
inline float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const int texel_off, const float3 gamma)
{ return decode_gamma_input(tex2Dfetch(tex, tex_coords, texel_off), gamma); }
*/
// tex2Dlod:
inline float4 tex2Dlod_linearize_gamma(const sampler2D tex, float4 tex_coords, float3 gamma)
{ return decode_gamma_input(textureLod(tex, tex_coords.xy, 0.0), gamma); }
inline float4 tex2Dlod_linearize_gamma(const sampler2D tex, float4 tex_coords, int texel_off, float3 gamma)
{ return decode_gamma_input(textureLod(tex, tex_coords.xy, texel_off), gamma); }
#endif // GAMMA_MANAGEMENT_H
//////////////////////////// END GAMMA-MANAGEMENT //////////////////////////
//////////////////////////////// END INCLUDES ////////////////////////////////
///////////////////////////// SCANLINE FUNCTIONS /////////////////////////////
inline float3 get_gaussian_sigma(const float3 color, const float sigma_range)
{
// Requires: Globals:
// 1.) beam_min_sigma and beam_max_sigma are global floats
// containing the desired minimum and maximum beam standard
// deviations, for dim and bright colors respectively.
// 2.) beam_max_sigma must be > 0.0
// 3.) beam_min_sigma must be in (0.0, beam_max_sigma]
// 4.) beam_spot_power must be defined as a global float.
// Parameters:
// 1.) color is the underlying source color along a scanline
// 2.) sigma_range = beam_max_sigma - beam_min_sigma; we take
// sigma_range as a parameter to avoid repeated computation
// when beam_{min, max}_sigma are runtime shader parameters
// Optional: Users may set beam_spot_shape_function to 1 to define the
// inner f(color) subfunction (see below) as:
// f(color) = sqrt(1.0 - (color - 1.0)*(color - 1.0))
// Otherwise (technically, if beam_spot_shape_function < 0.5):
// f(color) = pow(color, beam_spot_power)
// Returns: The standard deviation of the Gaussian beam for "color:"
// sigma = beam_min_sigma + sigma_range * f(color)
// Details/Discussion:
// The beam's spot shape vaguely resembles an aspect-corrected f() in the
// range [0, 1] (not quite, but it's related). f(color) = color makes
// spots look like diamonds, and a spherical function or cube balances
// between variable width and a soft/realistic shape. A beam_spot_power
// > 1.0 can produce an ugly spot shape and more initial clipping, but the
// final shape also differs based on the horizontal resampling filter and
// the phosphor bloom. For instance, resampling horizontally in nonlinear
// light and/or with a sharp (e.g. Lanczos) filter will sharpen the spot
// shape, but a sixth root is still quite soft. A power function (default
// 1.0/3.0 beam_spot_power) is most flexible, but a fixed spherical curve
// has the highest variability without an awful spot shape.
//
// beam_min_sigma affects scanline sharpness/aliasing in dim areas, and its
// difference from beam_max_sigma affects beam width variability. It only
// affects clipping [for pure Gaussians] if beam_spot_power > 1.0 (which is
// a conservative estimate for a more complex constraint).
//
// beam_max_sigma affects clipping and increasing scanline width/softness
// as color increases. The wider this is, the more scanlines need to be
// evaluated to avoid distortion. For a pure Gaussian, the max_beam_sigma
// at which the first unused scanline always has a weight < 1.0/255.0 is:
// num scanlines = 2, max_beam_sigma = 0.2089; distortions begin ~0.34
// num scanlines = 3, max_beam_sigma = 0.3879; distortions begin ~0.52
// num scanlines = 4, max_beam_sigma = 0.5723; distortions begin ~0.70
// num scanlines = 5, max_beam_sigma = 0.7591; distortions begin ~0.89
// num scanlines = 6, max_beam_sigma = 0.9483; distortions begin ~1.08
// Generalized Gaussians permit more leeway here as steepness increases.
if(beam_spot_shape_function < 0.5)
{
// Use a power function:
return float3(beam_min_sigma) + sigma_range *
pow(color, float3(beam_spot_power));
}
else
{
// Use a spherical function:
const float3 color_minus_1 = color - float3(1.0);
return float3(beam_min_sigma) + sigma_range *
sqrt(float3(1.0) - color_minus_1*color_minus_1);
}
}
inline float3 get_generalized_gaussian_beta(const float3 color,
const float shape_range)
{
// Requires: Globals:
// 1.) beam_min_shape and beam_max_shape are global floats
// containing the desired min/max generalized Gaussian
// beta parameters, for dim and bright colors respectively.
// 2.) beam_max_shape must be >= 2.0
// 3.) beam_min_shape must be in [2.0, beam_max_shape]
// 4.) beam_shape_power must be defined as a global float.
// Parameters:
// 1.) color is the underlying source color along a scanline
// 2.) shape_range = beam_max_shape - beam_min_shape; we take
// shape_range as a parameter to avoid repeated computation
// when beam_{min, max}_shape are runtime shader parameters
// Returns: The type-I generalized Gaussian "shape" parameter beta for
// the given color.
// Details/Discussion:
// Beta affects the scanline distribution as follows:
// a.) beta < 2.0 narrows the peak to a spike with a discontinuous slope
// b.) beta == 2.0 just degenerates to a Gaussian
// c.) beta > 2.0 flattens and widens the peak, then drops off more steeply
// than a Gaussian. Whereas high sigmas widen and soften peaks, high
// beta widen and sharpen peaks at the risk of aliasing.
// Unlike high beam_spot_powers, high beam_shape_powers actually soften shape
// transitions, whereas lower ones sharpen them (at the risk of aliasing).
return beam_min_shape + shape_range * pow(color, float3(beam_shape_power));
}
float3 scanline_gaussian_integral_contrib(const float3 dist,
const float3 color, const float pixel_height, const float sigma_range)
{
// Requires: 1.) dist is the distance of the [potentially separate R/G/B]
// point(s) from a scanline in units of scanlines, where
// 1.0 means the sample point straddles the next scanline.
// 2.) color is the underlying source color along a scanline.
// 3.) pixel_height is the output pixel height in scanlines.
// 4.) Requirements of get_gaussian_sigma() must be met.
// Returns: Return a scanline's light output over a given pixel.
// Details:
// The CRT beam profile follows a roughly Gaussian distribution which is
// wider for bright colors than dark ones. The integral over the full
// range of a Gaussian function is always 1.0, so we can vary the beam
// with a standard deviation without affecting brightness. 'x' = distance:
// gaussian sample = 1/(sigma*sqrt(2*pi)) * e**(-(x**2)/(2*sigma**2))
// gaussian integral = 0.5 (1.0 + erf(x/(sigma * sqrt(2))))
// Use a numerical approximation of the "error function" (the Gaussian
// indefinite integral) to find the definite integral of the scanline's
// average brightness over a given pixel area. Even if curved coords were
// used in this pass, a flat scalar pixel height works almost as well as a
// pixel height computed from a full pixel-space to scanline-space matrix.
const float3 sigma = get_gaussian_sigma(color, sigma_range);
const float3 ph_offset = float3(pixel_height * 0.5);
const float3 denom_inv = 1.0/(sigma*sqrt(2.0));
const float3 integral_high = erf((dist + ph_offset)*denom_inv);
const float3 integral_low = erf((dist - ph_offset)*denom_inv);
return color * 0.5*(integral_high - integral_low)/pixel_height;
}
float3 scanline_generalized_gaussian_integral_contrib(float3 dist,
float3 color, float pixel_height, float sigma_range,
float shape_range)
{
// Requires: 1.) Requirements of scanline_gaussian_integral_contrib()
// must be met.
// 2.) Requirements of get_gaussian_sigma() must be met.
// 3.) Requirements of get_generalized_gaussian_beta() must be
// met.
// Returns: Return a scanline's light output over a given pixel.
// A generalized Gaussian distribution allows the shape (beta) to vary
// as well as the width (alpha). "gamma" refers to the gamma function:
// generalized sample =
// beta/(2*alpha*gamma(1/beta)) * e**(-(|x|/alpha)**beta)
// ligamma(s, z) is the lower incomplete gamma function, for which we only
// implement two of four branches (because we keep 1/beta <= 0.5):
// generalized integral = 0.5 + 0.5* sign(x) *
// ligamma(1/beta, (|x|/alpha)**beta)/gamma(1/beta)
// See get_generalized_gaussian_beta() for a discussion of beta.
// We base alpha on the intended Gaussian sigma, but it only strictly
// models models standard deviation at beta == 2, because the standard
// deviation depends on both alpha and beta (keeping alpha independent is
// faster and preserves intuitive behavior and a full spectrum of results).
const float3 alpha = sqrt(2.0) * get_gaussian_sigma(color, sigma_range);
const float3 beta = get_generalized_gaussian_beta(color, shape_range);
const float3 alpha_inv = float3(1.0)/alpha;
const float3 s = float3(1.0)/beta;
const float3 ph_offset = float3(pixel_height * 0.5);
// Pass beta to gamma_impl to avoid repeated divides. Similarly pass
// beta (i.e. 1/s) and 1/gamma(s) to normalized_ligamma_impl.
const float3 gamma_s_inv = float3(1.0)/gamma_impl(s, beta);
const float3 dist1 = dist + ph_offset;
const float3 dist0 = dist - ph_offset;
const float3 integral_high = sign(dist1) * normalized_ligamma_impl(
s, pow(abs(dist1)*alpha_inv, beta), beta, gamma_s_inv);
const float3 integral_low = sign(dist0) * normalized_ligamma_impl(
s, pow(abs(dist0)*alpha_inv, beta), beta, gamma_s_inv);
return color * 0.5*(integral_high - integral_low)/pixel_height;
}
float3 scanline_gaussian_sampled_contrib(const float3 dist, const float3 color,
const float pixel_height, const float sigma_range)
{
// See scanline_gaussian integral_contrib() for detailed comments!
// gaussian sample = 1/(sigma*sqrt(2*pi)) * e**(-(x**2)/(2*sigma**2))
const float3 sigma = get_gaussian_sigma(color, sigma_range);
// Avoid repeated divides:
const float3 sigma_inv = float3(1.0)/sigma;
const float3 inner_denom_inv = 0.5 * sigma_inv * sigma_inv;
const float3 outer_denom_inv = sigma_inv/sqrt(2.0*pi);
if(beam_antialias_level > 0.5)
{
// Sample 1/3 pixel away in each direction as well:
const float3 sample_offset = float3(pixel_height/3.0);
const float3 dist2 = dist + sample_offset;
const float3 dist3 = abs(dist - sample_offset);
// Average three pure Gaussian samples:
const float3 scale = color/3.0 * outer_denom_inv;
const float3 weight1 = exp(-(dist*dist)*inner_denom_inv);
const float3 weight2 = exp(-(dist2*dist2)*inner_denom_inv);
const float3 weight3 = exp(-(dist3*dist3)*inner_denom_inv);
return scale * (weight1 + weight2 + weight3);
}
else
{
return color*exp(-(dist*dist)*inner_denom_inv)*outer_denom_inv;
}
}
float3 scanline_generalized_gaussian_sampled_contrib(float3 dist,
float3 color, float pixel_height, float sigma_range,
float shape_range)
{
// See scanline_generalized_gaussian_integral_contrib() for details!
// generalized sample =
// beta/(2*alpha*gamma(1/beta)) * e**(-(|x|/alpha)**beta)
const float3 alpha = sqrt(2.0) * get_gaussian_sigma(color, sigma_range);
const float3 beta = get_generalized_gaussian_beta(color, shape_range);
// Avoid repeated divides:
const float3 alpha_inv = float3(1.0)/alpha;
const float3 beta_inv = float3(1.0)/beta;
const float3 scale = color * beta * 0.5 * alpha_inv /
gamma_impl(beta_inv, beta);
if(beam_antialias_level > 0.5)
{
// Sample 1/3 pixel closer to and farther from the scanline too.
const float3 sample_offset = float3(pixel_height/3.0);
const float3 dist2 = dist + sample_offset;
const float3 dist3 = abs(dist - sample_offset);
// Average three generalized Gaussian samples:
const float3 weight1 = exp(-pow(abs(dist*alpha_inv), beta));
const float3 weight2 = exp(-pow(abs(dist2*alpha_inv), beta));
const float3 weight3 = exp(-pow(abs(dist3*alpha_inv), beta));
return scale/3.0 * (weight1 + weight2 + weight3);
}
else
{
return scale * exp(-pow(abs(dist*alpha_inv), beta));
}
}
inline float3 scanline_contrib(float3 dist, float3 color,
float pixel_height, const float sigma_range, const float shape_range)
{
// Requires: 1.) Requirements of scanline_gaussian_integral_contrib()
// must be met.
// 2.) Requirements of get_gaussian_sigma() must be met.
// 3.) Requirements of get_generalized_gaussian_beta() must be
// met.
// Returns: Return a scanline's light output over a given pixel, using
// a generalized or pure Gaussian distribution and sampling or
// integrals as desired by user codepath choices.
if(beam_generalized_gaussian)
{
if(beam_antialias_level > 1.5)
{
return scanline_generalized_gaussian_integral_contrib(
dist, color, pixel_height, sigma_range, shape_range);
}
else
{
return scanline_generalized_gaussian_sampled_contrib(
dist, color, pixel_height, sigma_range, shape_range);
}
}
else
{
if(beam_antialias_level > 1.5)
{
return scanline_gaussian_integral_contrib(
dist, color, pixel_height, sigma_range);
}
else
{
return scanline_gaussian_sampled_contrib(
dist, color, pixel_height, sigma_range);
}
}
}
inline float3 get_raw_interpolated_color(const float3 color0,
const float3 color1, const float3 color2, const float3 color3,
const float4 weights)
{
// Use max to avoid bizarre artifacts from negative colors:
return max(mul(weights, float4x3(color0, color1, color2, color3)), 0.0);
}
float3 get_interpolated_linear_color(const float3 color0, const float3 color1,
const float3 color2, const float3 color3, const float4 weights)
{
// Requires: 1.) Requirements of include/gamma-management.h must be met:
// intermediate_gamma must be globally defined, and input
// colors are interpreted as linear RGB unless you #define
// GAMMA_ENCODE_EVERY_FBO (in which case they are
// interpreted as gamma-encoded with intermediate_gamma).
// 2.) color0-3 are colors sampled from a texture with tex2D().
// They are interpreted as defined in requirement 1.
// 3.) weights contains weights for each color, summing to 1.0.
// 4.) beam_horiz_linear_rgb_weight must be defined as a global
// float in [0.0, 1.0] describing how much blending should
// be done in linear RGB (rest is gamma-corrected RGB).
// 5.) RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE must be #defined
// if beam_horiz_linear_rgb_weight is anything other than a
// static constant, or we may try branching at runtime
// without dynamic branches allowed (slow).
// Returns: Return an interpolated color lookup between the four input
// colors based on the weights in weights. The final color will
// be a linear RGB value, but the blending will be done as
// indicated above.
const float intermediate_gamma = get_intermediate_gamma();
// Branch if beam_horiz_linear_rgb_weight is static (for free) or if the
// profile allows dynamic branches (faster than computing extra pows):
#ifndef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
#define SCANLINES_BRANCH_FOR_LINEAR_RGB_WEIGHT
#else
#ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES
#define SCANLINES_BRANCH_FOR_LINEAR_RGB_WEIGHT
#endif
#endif
#ifdef SCANLINES_BRANCH_FOR_LINEAR_RGB_WEIGHT
// beam_horiz_linear_rgb_weight is static, so we can branch:
#ifdef GAMMA_ENCODE_EVERY_FBO
const float3 gamma_mixed_color = pow(get_raw_interpolated_color(
color0, color1, color2, color3, weights), float3(intermediate_gamma));
if(beam_horiz_linear_rgb_weight > 0.0)
{
const float3 linear_mixed_color = get_raw_interpolated_color(
pow(color0, float3(intermediate_gamma)),
pow(color1, float3(intermediate_gamma)),
pow(color2, float3(intermediate_gamma)),
pow(color3, float3(intermediate_gamma)),
weights);
return lerp(gamma_mixed_color, linear_mixed_color,
beam_horiz_linear_rgb_weight);
}
else
{
return gamma_mixed_color;
}
#else
const float3 linear_mixed_color = get_raw_interpolated_color(
color0, color1, color2, color3, weights);
if(beam_horiz_linear_rgb_weight < 1.0)
{
const float3 gamma_mixed_color = get_raw_interpolated_color(
pow(color0, float3(1.0/intermediate_gamma)),
pow(color1, float3(1.0/intermediate_gamma)),
pow(color2, float3(1.0/intermediate_gamma)),
pow(color3, float3(1.0/intermediate_gamma)),
weights);
return lerp(gamma_mixed_color, linear_mixed_color,
beam_horiz_linear_rgb_weight);
}
else
{
return linear_mixed_color;
}
#endif // GAMMA_ENCODE_EVERY_FBO
#else
#ifdef GAMMA_ENCODE_EVERY_FBO
// Inputs: color0-3 are colors in gamma-encoded RGB.
const float3 gamma_mixed_color = pow(get_raw_interpolated_color(
color0, color1, color2, color3, weights), intermediate_gamma);
const float3 linear_mixed_color = get_raw_interpolated_color(
pow(color0, float3(intermediate_gamma)),
pow(color1, float3(intermediate_gamma)),
pow(color2, float3(intermediate_gamma)),
pow(color3, float3(intermediate_gamma)),
weights);
return lerp(gamma_mixed_color, linear_mixed_color,
beam_horiz_linear_rgb_weight);
#else
// Inputs: color0-3 are colors in linear RGB.
const float3 linear_mixed_color = get_raw_interpolated_color(
color0, color1, color2, color3, weights);
const float3 gamma_mixed_color = get_raw_interpolated_color(
pow(color0, float3(1.0/intermediate_gamma)),
pow(color1, float3(1.0/intermediate_gamma)),
pow(color2, float3(1.0/intermediate_gamma)),
pow(color3, float3(1.0/intermediate_gamma)),
weights);
// wtf fixme
// const float beam_horiz_linear_rgb_weight1 = 1.0;
return lerp(gamma_mixed_color, linear_mixed_color,
beam_horiz_linear_rgb_weight);
#endif // GAMMA_ENCODE_EVERY_FBO
#endif // SCANLINES_BRANCH_FOR_LINEAR_RGB_WEIGHT
}
float3 get_scanline_color(const sampler2D tex, const float2 scanline_uv,
const float2 uv_step_x, const float4 weights)
{
// Requires: 1.) scanline_uv must be vertically snapped to the caller's
// desired line or scanline and horizontally snapped to the
// texel just left of the output pixel (color1)
// 2.) uv_step_x must contain the horizontal uv distance
// between texels.
// 3.) weights must contain interpolation filter weights for
// color0, color1, color2, and color3, where color1 is just
// left of the output pixel.
// Returns: Return a horizontally interpolated texture lookup using 2-4
// nearby texels, according to weights and the conventions of
// get_interpolated_linear_color().
// We can ignore the outside texture lookups for Quilez resampling.
const float3 color1 = COMPAT_TEXTURE(tex, scanline_uv).rgb;
const float3 color2 = COMPAT_TEXTURE(tex, scanline_uv + uv_step_x).rgb;
float3 color0 = float3(0.0);
float3 color3 = float3(0.0);
if(beam_horiz_filter > 0.5)
{
color0 = COMPAT_TEXTURE(tex, scanline_uv - uv_step_x).rgb;
color3 = COMPAT_TEXTURE(tex, scanline_uv + 2.0 * uv_step_x).rgb;
}
// Sample the texture as-is, whether it's linear or gamma-encoded:
// get_interpolated_linear_color() will handle the difference.
return get_interpolated_linear_color(color0, color1, color2, color3, weights);
}
float3 sample_single_scanline_horizontal(const sampler2D tex,
const float2 tex_uv, const float2 tex_size,
const float2 texture_size_inv)
{
// TODO: Add function requirements.
// Snap to the previous texel and get sample dists from 2/4 nearby texels:
const float2 curr_texel = tex_uv * tex_size;
// Use under_half to fix a rounding bug right around exact texel locations.
const float2 prev_texel =
floor(curr_texel - float2(under_half)) + float2(0.5);
const float2 prev_texel_hor = float2(prev_texel.x, curr_texel.y);
const float2 prev_texel_hor_uv = prev_texel_hor * texture_size_inv;
const float prev_dist = curr_texel.x - prev_texel_hor.x;
const float4 sample_dists = float4(1.0 + prev_dist, prev_dist,
1.0 - prev_dist, 2.0 - prev_dist);
// Get Quilez, Lanczos2, or Gaussian resize weights for 2/4 nearby texels:
float4 weights;
if(beam_horiz_filter < 0.5)
{
// Quilez:
const float x = sample_dists.y;
const float w2 = x*x*x*(x*(x*6.0 - 15.0) + 10.0);
weights = float4(0.0, 1.0 - w2, w2, 0.0);
}
else if(beam_horiz_filter < 1.5)
{
// Gaussian:
float inner_denom_inv = 1.0/(2.0*beam_horiz_sigma*beam_horiz_sigma);
weights = exp(-(sample_dists*sample_dists)*inner_denom_inv);
}
else
{
// Lanczos2:
const float4 pi_dists = FIX_ZERO(sample_dists * pi);
weights = 2.0 * sin(pi_dists) * sin(pi_dists * 0.5) /
(pi_dists * pi_dists);
}
// Ensure the weight sum == 1.0:
const float4 final_weights = weights/dot(weights, float4(1.0));
// Get the interpolated horizontal scanline color:
const float2 uv_step_x = float2(texture_size_inv.x, 0.0);
return get_scanline_color(
tex, prev_texel_hor_uv, uv_step_x, final_weights);
}
float3 sample_rgb_scanline_horizontal(const sampler2D tex,
const float2 tex_uv, const float2 tex_size,
const float2 texture_size_inv)
{
// TODO: Add function requirements.
// Rely on a helper to make convergence easier.
if(beam_misconvergence)
{
const float3 convergence_offsets_rgb =
get_convergence_offsets_x_vector();
const float3 offset_u_rgb =
convergence_offsets_rgb * texture_size_inv.xxx;
const float2 scanline_uv_r = tex_uv - float2(offset_u_rgb.r, 0.0);
const float2 scanline_uv_g = tex_uv - float2(offset_u_rgb.g, 0.0);
const float2 scanline_uv_b = tex_uv - float2(offset_u_rgb.b, 0.0);
const float3 sample_r = sample_single_scanline_horizontal(
tex, scanline_uv_r, tex_size, texture_size_inv);
const float3 sample_g = sample_single_scanline_horizontal(
tex, scanline_uv_g, tex_size, texture_size_inv);
const float3 sample_b = sample_single_scanline_horizontal(
tex, scanline_uv_b, tex_size, texture_size_inv);
return float3(sample_r.r, sample_g.g, sample_b.b);
}
else
{
return sample_single_scanline_horizontal(tex, tex_uv, tex_size,
texture_size_inv);
}
}
float2 get_last_scanline_uv(const float2 tex_uv, const float2 tex_size,
const float2 texture_size_inv, const float2 il_step_multiple,
const float frame_count, out float dist)
{
// Compute texture coords for the last/upper scanline, accounting for
// interlacing: With interlacing, only consider even/odd scanlines every
// other frame. Top-field first (TFF) order puts even scanlines on even
// frames, and BFF order puts them on odd frames. Texels are centered at:
// frac(tex_uv * tex_size) == x.5
// Caution: If these coordinates ever seem incorrect, first make sure it's
// not because anisotropic filtering is blurring across field boundaries.
// Note: TFF/BFF won't matter for sources that double-weave or similar.
// wtf fixme
// const float interlace_bff1 = 1.0;
const float field_offset = floor(il_step_multiple.y * 0.75) *
fmod(frame_count + float(interlace_bff), 2.0);
const float2 curr_texel = tex_uv * tex_size;
// Use under_half to fix a rounding bug right around exact texel locations.
const float2 prev_texel_num = floor(curr_texel - float2(under_half));
const float wrong_field = fmod(
prev_texel_num.y + field_offset, il_step_multiple.y);
const float2 scanline_texel_num = prev_texel_num - float2(0.0, wrong_field);
// Snap to the center of the previous scanline in the current field:
const float2 scanline_texel = scanline_texel_num + float2(0.5);
const float2 scanline_uv = scanline_texel * texture_size_inv;
// Save the sample's distance from the scanline, in units of scanlines:
dist = (curr_texel.y - scanline_texel.y)/il_step_multiple.y;
return scanline_uv;
}
inline bool is_interlaced(float num_lines)
{
// Detect interlacing based on the number of lines in the source.
if(interlace_detect)
{
// NTSC: 525 lines, 262.5/field; 486 active (2 half-lines), 243/field
// NTSC Emulators: Typically 224 or 240 lines
// PAL: 625 lines, 312.5/field; 576 active (typical), 288/field
// PAL Emulators: ?
// ATSC: 720p, 1080i, 1080p
// Where do we place our cutoffs? Assumptions:
// 1.) We only need to care about active lines.
// 2.) Anything > 288 and <= 576 lines is probably interlaced.
// 3.) Anything > 576 lines is probably not interlaced...
// 4.) ...except 1080 lines, which is a crapshoot (user decision).
// 5.) Just in case the main program uses calculated video sizes,
// we should nudge the float thresholds a bit.
const bool sd_interlace = ((num_lines > 288.5) && (num_lines < 576.5));
const bool hd_interlace = bool(interlace_1080i) ?
((num_lines > 1079.5) && (num_lines < 1080.5)) :
false;
return (sd_interlace || hd_interlace);
}
else
{
return false;
}
}
#endif // SCANLINE_FUNCTIONS_H
///////////////////////////// END SCANLINE-FUNCTIONS ////////////////////////////
void main() {
gl_Position = position;
vTexCoord = texCoord;
uv_step = float2(1.0)/texture_size;
// Detect interlacing: 1.0 = true, 0.0 = false.
const float2 _video_size = video_size;
interlaced = float(is_interlaced(_video_size.y));
}