bsnes/nall/elliptic-curve/ed25519.hpp

165 lines
4.4 KiB
C++

#pragma once
#include <nall/hash/sha512.hpp>
#if defined(EC_REFERENCE)
#include <nall/elliptic-curve/modulo25519-reference.hpp>
#else
#include <nall/elliptic-curve/modulo25519.hpp>
#endif
namespace nall { namespace EllipticCurve {
struct Ed25519 {
Ed25519() {
field y = field(4) * field(5).reciprocal();
field x = recoverX(y);
point B{x, y, 1, x * y};
for(uint n : range(253)) {
Bscalar[n] = B;
B = edwardsDouble(B);
}
}
auto publicKey(uint256_t privateKey) const -> uint256_t {
auto H = uint512_t{Hash::SHA512(to_vector(privateKey)).output()};
auto a = clamp(H);
auto A = compress(scalarMultiplyB(modL(a)));
return A;
}
auto sign(const vector<uint8_t>& message, uint256_t privateKey) const -> uint512_t {
auto H = uint512_t{Hash::SHA512(to_vector(privateKey)).output()};
auto a = clamp(H);
auto A = compress(scalarMultiplyB(modL(a)));
Hash::SHA512 hash1;
hash1.input(to_vector(upper(H)));
hash1.input(message);
auto r = uint512_t{hash1.output()};
auto R = compress(scalarMultiplyB(modL(r)));
Hash::SHA512 hash2;
hash2.input(to_vector(R));
hash2.input(to_vector(A));
hash2.input(message);
uint512_t k = modL(uint512_t{hash2.output()});
uint256_t S = modL(k * a + r);
return uint512_t(S) << 256 | R;
}
auto verify(const vector<uint8_t>& message, uint512_t signature, uint256_t publicKey) const -> bool {
auto R = decompress(lower(signature));
auto A = decompress(publicKey);
if(!R || !A) return false;
uint256_t S = upper(signature);
Hash::SHA512 hash;
hash.input(to_vector(lower(signature)));
hash.input(to_vector(publicKey));
hash.input(message);
auto r = uint512_t{hash.output()};
auto p = scalarMultiplyB(modL(S));
auto q = edwardsAdd(R(), scalarMultiply(modL(r), A()));
if(!onCurve(p) || !onCurve(q)) return false;
if(p.x * q.z - q.x * p.z) return false;
if(p.y * q.z - q.y * p.z) return false;
return true;
}
private:
using field = Modulo25519;
struct point { field x, y, z, t; };
point Bscalar[253];
const field D = -field(121665) * field(121666).reciprocal();
inline auto clamp(uint256_t p) const -> uint256_t {
p &= ((0_u256 - 1) >> 2) - 7;
p |= 1_u256 << 254;
return p;
}
inline auto recoverX(field y) const -> field {
field y2 = y.square();
field x = ((y2 - 1) * (D * y2 + 1).reciprocal()).squareRoot();
return x() & 1 ? -x : x;
}
inline auto onCurve(point p) const -> bool {
if(!p.z) return false;
if(p.x * p.y != p.z * p.t) return false;
if(p.y.square() - p.x.square() - p.z.square() - p.t.square() * D) return false;
return true;
}
inline auto decompress(uint256_t c) const -> maybe<point> {
field y = c & (1_u256 << 255) - 1;
field x = recoverX(y);
if(c >> 255) x = -x;
point p{x, y, 1, x * y};
if(!onCurve(p)) return nothing;
return p;
}
inline auto compress(point p) const -> uint256_t {
field r = p.z.reciprocal();
field x = p.x * r;
field y = p.y * r;
return (x() & 1) << 255 | (y() & ((0_u256 - 1) >> 1));
}
inline auto edwardsDouble(point p) const -> point {
field a = p.x.square();
field b = p.y.square();
field c = p.z.square();
field d = -a;
field e = (p.x + p.y).square() - a - b;
field g = d + b;
field f = g - (c + c);
field h = d - b;
return {e * f, g * h, f * g, e * h};
}
inline auto edwardsAdd(point p, point q) const -> point {
field a = (p.y - p.x) * (q.y - q.x);
field b = (p.y + p.x) * (q.y + q.x);
field c = (p.t + p.t) * q.t * D;
field d = (p.z + p.z) * q.z;
field e = b - a;
field f = d - c;
field g = d + c;
field h = b + a;
return {e * f, g * h, f * g, e * h};
}
inline auto scalarMultiply(uint512_t e, point q) const -> point {
point p{0, 1, 1, 0}, c;
for(uint n : rrange(253)) {
p = edwardsDouble(p);
c = edwardsAdd(p, q);
bool bit = e >> n & 1;
cmove(bit, p.x, c.x);
cmove(bit, p.y, c.y);
cmove(bit, p.z, c.z);
cmove(bit, p.t, c.t);
}
return p;
}
inline auto scalarMultiplyB(uint512_t e) const -> point {
point p{0, 1, 1, 0}, c;
for(uint n : rrange(253)) {
bool bit = e >> n & 1;
c = edwardsAdd(p, Bscalar[n]);
cmove(bit, p.x, c.x);
cmove(bit, p.y, c.y);
cmove(bit, p.z, c.z);
cmove(bit, p.t, c.t);
}
return p;
}
};
}}