mirror of https://github.com/bsnes-emu/bsnes.git
5263 lines
287 KiB
GLSL
5263 lines
287 KiB
GLSL
#version 150
|
|
|
|
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
|
|
|
|
// crt-royale: A full-featured CRT shader, with cheese.
|
|
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
|
|
//
|
|
// This program is free software; you can redistribute it and/or modify it
|
|
// under the terms of the GNU General Public License as published by the Free
|
|
// Software Foundation; either version 2 of the License, or any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
// more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License along with
|
|
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
|
// Place, Suite 330, Boston, MA 02111-1307 USA
|
|
|
|
in vec4 position;
|
|
in vec2 texCoord;
|
|
|
|
out Vertex {
|
|
vec2 vTexCoord;
|
|
vec2 tex_uv;
|
|
vec4 video_and_texture_size_inv;
|
|
vec2 output_size_inv;
|
|
vec3 eye_pos_local;
|
|
vec4 geom_aspect_and_overscan;
|
|
vec3 global_to_local_row0;
|
|
vec3 global_to_local_row1;
|
|
vec3 global_to_local_row2;
|
|
};
|
|
|
|
uniform vec4 targetSize;
|
|
uniform vec4 sourceSize[];
|
|
|
|
// USER SETTINGS BLOCK //
|
|
|
|
#define crt_gamma 2.500000
|
|
#define lcd_gamma 2.200000
|
|
#define levels_contrast 1.0
|
|
#define halation_weight 0.0
|
|
#define diffusion_weight 0.075
|
|
#define bloom_underestimate_levels 0.8
|
|
#define bloom_excess 0.000000
|
|
#define beam_min_sigma 0.020000
|
|
#define beam_max_sigma 0.300000
|
|
#define beam_spot_power 0.330000
|
|
#define beam_min_shape 2.000000
|
|
#define beam_max_shape 4.000000
|
|
#define beam_shape_power 0.250000
|
|
#define beam_horiz_filter 0.000000
|
|
#define beam_horiz_sigma 0.35
|
|
#define beam_horiz_linear_rgb_weight 1.000000
|
|
#define convergence_offset_x_r -0.000000
|
|
#define convergence_offset_x_g 0.000000
|
|
#define convergence_offset_x_b 0.000000
|
|
#define convergence_offset_y_r 0.000000
|
|
#define convergence_offset_y_g -0.000000
|
|
#define convergence_offset_y_b 0.000000
|
|
#define mask_type 1.000000
|
|
#define mask_sample_mode_desired 0.000000
|
|
#define mask_specify_num_triads 0.000000
|
|
#define mask_triad_size_desired 3.000000
|
|
#define mask_num_triads_desired 480.000000
|
|
#define aa_subpixel_r_offset_x_runtime -0.0
|
|
#define aa_subpixel_r_offset_y_runtime 0.000000
|
|
#define aa_cubic_c 0.500000
|
|
#define aa_gauss_sigma 0.500000
|
|
#define geom_mode_runtime 0.000000
|
|
#define geom_radius 2.000000
|
|
#define geom_view_dist 2.000000
|
|
#define geom_tilt_angle_x 0.000000
|
|
#define geom_tilt_angle_y 0.000000
|
|
#define geom_aspect_ratio_x 432.000000
|
|
#define geom_aspect_ratio_y 329.000000
|
|
#define geom_overscan_x 1.000000
|
|
#define geom_overscan_y 1.000000
|
|
#define border_size 0.015
|
|
#define border_darkness 2.0
|
|
#define border_compress 2.500000
|
|
#define interlace_bff 0.000000
|
|
#define interlace_1080i 0.000000
|
|
|
|
// END USER SETTINGS BLOCK //
|
|
|
|
// compatibility macros for transparently converting HLSLisms into GLSLisms
|
|
#define mul(a,b) (b*a)
|
|
#define lerp(a,b,c) mix(a,b,c)
|
|
#define saturate(c) clamp(c, 0.0, 1.0)
|
|
#define frac(x) (fract(x))
|
|
#define float2 vec2
|
|
#define float3 vec3
|
|
#define float4 vec4
|
|
#define bool2 bvec2
|
|
#define bool3 bvec3
|
|
#define bool4 bvec4
|
|
#define float2x2 mat2x2
|
|
#define float3x3 mat3x3
|
|
#define float4x4 mat4x4
|
|
#define float4x3 mat4x3
|
|
#define float2x4 mat2x4
|
|
#define IN params
|
|
#define texture_size sourceSize[0].xy
|
|
#define video_size sourceSize[0].xy
|
|
#define output_size targetSize.xy
|
|
#define frame_count phase
|
|
#define static
|
|
#define inline
|
|
#define const
|
|
#define fmod(x,y) mod(x,y)
|
|
#define ddx(c) dFdx(c)
|
|
#define ddy(c) dFdy(c)
|
|
#define atan2(x,y) atan(x,y)
|
|
#define rsqrt(c) inversesqrt(c)
|
|
|
|
#if defined(GL_ES)
|
|
#define COMPAT_PRECISION mediump
|
|
#else
|
|
#define COMPAT_PRECISION
|
|
#endif
|
|
|
|
#if __VERSION__ >= 130
|
|
#define COMPAT_TEXTURE texture
|
|
#else
|
|
#define COMPAT_TEXTURE texture2D
|
|
#endif
|
|
|
|
///////////////////////////// SETTINGS MANAGEMENT ////////////////////////////
|
|
|
|
#define LAST_PASS
|
|
#define SIMULATE_CRT_ON_LCD
|
|
|
|
//#include "../user-settings.h"
|
|
|
|
///////////////////////////// BEGIN USER-SETTINGS ////////////////////////////
|
|
|
|
#ifndef USER_SETTINGS_H
|
|
#define USER_SETTINGS_H
|
|
|
|
///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
|
|
|
|
// The Cg compiler uses different "profiles" with different capabilities.
|
|
// This shader requires a Cg compilation profile >= arbfp1, but a few options
|
|
// require higher profiles like fp30 or fp40. The shader can't detect profile
|
|
// or driver capabilities, so instead you must comment or uncomment the lines
|
|
// below with "//" before "#define." Disable an option if you get compilation
|
|
// errors resembling those listed. Generally speaking, all of these options
|
|
// will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
|
|
// likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
|
|
|
|
// Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
|
|
// Among other things, derivatives help us fix anisotropic filtering artifacts
|
|
// with curved manually tiled phosphor mask coords. Related errors:
|
|
// error C3004: function "float2 ddx(float2);" not supported in this profile
|
|
// error C3004: function "float2 ddy(float2);" not supported in this profile
|
|
//#define DRIVERS_ALLOW_DERIVATIVES
|
|
|
|
// Fine derivatives: Unsupported on older ATI cards.
|
|
// Fine derivatives enable 2x2 fragment block communication, letting us perform
|
|
// fast single-pass blur operations. If your card uses coarse derivatives and
|
|
// these are enabled, blurs could look broken. Derivatives are a prerequisite.
|
|
#ifdef DRIVERS_ALLOW_DERIVATIVES
|
|
#define DRIVERS_ALLOW_FINE_DERIVATIVES
|
|
#endif
|
|
|
|
// Dynamic looping: Requires an fp30 or newer profile.
|
|
// This makes phosphor mask resampling faster in some cases. Related errors:
|
|
// error C5013: profile does not support "for" statements and "for" could not
|
|
// be unrolled
|
|
//#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
|
|
|
|
// Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
|
|
// Using one static loop avoids overhead if the user is right, but if the user
|
|
// is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
|
|
// binary search can potentially save some iterations. However, it may fail:
|
|
// error C6001: Temporary register limit of 32 exceeded; 35 registers
|
|
// needed to compile program
|
|
//#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
|
|
|
|
// tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
|
|
// anisotropic filtering, thereby fixing related artifacts. Related errors:
|
|
// error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
|
|
// this profile
|
|
//#define DRIVERS_ALLOW_TEX2DLOD
|
|
|
|
// tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
|
|
// artifacts from anisotropic filtering and mipmapping. Related errors:
|
|
// error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
|
|
// in this profile
|
|
//#define DRIVERS_ALLOW_TEX2DBIAS
|
|
|
|
// Integrated graphics compatibility: Integrated graphics like Intel HD 4000
|
|
// impose stricter limitations on register counts and instructions. Enable
|
|
// INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
|
|
// error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
|
|
// to compile program.
|
|
// Enabling integrated graphics compatibility mode will automatically disable:
|
|
// 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
|
|
// (This may be reenabled in a later release.)
|
|
// 2.) RUNTIME_GEOMETRY_MODE
|
|
// 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
|
|
//#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
|
|
|
|
|
|
//////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
|
|
|
|
// To disable a #define option, turn its line into a comment with "//."
|
|
|
|
// RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
|
|
// Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
|
|
// many of the options in this file and allow real-time tuning, but many of
|
|
// them are slower. Disabling them and using this text file will boost FPS.
|
|
#define RUNTIME_SHADER_PARAMS_ENABLE
|
|
// Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
|
|
// it's the only way to do a wide-enough full bloom with a runtime dot pitch.
|
|
#define RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
|
// Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
|
|
#define RUNTIME_ANTIALIAS_WEIGHTS
|
|
// Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
|
|
//#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
|
// Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
|
|
// parameters? This will require more math or dynamic branching.
|
|
#define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
|
// Specify the tilt at runtime? This makes things about 3% slower.
|
|
#define RUNTIME_GEOMETRY_TILT
|
|
// Specify the geometry mode at runtime?
|
|
#define RUNTIME_GEOMETRY_MODE
|
|
// Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
|
|
// mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
|
|
// dynamic branches? This is cheap if mask_resize_viewport_scale is small.
|
|
#define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
|
|
|
// PHOSPHOR MASK:
|
|
// Manually resize the phosphor mask for best results (slower)? Disabling this
|
|
// removes the option to do so, but it may be faster without dynamic branches.
|
|
#define PHOSPHOR_MASK_MANUALLY_RESIZE
|
|
// If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
|
|
#define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
|
|
// Larger blurs are expensive, but we need them to blur larger triads. We can
|
|
// detect the right blur if the triad size is static or our profile allows
|
|
// dynamic branches, but otherwise we use the largest blur the user indicates
|
|
// they might need:
|
|
#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
|
|
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
|
|
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
|
|
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
|
|
// Here's a helpful chart:
|
|
// MaxTriadSize BlurSize MinTriadCountsByResolution
|
|
// 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
|
// 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
|
// 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
|
// 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
|
// 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
|
|
|
|
|
/////////////////////////////// USER PARAMETERS //////////////////////////////
|
|
|
|
// Note: Many of these static parameters are overridden by runtime shader
|
|
// parameters when those are enabled. However, many others are static codepath
|
|
// options that were cleaner or more convert to code as static constants.
|
|
|
|
// GAMMA:
|
|
static const float crt_gamma_static = 2.5; // range [1, 5]
|
|
static const float lcd_gamma_static = 2.2; // range [1, 5]
|
|
|
|
// LEVELS MANAGEMENT:
|
|
// Control the final multiplicative image contrast:
|
|
static const float levels_contrast_static = 1.0; // range [0, 4)
|
|
// We auto-dim to avoid clipping between passes and restore brightness
|
|
// later. Control the dim factor here: Lower values clip less but crush
|
|
// blacks more (static only for now).
|
|
static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0
|
|
|
|
// HALATION/DIFFUSION/BLOOM:
|
|
// Halation weight: How much energy should be lost to electrons bounding
|
|
// around under the CRT glass and exciting random phosphors?
|
|
static const float halation_weight_static = 0.0; // range [0, 1]
|
|
// Refractive diffusion weight: How much light should spread/diffuse from
|
|
// refracting through the CRT glass?
|
|
static const float diffusion_weight_static = 0.075; // range [0, 1]
|
|
// Underestimate brightness: Bright areas bloom more, but we can base the
|
|
// bloom brightpass on a lower brightness to sharpen phosphors, or a higher
|
|
// brightness to soften them. Low values clip, but >= 0.8 looks okay.
|
|
static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
|
|
// Blur all colors more than necessary for a softer phosphor bloom?
|
|
static const float bloom_excess_static = 0.0; // range [0, 1]
|
|
// The BLOOM_APPROX pass approximates a phosphor blur early on with a small
|
|
// blurred resize of the input (convergence offsets are applied as well).
|
|
// There are three filter options (static option only for now):
|
|
// 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
|
|
// if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
|
|
// and beam_max_sigma is low.
|
|
// 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
|
|
// always uses a static sigma regardless of beam_max_sigma or
|
|
// mask_num_triads_desired.
|
|
// 2.) True 4x4 Gaussian resize: Slowest, technically correct.
|
|
// These options are more pronounced for the fast, unbloomed shader version.
|
|
#ifndef RADEON_FIX
|
|
static const float bloom_approx_filter_static = 2.0;
|
|
#else
|
|
static const float bloom_approx_filter_static = 1.0;
|
|
#endif
|
|
|
|
// ELECTRON BEAM SCANLINE DISTRIBUTION:
|
|
// How many scanlines should contribute light to each pixel? Using more
|
|
// scanlines is slower (especially for a generalized Gaussian) but less
|
|
// distorted with larger beam sigmas (especially for a pure Gaussian). The
|
|
// max_beam_sigma at which the closest unused weight is guaranteed <
|
|
// 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
|
|
// 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
|
|
// 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
|
|
// 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
|
|
// 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
|
|
// 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
|
|
static const float beam_num_scanlines = 3.0; // range [2, 6]
|
|
// A generalized Gaussian beam varies shape with color too, now just width.
|
|
// It's slower but more flexible (static option only for now).
|
|
static const bool beam_generalized_gaussian = true;
|
|
// What kind of scanline antialiasing do you want?
|
|
// 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
|
|
// Integrals are slow (especially for generalized Gaussians) and rarely any
|
|
// better than 3x antialiasing (static option only for now).
|
|
static const float beam_antialias_level = 1.0; // range [0, 2]
|
|
// Min/max standard deviations for scanline beams: Higher values widen and
|
|
// soften scanlines. Depending on other options, low min sigmas can alias.
|
|
static const float beam_min_sigma_static = 0.02; // range (0, 1]
|
|
static const float beam_max_sigma_static = 0.3; // range (0, 1]
|
|
// Beam width varies as a function of color: A power function (0) is more
|
|
// configurable, but a spherical function (1) gives the widest beam
|
|
// variability without aliasing (static option only for now).
|
|
static const float beam_spot_shape_function = 0.0;
|
|
// Spot shape power: Powers <= 1 give smoother spot shapes but lower
|
|
// sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
|
|
static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
|
|
// Generalized Gaussian max shape parameters: Higher values give flatter
|
|
// scanline plateaus and steeper dropoffs, simultaneously widening and
|
|
// sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
|
|
// values > ~40.0 cause artifacts with integrals.
|
|
static const float beam_min_shape_static = 2.0; // range [2, 32]
|
|
static const float beam_max_shape_static = 4.0; // range [2, 32]
|
|
// Generalized Gaussian shape power: Affects how quickly the distribution
|
|
// changes shape from Gaussian to steep/plateaued as color increases from 0
|
|
// to 1.0. Higher powers appear softer for most colors, and lower powers
|
|
// appear sharper for most colors.
|
|
static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
|
|
// What filter should be used to sample scanlines horizontally?
|
|
// 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
|
|
static const float beam_horiz_filter_static = 0.0;
|
|
// Standard deviation for horizontal Gaussian resampling:
|
|
static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
|
|
// Do horizontal scanline sampling in linear RGB (correct light mixing),
|
|
// gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
|
|
// limiting circuitry in some CRT's), or a weighted avg.?
|
|
static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
|
|
// Simulate scanline misconvergence? This needs 3x horizontal texture
|
|
// samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
|
|
// later passes (static option only for now).
|
|
static const bool beam_misconvergence = true;
|
|
// Convergence offsets in x/y directions for R/G/B scanline beams in units
|
|
// of scanlines. Positive offsets go right/down; ranges [-2, 2]
|
|
static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
|
|
static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
|
|
static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
|
|
// Detect interlacing (static option only for now)?
|
|
static const bool interlace_detect = true;
|
|
// Assume 1080-line sources are interlaced?
|
|
static const bool interlace_1080i_static = false;
|
|
// For interlaced sources, assume TFF (top-field first) or BFF order?
|
|
// (Whether this matters depends on the nature of the interlaced input.)
|
|
static const bool interlace_bff_static = false;
|
|
|
|
// ANTIALIASING:
|
|
// What AA level do you want for curvature/overscan/subpixels? Options:
|
|
// 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
|
|
// (Static option only for now)
|
|
static const float aa_level = 12.0; // range [0, 24]
|
|
// What antialiasing filter do you want (static option only)? Options:
|
|
// 0: Box (separable), 1: Box (cylindrical),
|
|
// 2: Tent (separable), 3: Tent (cylindrical),
|
|
// 4: Gaussian (separable), 5: Gaussian (cylindrical),
|
|
// 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
|
|
// 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
|
|
// * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
|
|
static const float aa_filter = 6.0; // range [0, 9]
|
|
// Flip the sample grid on odd/even frames (static option only for now)?
|
|
static const bool aa_temporal = false;
|
|
// Use RGB subpixel offsets for antialiasing? The pixel is at green, and
|
|
// the blue offset is the negative r offset; range [0, 0.5]
|
|
static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
|
|
// Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
|
|
// 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
|
|
// 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
|
|
// 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
|
|
// 4.) C = 0.0 is a soft spline filter.
|
|
static const float aa_cubic_c_static = 0.5; // range [0, 4]
|
|
// Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
|
|
static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
|
|
|
|
// PHOSPHOR MASK:
|
|
// Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
|
|
static const float mask_type_static = 1.0; // range [0, 2]
|
|
// We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
|
|
// 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
|
|
// This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
|
|
// 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
|
|
// is halfway decent with LUT mipmapping but atrocious without it.
|
|
// 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
|
|
// (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
|
|
// This mode reuses the same masks, so triads will be enormous unless
|
|
// you change the mask LUT filenames in your .cgp file.
|
|
static const float mask_sample_mode_static = 0.0; // range [0, 2]
|
|
// Prefer setting the triad size (0.0) or number on the screen (1.0)?
|
|
// If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
|
|
// will always be used to calculate the full bloom sigma statically.
|
|
static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
|
|
// Specify the phosphor triad size, in pixels. Each tile (usually with 8
|
|
// triads) will be rounded to the nearest integer tile size and clamped to
|
|
// obey minimum size constraints (imposed to reduce downsize taps) and
|
|
// maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
|
|
// To increase the size limit, double the viewport-relative scales for the
|
|
// two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
|
|
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
|
static const float mask_triad_size_desired_static = 24.0 / 8.0;
|
|
// If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
|
|
// final size will be rounded and constrained as above); default 480.0
|
|
static const float mask_num_triads_desired_static = 480.0;
|
|
// How many lobes should the sinc/Lanczos resizer use? More lobes require
|
|
// more samples and avoid moire a bit better, but some is unavoidable
|
|
// depending on the destination size (static option for now).
|
|
static const float mask_sinc_lobes = 3.0; // range [2, 4]
|
|
// The mask is resized using a variable number of taps in each dimension,
|
|
// but some Cg profiles always fetch a constant number of taps no matter
|
|
// what (no dynamic branching). We can limit the maximum number of taps if
|
|
// we statically limit the minimum phosphor triad size. Larger values are
|
|
// faster, but the limit IS enforced (static option only, forever);
|
|
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
|
// TODO: Make this 1.0 and compensate with smarter sampling!
|
|
static const float mask_min_allowed_triad_size = 2.0;
|
|
|
|
// GEOMETRY:
|
|
// Geometry mode:
|
|
// 0: Off (default), 1: Spherical mapping (like cgwg's),
|
|
// 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
|
|
static const float geom_mode_static = 0.0; // range [0, 3]
|
|
// Radius of curvature: Measured in units of your viewport's diagonal size.
|
|
static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
|
|
// View dist is the distance from the player to their physical screen, in
|
|
// units of the viewport's diagonal size. It controls the field of view.
|
|
static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
|
|
// Tilt angle in radians (clockwise around up and right vectors):
|
|
static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
|
|
// Aspect ratio: When the true viewport size is unknown, this value is used
|
|
// to help convert between the phosphor triad size and count, along with
|
|
// the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
|
|
// this equal to Retroarch's display aspect ratio (DAR) for best results;
|
|
// range [1, geom_max_aspect_ratio from user-cgp-constants.h];
|
|
// default (256/224)*(54/47) = 1.313069909 (see below)
|
|
static const float geom_aspect_ratio_static = 1.313069909;
|
|
// Before getting into overscan, here's some general aspect ratio info:
|
|
// - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
|
|
// - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
|
|
// - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
|
|
// Geometry processing has to "undo" the screen-space 2D DAR to calculate
|
|
// 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
|
|
// uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
|
|
// a.) Enable Retroarch's "Crop Overscan"
|
|
// b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
|
|
// Real consoles use horizontal black padding in the signal, but emulators
|
|
// often crop this without cropping the vertical padding; a 256x224 [S]NES
|
|
// frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
|
|
// The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
|
|
// http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
|
|
// http://forums.nesdev.com/viewtopic.php?p=24815#p24815
|
|
// For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
|
|
// without doing a. or b., but horizontal image borders will be tighter
|
|
// than vertical ones, messing up curvature and overscan. Fixing the
|
|
// padding first corrects this.
|
|
// Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
|
|
// or adjust x/y independently to e.g. readd horizontal padding, as noted
|
|
// above: Values < 1.0 zoom out; range (0, inf)
|
|
static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
|
|
// Compute a proper pixel-space to texture-space matrix even without ddx()/
|
|
// ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
|
|
// with strong curvature (static option only for now).
|
|
static const bool geom_force_correct_tangent_matrix = true;
|
|
|
|
// BORDERS:
|
|
// Rounded border size in texture uv coords:
|
|
static const float border_size_static = 0.015; // range [0, 0.5]
|
|
// Border darkness: Moderate values darken the border smoothly, and high
|
|
// values make the image very dark just inside the border:
|
|
static const float border_darkness_static = 2.0; // range [0, inf)
|
|
// Border compression: High numbers compress border transitions, narrowing
|
|
// the dark border area.
|
|
static const float border_compress_static = 2.5; // range [1, inf)
|
|
|
|
|
|
#endif // USER_SETTINGS_H
|
|
|
|
//////////////////////////// END USER-SETTINGS //////////////////////////
|
|
|
|
//#include "derived-settings-and-constants.h"
|
|
|
|
//////////////////// BEGIN DERIVED-SETTINGS-AND-CONSTANTS ////////////////////
|
|
|
|
#ifndef DERIVED_SETTINGS_AND_CONSTANTS_H
|
|
#define DERIVED_SETTINGS_AND_CONSTANTS_H
|
|
|
|
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
|
|
|
|
// crt-royale: A full-featured CRT shader, with cheese.
|
|
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
|
|
//
|
|
// This program is free software; you can redistribute it and/or modify it
|
|
// under the terms of the GNU General Public License as published by the Free
|
|
// Software Foundation; either version 2 of the License, or any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
// more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License along with
|
|
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
|
// Place, Suite 330, Boston, MA 02111-1307 USA
|
|
|
|
|
|
///////////////////////////////// DESCRIPTION ////////////////////////////////
|
|
|
|
// These macros and constants can be used across the whole codebase.
|
|
// Unlike the values in user-settings.cgh, end users shouldn't modify these.
|
|
|
|
|
|
/////////////////////////////// BEGIN INCLUDES ///////////////////////////////
|
|
|
|
//#include "../user-settings.h"
|
|
|
|
///////////////////////////// BEGIN USER-SETTINGS ////////////////////////////
|
|
|
|
#ifndef USER_SETTINGS_H
|
|
#define USER_SETTINGS_H
|
|
|
|
///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
|
|
|
|
// The Cg compiler uses different "profiles" with different capabilities.
|
|
// This shader requires a Cg compilation profile >= arbfp1, but a few options
|
|
// require higher profiles like fp30 or fp40. The shader can't detect profile
|
|
// or driver capabilities, so instead you must comment or uncomment the lines
|
|
// below with "//" before "#define." Disable an option if you get compilation
|
|
// errors resembling those listed. Generally speaking, all of these options
|
|
// will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
|
|
// likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
|
|
|
|
// Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
|
|
// Among other things, derivatives help us fix anisotropic filtering artifacts
|
|
// with curved manually tiled phosphor mask coords. Related errors:
|
|
// error C3004: function "float2 ddx(float2);" not supported in this profile
|
|
// error C3004: function "float2 ddy(float2);" not supported in this profile
|
|
//#define DRIVERS_ALLOW_DERIVATIVES
|
|
|
|
// Fine derivatives: Unsupported on older ATI cards.
|
|
// Fine derivatives enable 2x2 fragment block communication, letting us perform
|
|
// fast single-pass blur operations. If your card uses coarse derivatives and
|
|
// these are enabled, blurs could look broken. Derivatives are a prerequisite.
|
|
#ifdef DRIVERS_ALLOW_DERIVATIVES
|
|
#define DRIVERS_ALLOW_FINE_DERIVATIVES
|
|
#endif
|
|
|
|
// Dynamic looping: Requires an fp30 or newer profile.
|
|
// This makes phosphor mask resampling faster in some cases. Related errors:
|
|
// error C5013: profile does not support "for" statements and "for" could not
|
|
// be unrolled
|
|
//#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
|
|
|
|
// Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
|
|
// Using one static loop avoids overhead if the user is right, but if the user
|
|
// is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
|
|
// binary search can potentially save some iterations. However, it may fail:
|
|
// error C6001: Temporary register limit of 32 exceeded; 35 registers
|
|
// needed to compile program
|
|
//#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
|
|
|
|
// tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
|
|
// anisotropic filtering, thereby fixing related artifacts. Related errors:
|
|
// error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
|
|
// this profile
|
|
//#define DRIVERS_ALLOW_TEX2DLOD
|
|
|
|
// tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
|
|
// artifacts from anisotropic filtering and mipmapping. Related errors:
|
|
// error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
|
|
// in this profile
|
|
//#define DRIVERS_ALLOW_TEX2DBIAS
|
|
|
|
// Integrated graphics compatibility: Integrated graphics like Intel HD 4000
|
|
// impose stricter limitations on register counts and instructions. Enable
|
|
// INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
|
|
// error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
|
|
// to compile program.
|
|
// Enabling integrated graphics compatibility mode will automatically disable:
|
|
// 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
|
|
// (This may be reenabled in a later release.)
|
|
// 2.) RUNTIME_GEOMETRY_MODE
|
|
// 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
|
|
//#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
|
|
|
|
|
|
//////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
|
|
|
|
// To disable a #define option, turn its line into a comment with "//."
|
|
|
|
// RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
|
|
// Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
|
|
// many of the options in this file and allow real-time tuning, but many of
|
|
// them are slower. Disabling them and using this text file will boost FPS.
|
|
#define RUNTIME_SHADER_PARAMS_ENABLE
|
|
// Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
|
|
// it's the only way to do a wide-enough full bloom with a runtime dot pitch.
|
|
#define RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
|
// Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
|
|
#define RUNTIME_ANTIALIAS_WEIGHTS
|
|
// Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
|
|
//#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
|
// Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
|
|
// parameters? This will require more math or dynamic branching.
|
|
#define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
|
// Specify the tilt at runtime? This makes things about 3% slower.
|
|
#define RUNTIME_GEOMETRY_TILT
|
|
// Specify the geometry mode at runtime?
|
|
#define RUNTIME_GEOMETRY_MODE
|
|
// Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
|
|
// mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
|
|
// dynamic branches? This is cheap if mask_resize_viewport_scale is small.
|
|
#define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
|
|
|
// PHOSPHOR MASK:
|
|
// Manually resize the phosphor mask for best results (slower)? Disabling this
|
|
// removes the option to do so, but it may be faster without dynamic branches.
|
|
#define PHOSPHOR_MASK_MANUALLY_RESIZE
|
|
// If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
|
|
#define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
|
|
// Larger blurs are expensive, but we need them to blur larger triads. We can
|
|
// detect the right blur if the triad size is static or our profile allows
|
|
// dynamic branches, but otherwise we use the largest blur the user indicates
|
|
// they might need:
|
|
#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
|
|
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
|
|
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
|
|
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
|
|
// Here's a helpful chart:
|
|
// MaxTriadSize BlurSize MinTriadCountsByResolution
|
|
// 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
|
// 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
|
// 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
|
// 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
|
// 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
|
|
|
|
|
/////////////////////////////// USER PARAMETERS //////////////////////////////
|
|
|
|
// Note: Many of these static parameters are overridden by runtime shader
|
|
// parameters when those are enabled. However, many others are static codepath
|
|
// options that were cleaner or more convert to code as static constants.
|
|
|
|
// GAMMA:
|
|
static const float crt_gamma_static = 2.5; // range [1, 5]
|
|
static const float lcd_gamma_static = 2.2; // range [1, 5]
|
|
|
|
// LEVELS MANAGEMENT:
|
|
// Control the final multiplicative image contrast:
|
|
static const float levels_contrast_static = 1.0; // range [0, 4)
|
|
// We auto-dim to avoid clipping between passes and restore brightness
|
|
// later. Control the dim factor here: Lower values clip less but crush
|
|
// blacks more (static only for now).
|
|
static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0
|
|
|
|
// HALATION/DIFFUSION/BLOOM:
|
|
// Halation weight: How much energy should be lost to electrons bounding
|
|
// around under the CRT glass and exciting random phosphors?
|
|
static const float halation_weight_static = 0.0; // range [0, 1]
|
|
// Refractive diffusion weight: How much light should spread/diffuse from
|
|
// refracting through the CRT glass?
|
|
static const float diffusion_weight_static = 0.075; // range [0, 1]
|
|
// Underestimate brightness: Bright areas bloom more, but we can base the
|
|
// bloom brightpass on a lower brightness to sharpen phosphors, or a higher
|
|
// brightness to soften them. Low values clip, but >= 0.8 looks okay.
|
|
static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
|
|
// Blur all colors more than necessary for a softer phosphor bloom?
|
|
static const float bloom_excess_static = 0.0; // range [0, 1]
|
|
// The BLOOM_APPROX pass approximates a phosphor blur early on with a small
|
|
// blurred resize of the input (convergence offsets are applied as well).
|
|
// There are three filter options (static option only for now):
|
|
// 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
|
|
// if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
|
|
// and beam_max_sigma is low.
|
|
// 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
|
|
// always uses a static sigma regardless of beam_max_sigma or
|
|
// mask_num_triads_desired.
|
|
// 2.) True 4x4 Gaussian resize: Slowest, technically correct.
|
|
// These options are more pronounced for the fast, unbloomed shader version.
|
|
#ifndef RADEON_FIX
|
|
static const float bloom_approx_filter_static = 2.0;
|
|
#else
|
|
static const float bloom_approx_filter_static = 1.0;
|
|
#endif
|
|
|
|
// ELECTRON BEAM SCANLINE DISTRIBUTION:
|
|
// How many scanlines should contribute light to each pixel? Using more
|
|
// scanlines is slower (especially for a generalized Gaussian) but less
|
|
// distorted with larger beam sigmas (especially for a pure Gaussian). The
|
|
// max_beam_sigma at which the closest unused weight is guaranteed <
|
|
// 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
|
|
// 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
|
|
// 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
|
|
// 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
|
|
// 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
|
|
// 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
|
|
static const float beam_num_scanlines = 3.0; // range [2, 6]
|
|
// A generalized Gaussian beam varies shape with color too, now just width.
|
|
// It's slower but more flexible (static option only for now).
|
|
static const bool beam_generalized_gaussian = true;
|
|
// What kind of scanline antialiasing do you want?
|
|
// 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
|
|
// Integrals are slow (especially for generalized Gaussians) and rarely any
|
|
// better than 3x antialiasing (static option only for now).
|
|
static const float beam_antialias_level = 1.0; // range [0, 2]
|
|
// Min/max standard deviations for scanline beams: Higher values widen and
|
|
// soften scanlines. Depending on other options, low min sigmas can alias.
|
|
static const float beam_min_sigma_static = 0.02; // range (0, 1]
|
|
static const float beam_max_sigma_static = 0.3; // range (0, 1]
|
|
// Beam width varies as a function of color: A power function (0) is more
|
|
// configurable, but a spherical function (1) gives the widest beam
|
|
// variability without aliasing (static option only for now).
|
|
static const float beam_spot_shape_function = 0.0;
|
|
// Spot shape power: Powers <= 1 give smoother spot shapes but lower
|
|
// sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
|
|
static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
|
|
// Generalized Gaussian max shape parameters: Higher values give flatter
|
|
// scanline plateaus and steeper dropoffs, simultaneously widening and
|
|
// sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
|
|
// values > ~40.0 cause artifacts with integrals.
|
|
static const float beam_min_shape_static = 2.0; // range [2, 32]
|
|
static const float beam_max_shape_static = 4.0; // range [2, 32]
|
|
// Generalized Gaussian shape power: Affects how quickly the distribution
|
|
// changes shape from Gaussian to steep/plateaued as color increases from 0
|
|
// to 1.0. Higher powers appear softer for most colors, and lower powers
|
|
// appear sharper for most colors.
|
|
static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
|
|
// What filter should be used to sample scanlines horizontally?
|
|
// 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
|
|
static const float beam_horiz_filter_static = 0.0;
|
|
// Standard deviation for horizontal Gaussian resampling:
|
|
static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
|
|
// Do horizontal scanline sampling in linear RGB (correct light mixing),
|
|
// gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
|
|
// limiting circuitry in some CRT's), or a weighted avg.?
|
|
static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
|
|
// Simulate scanline misconvergence? This needs 3x horizontal texture
|
|
// samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
|
|
// later passes (static option only for now).
|
|
static const bool beam_misconvergence = true;
|
|
// Convergence offsets in x/y directions for R/G/B scanline beams in units
|
|
// of scanlines. Positive offsets go right/down; ranges [-2, 2]
|
|
static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
|
|
static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
|
|
static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
|
|
// Detect interlacing (static option only for now)?
|
|
static const bool interlace_detect = true;
|
|
// Assume 1080-line sources are interlaced?
|
|
static const bool interlace_1080i_static = false;
|
|
// For interlaced sources, assume TFF (top-field first) or BFF order?
|
|
// (Whether this matters depends on the nature of the interlaced input.)
|
|
static const bool interlace_bff_static = false;
|
|
|
|
// ANTIALIASING:
|
|
// What AA level do you want for curvature/overscan/subpixels? Options:
|
|
// 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
|
|
// (Static option only for now)
|
|
static const float aa_level = 12.0; // range [0, 24]
|
|
// What antialiasing filter do you want (static option only)? Options:
|
|
// 0: Box (separable), 1: Box (cylindrical),
|
|
// 2: Tent (separable), 3: Tent (cylindrical),
|
|
// 4: Gaussian (separable), 5: Gaussian (cylindrical),
|
|
// 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
|
|
// 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
|
|
// * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
|
|
static const float aa_filter = 6.0; // range [0, 9]
|
|
// Flip the sample grid on odd/even frames (static option only for now)?
|
|
static const bool aa_temporal = false;
|
|
// Use RGB subpixel offsets for antialiasing? The pixel is at green, and
|
|
// the blue offset is the negative r offset; range [0, 0.5]
|
|
static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
|
|
// Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
|
|
// 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
|
|
// 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
|
|
// 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
|
|
// 4.) C = 0.0 is a soft spline filter.
|
|
static const float aa_cubic_c_static = 0.5; // range [0, 4]
|
|
// Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
|
|
static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
|
|
|
|
// PHOSPHOR MASK:
|
|
// Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
|
|
static const float mask_type_static = 1.0; // range [0, 2]
|
|
// We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
|
|
// 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
|
|
// This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
|
|
// 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
|
|
// is halfway decent with LUT mipmapping but atrocious without it.
|
|
// 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
|
|
// (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
|
|
// This mode reuses the same masks, so triads will be enormous unless
|
|
// you change the mask LUT filenames in your .cgp file.
|
|
static const float mask_sample_mode_static = 0.0; // range [0, 2]
|
|
// Prefer setting the triad size (0.0) or number on the screen (1.0)?
|
|
// If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
|
|
// will always be used to calculate the full bloom sigma statically.
|
|
static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
|
|
// Specify the phosphor triad size, in pixels. Each tile (usually with 8
|
|
// triads) will be rounded to the nearest integer tile size and clamped to
|
|
// obey minimum size constraints (imposed to reduce downsize taps) and
|
|
// maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
|
|
// To increase the size limit, double the viewport-relative scales for the
|
|
// two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
|
|
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
|
static const float mask_triad_size_desired_static = 24.0 / 8.0;
|
|
// If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
|
|
// final size will be rounded and constrained as above); default 480.0
|
|
static const float mask_num_triads_desired_static = 480.0;
|
|
// How many lobes should the sinc/Lanczos resizer use? More lobes require
|
|
// more samples and avoid moire a bit better, but some is unavoidable
|
|
// depending on the destination size (static option for now).
|
|
static const float mask_sinc_lobes = 3.0; // range [2, 4]
|
|
// The mask is resized using a variable number of taps in each dimension,
|
|
// but some Cg profiles always fetch a constant number of taps no matter
|
|
// what (no dynamic branching). We can limit the maximum number of taps if
|
|
// we statically limit the minimum phosphor triad size. Larger values are
|
|
// faster, but the limit IS enforced (static option only, forever);
|
|
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
|
// TODO: Make this 1.0 and compensate with smarter sampling!
|
|
static const float mask_min_allowed_triad_size = 2.0;
|
|
|
|
// GEOMETRY:
|
|
// Geometry mode:
|
|
// 0: Off (default), 1: Spherical mapping (like cgwg's),
|
|
// 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
|
|
static const float geom_mode_static = 0.0; // range [0, 3]
|
|
// Radius of curvature: Measured in units of your viewport's diagonal size.
|
|
static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
|
|
// View dist is the distance from the player to their physical screen, in
|
|
// units of the viewport's diagonal size. It controls the field of view.
|
|
static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
|
|
// Tilt angle in radians (clockwise around up and right vectors):
|
|
static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
|
|
// Aspect ratio: When the true viewport size is unknown, this value is used
|
|
// to help convert between the phosphor triad size and count, along with
|
|
// the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
|
|
// this equal to Retroarch's display aspect ratio (DAR) for best results;
|
|
// range [1, geom_max_aspect_ratio from user-cgp-constants.h];
|
|
// default (256/224)*(54/47) = 1.313069909 (see below)
|
|
static const float geom_aspect_ratio_static = 1.313069909;
|
|
// Before getting into overscan, here's some general aspect ratio info:
|
|
// - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
|
|
// - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
|
|
// - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
|
|
// Geometry processing has to "undo" the screen-space 2D DAR to calculate
|
|
// 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
|
|
// uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
|
|
// a.) Enable Retroarch's "Crop Overscan"
|
|
// b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
|
|
// Real consoles use horizontal black padding in the signal, but emulators
|
|
// often crop this without cropping the vertical padding; a 256x224 [S]NES
|
|
// frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
|
|
// The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
|
|
// http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
|
|
// http://forums.nesdev.com/viewtopic.php?p=24815#p24815
|
|
// For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
|
|
// without doing a. or b., but horizontal image borders will be tighter
|
|
// than vertical ones, messing up curvature and overscan. Fixing the
|
|
// padding first corrects this.
|
|
// Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
|
|
// or adjust x/y independently to e.g. readd horizontal padding, as noted
|
|
// above: Values < 1.0 zoom out; range (0, inf)
|
|
static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
|
|
// Compute a proper pixel-space to texture-space matrix even without ddx()/
|
|
// ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
|
|
// with strong curvature (static option only for now).
|
|
static const bool geom_force_correct_tangent_matrix = true;
|
|
|
|
// BORDERS:
|
|
// Rounded border size in texture uv coords:
|
|
static const float border_size_static = 0.015; // range [0, 0.5]
|
|
// Border darkness: Moderate values darken the border smoothly, and high
|
|
// values make the image very dark just inside the border:
|
|
static const float border_darkness_static = 2.0; // range [0, inf)
|
|
// Border compression: High numbers compress border transitions, narrowing
|
|
// the dark border area.
|
|
static const float border_compress_static = 2.5; // range [1, inf)
|
|
|
|
|
|
#endif // USER_SETTINGS_H
|
|
|
|
///////////////////////////// END USER-SETTINGS ////////////////////////////
|
|
|
|
//#include "user-cgp-constants.h"
|
|
|
|
///////////////////////// BEGIN USER-CGP-CONSTANTS /////////////////////////
|
|
|
|
#ifndef USER_CGP_CONSTANTS_H
|
|
#define USER_CGP_CONSTANTS_H
|
|
|
|
// IMPORTANT:
|
|
// These constants MUST be set appropriately for the settings in crt-royale.cgp
|
|
// (or whatever related .cgp file you're using). If they aren't, you're likely
|
|
// to get artifacts, the wrong phosphor mask size, etc. I wish these could be
|
|
// set directly in the .cgp file to make things easier, but...they can't.
|
|
|
|
// PASS SCALES AND RELATED CONSTANTS:
|
|
// Copy the absolute scale_x for BLOOM_APPROX. There are two major versions of
|
|
// this shader: One does a viewport-scale bloom, and the other skips it. The
|
|
// latter benefits from a higher bloom_approx_scale_x, so save both separately:
|
|
static const float bloom_approx_size_x = 320.0;
|
|
static const float bloom_approx_size_x_for_fake = 400.0;
|
|
// Copy the viewport-relative scales of the phosphor mask resize passes
|
|
// (MASK_RESIZE and the pass immediately preceding it):
|
|
static const float2 mask_resize_viewport_scale = float2(0.0625, 0.0625);
|
|
// Copy the geom_max_aspect_ratio used to calculate the MASK_RESIZE scales, etc.:
|
|
static const float geom_max_aspect_ratio = 4.0/3.0;
|
|
|
|
// PHOSPHOR MASK TEXTURE CONSTANTS:
|
|
// Set the following constants to reflect the properties of the phosphor mask
|
|
// texture named in crt-royale.cgp. The shader optionally resizes a mask tile
|
|
// based on user settings, then repeats a single tile until filling the screen.
|
|
// The shader must know the input texture size (default 64x64), and to manually
|
|
// resize, it must also know the horizontal triads per tile (default 8).
|
|
static const float2 mask_texture_small_size = float2(64.0, 64.0);
|
|
static const float2 mask_texture_large_size = float2(512.0, 512.0);
|
|
static const float mask_triads_per_tile = 8.0;
|
|
// We need the average brightness of the phosphor mask to compensate for the
|
|
// dimming it causes. The following four values are roughly correct for the
|
|
// masks included with the shader. Update the value for any LUT texture you
|
|
// change. [Un]comment "#define PHOSPHOR_MASK_GRILLE14" depending on whether
|
|
// the loaded aperture grille uses 14-pixel or 15-pixel stripes (default 15).
|
|
//#define PHOSPHOR_MASK_GRILLE14
|
|
static const float mask_grille14_avg_color = 50.6666666/255.0;
|
|
// TileableLinearApertureGrille14Wide7d33Spacing*.png
|
|
// TileableLinearApertureGrille14Wide10And6Spacing*.png
|
|
static const float mask_grille15_avg_color = 53.0/255.0;
|
|
// TileableLinearApertureGrille15Wide6d33Spacing*.png
|
|
// TileableLinearApertureGrille15Wide8And5d5Spacing*.png
|
|
static const float mask_slot_avg_color = 46.0/255.0;
|
|
// TileableLinearSlotMask15Wide9And4d5Horizontal8VerticalSpacing*.png
|
|
// TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacing*.png
|
|
static const float mask_shadow_avg_color = 41.0/255.0;
|
|
// TileableLinearShadowMask*.png
|
|
// TileableLinearShadowMaskEDP*.png
|
|
|
|
#ifdef PHOSPHOR_MASK_GRILLE14
|
|
static const float mask_grille_avg_color = mask_grille14_avg_color;
|
|
#else
|
|
static const float mask_grille_avg_color = mask_grille15_avg_color;
|
|
#endif
|
|
|
|
|
|
#endif // USER_CGP_CONSTANTS_H
|
|
|
|
////////////////////////// END USER-CGP-CONSTANTS //////////////////////////
|
|
|
|
//////////////////////////////// END INCLUDES ////////////////////////////////
|
|
|
|
/////////////////////////////// FIXED SETTINGS ///////////////////////////////
|
|
|
|
// Avoid dividing by zero; using a macro overloads for float, float2, etc.:
|
|
#define FIX_ZERO(c) (max(abs(c), 0.0000152587890625)) // 2^-16
|
|
|
|
// Ensure the first pass decodes CRT gamma and the last encodes LCD gamma.
|
|
#ifndef SIMULATE_CRT_ON_LCD
|
|
#define SIMULATE_CRT_ON_LCD
|
|
#endif
|
|
|
|
// Manually tiling a manually resized texture creates texture coord derivative
|
|
// discontinuities and confuses anisotropic filtering, causing discolored tile
|
|
// seams in the phosphor mask. Workarounds:
|
|
// a.) Using tex2Dlod disables anisotropic filtering for tiled masks. It's
|
|
// downgraded to tex2Dbias without DRIVERS_ALLOW_TEX2DLOD #defined and
|
|
// disabled without DRIVERS_ALLOW_TEX2DBIAS #defined either.
|
|
// b.) "Tile flat twice" requires drawing two full tiles without border padding
|
|
// to the resized mask FBO, and it's incompatible with same-pass curvature.
|
|
// (Same-pass curvature isn't used but could be in the future...maybe.)
|
|
// c.) "Fix discontinuities" requires derivatives and drawing one tile with
|
|
// border padding to the resized mask FBO, but it works with same-pass
|
|
// curvature. It's disabled without DRIVERS_ALLOW_DERIVATIVES #defined.
|
|
// Precedence: a, then, b, then c (if multiple strategies are #defined).
|
|
#define ANISOTROPIC_TILING_COMPAT_TEX2DLOD // 129.7 FPS, 4x, flat; 101.8 at fullscreen
|
|
#define ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE // 128.1 FPS, 4x, flat; 101.5 at fullscreen
|
|
#define ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES // 124.4 FPS, 4x, flat; 97.4 at fullscreen
|
|
// Also, manually resampling the phosphor mask is slightly blurrier with
|
|
// anisotropic filtering. (Resampling with mipmapping is even worse: It
|
|
// creates artifacts, but only with the fully bloomed shader.) The difference
|
|
// is subtle with small triads, but you can fix it for a small cost.
|
|
//#define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
|
|
|
|
|
////////////////////////////// DERIVED SETTINGS //////////////////////////////
|
|
|
|
// Intel HD 4000 GPU's can't handle manual mask resizing (for now), setting the
|
|
// geometry mode at runtime, or a 4x4 true Gaussian resize. Disable
|
|
// incompatible settings ASAP. (INTEGRATED_GRAPHICS_COMPATIBILITY_MODE may be
|
|
// #defined by either user-settings.h or a wrapper .cg that #includes the
|
|
// current .cg pass.)
|
|
#ifdef INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
|
|
#ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
|
|
#undef PHOSPHOR_MASK_MANUALLY_RESIZE
|
|
#endif
|
|
#ifdef RUNTIME_GEOMETRY_MODE
|
|
#undef RUNTIME_GEOMETRY_MODE
|
|
#endif
|
|
// Mode 2 (4x4 Gaussian resize) won't work, and mode 1 (3x3 blur) is
|
|
// inferior in most cases, so replace 2.0 with 0.0:
|
|
static const float bloom_approx_filter =
|
|
bloom_approx_filter_static > 1.5 ? 0.0 : bloom_approx_filter_static;
|
|
#else
|
|
static const float bloom_approx_filter = bloom_approx_filter_static;
|
|
#endif
|
|
|
|
// Disable slow runtime paths if static parameters are used. Most of these
|
|
// won't be a problem anyway once the params are disabled, but some will.
|
|
#ifndef RUNTIME_SHADER_PARAMS_ENABLE
|
|
#ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
|
#undef RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
|
#endif
|
|
#ifdef RUNTIME_ANTIALIAS_WEIGHTS
|
|
#undef RUNTIME_ANTIALIAS_WEIGHTS
|
|
#endif
|
|
#ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
|
#undef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
|
#endif
|
|
#ifdef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
|
#undef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
|
#endif
|
|
#ifdef RUNTIME_GEOMETRY_TILT
|
|
#undef RUNTIME_GEOMETRY_TILT
|
|
#endif
|
|
#ifdef RUNTIME_GEOMETRY_MODE
|
|
#undef RUNTIME_GEOMETRY_MODE
|
|
#endif
|
|
#ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
|
#undef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
|
#endif
|
|
#endif
|
|
|
|
// Make tex2Dbias a backup for tex2Dlod for wider compatibility.
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
|
|
#define ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
|
#endif
|
|
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
|
#define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
|
|
#endif
|
|
// Rule out unavailable anisotropic compatibility strategies:
|
|
#ifndef DRIVERS_ALLOW_DERIVATIVES
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
|
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
|
#endif
|
|
#endif
|
|
#ifndef DRIVERS_ALLOW_TEX2DLOD
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
|
|
#undef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
|
|
#endif
|
|
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
|
#undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
|
#endif
|
|
#ifdef ANTIALIAS_DISABLE_ANISOTROPIC
|
|
#undef ANTIALIAS_DISABLE_ANISOTROPIC
|
|
#endif
|
|
#endif
|
|
#ifndef DRIVERS_ALLOW_TEX2DBIAS
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
|
#undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
|
#endif
|
|
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
|
|
#undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
|
|
#endif
|
|
#endif
|
|
// Prioritize anisotropic tiling compatibility strategies by performance and
|
|
// disable unused strategies. This concentrates all the nesting in one place.
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
|
#undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
|
#endif
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
|
#undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
|
#endif
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
|
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
|
#endif
|
|
#else
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
|
#undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
|
#endif
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
|
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
|
#endif
|
|
#else
|
|
// ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE is only compatible with
|
|
// flat texture coords in the same pass, but that's all we use.
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
|
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#endif
|
|
// The tex2Dlod and tex2Dbias strategies share a lot in common, and we can
|
|
// reduce some #ifdef nesting in the next section by essentially OR'ing them:
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
|
|
#define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
|
|
#endif
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
|
#define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
|
|
#endif
|
|
// Prioritize anisotropic resampling compatibility strategies the same way:
|
|
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
|
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
|
|
#undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
|
|
#endif
|
|
#endif
|
|
|
|
|
|
/////////////////////// DERIVED PHOSPHOR MASK CONSTANTS //////////////////////
|
|
|
|
// If we can use the large mipmapped LUT without mipmapping artifacts, we
|
|
// should: It gives us more options for using fewer samples.
|
|
#ifdef DRIVERS_ALLOW_TEX2DLOD
|
|
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
|
// TODO: Take advantage of this!
|
|
#define PHOSPHOR_MASK_RESIZE_MIPMAPPED_LUT
|
|
static const float2 mask_resize_src_lut_size = mask_texture_large_size;
|
|
#else
|
|
static const float2 mask_resize_src_lut_size = mask_texture_small_size;
|
|
#endif
|
|
#else
|
|
static const float2 mask_resize_src_lut_size = mask_texture_small_size;
|
|
#endif
|
|
|
|
|
|
// tex2D's sampler2D parameter MUST be a uniform global, a uniform input to
|
|
// main_fragment, or a static alias of one of the above. This makes it hard
|
|
// to select the phosphor mask at runtime: We can't even assign to a uniform
|
|
// global in the vertex shader or select a sampler2D in the vertex shader and
|
|
// pass it to the fragment shader (even with explicit TEXUNIT# bindings),
|
|
// because it just gives us the input texture or a black screen. However, we
|
|
// can get around these limitations by calling tex2D three times with different
|
|
// uniform samplers (or resizing the phosphor mask three times altogether).
|
|
// With dynamic branches, we can process only one of these branches on top of
|
|
// quickly discarding fragments we don't need (cgc seems able to overcome
|
|
// limigations around dependent texture fetches inside of branches). Without
|
|
// dynamic branches, we have to process every branch for every fragment...which
|
|
// is slower. Runtime sampling mode selection is slower without dynamic
|
|
// branches as well. Let the user's static #defines decide if it's worth it.
|
|
#ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES
|
|
#define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
|
#else
|
|
#ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
|
#define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
|
#endif
|
|
#endif
|
|
|
|
// We need to render some minimum number of tiles in the resize passes.
|
|
// We need at least 1.0 just to repeat a single tile, and we need extra
|
|
// padding beyond that for anisotropic filtering, discontinuitity fixing,
|
|
// antialiasing, same-pass curvature (not currently used), etc. First
|
|
// determine how many border texels and tiles we need, based on how the result
|
|
// will be sampled:
|
|
#ifdef GEOMETRY_EARLY
|
|
static const float max_subpixel_offset = aa_subpixel_r_offset_static.x;
|
|
// Most antialiasing filters have a base radius of 4.0 pixels:
|
|
static const float max_aa_base_pixel_border = 4.0 +
|
|
max_subpixel_offset;
|
|
#else
|
|
static const float max_aa_base_pixel_border = 0.0;
|
|
#endif
|
|
// Anisotropic filtering adds about 0.5 to the pixel border:
|
|
#ifndef ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
|
|
static const float max_aniso_pixel_border = max_aa_base_pixel_border + 0.5;
|
|
#else
|
|
static const float max_aniso_pixel_border = max_aa_base_pixel_border;
|
|
#endif
|
|
// Fixing discontinuities adds 1.0 more to the pixel border:
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
|
static const float max_tiled_pixel_border = max_aniso_pixel_border + 1.0;
|
|
#else
|
|
static const float max_tiled_pixel_border = max_aniso_pixel_border;
|
|
#endif
|
|
// Convert the pixel border to an integer texel border. Assume same-pass
|
|
// curvature about triples the texel frequency:
|
|
#ifdef GEOMETRY_EARLY
|
|
static const float max_mask_texel_border =
|
|
ceil(max_tiled_pixel_border * 3.0);
|
|
#else
|
|
static const float max_mask_texel_border = ceil(max_tiled_pixel_border);
|
|
#endif
|
|
// Convert the texel border to a tile border using worst-case assumptions:
|
|
static const float max_mask_tile_border = max_mask_texel_border/
|
|
(mask_min_allowed_triad_size * mask_triads_per_tile);
|
|
|
|
// Finally, set the number of resized tiles to render to MASK_RESIZE, and set
|
|
// the starting texel (inside borders) for sampling it.
|
|
#ifndef GEOMETRY_EARLY
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
|
// Special case: Render two tiles without borders. Anisotropic
|
|
// filtering doesn't seem to be a problem here.
|
|
static const float mask_resize_num_tiles = 1.0 + 1.0;
|
|
static const float mask_start_texels = 0.0;
|
|
#else
|
|
static const float mask_resize_num_tiles = 1.0 +
|
|
2.0 * max_mask_tile_border;
|
|
static const float mask_start_texels = max_mask_texel_border;
|
|
#endif
|
|
#else
|
|
static const float mask_resize_num_tiles = 1.0 + 2.0*max_mask_tile_border;
|
|
static const float mask_start_texels = max_mask_texel_border;
|
|
#endif
|
|
|
|
// We have to fit mask_resize_num_tiles into an FBO with a viewport scale of
|
|
// mask_resize_viewport_scale. This limits the maximum final triad size.
|
|
// Estimate the minimum number of triads we can split the screen into in each
|
|
// dimension (we'll be as correct as mask_resize_viewport_scale is):
|
|
static const float mask_resize_num_triads =
|
|
mask_resize_num_tiles * mask_triads_per_tile;
|
|
static const float2 min_allowed_viewport_triads =
|
|
float2(mask_resize_num_triads) / mask_resize_viewport_scale;
|
|
|
|
|
|
//////////////////////// COMMON MATHEMATICAL CONSTANTS ///////////////////////
|
|
|
|
static const float pi = 3.141592653589;
|
|
// We often want to find the location of the previous texel, e.g.:
|
|
// const float2 curr_texel = uv * texture_size;
|
|
// const float2 prev_texel = floor(curr_texel - float2(0.5)) + float2(0.5);
|
|
// const float2 prev_texel_uv = prev_texel / texture_size;
|
|
// However, many GPU drivers round incorrectly around exact texel locations.
|
|
// We need to subtract a little less than 0.5 before flooring, and some GPU's
|
|
// require this value to be farther from 0.5 than others; define it here.
|
|
// const float2 prev_texel =
|
|
// floor(curr_texel - float2(under_half)) + float2(0.5);
|
|
static const float under_half = 0.4995;
|
|
|
|
|
|
#endif // DERIVED_SETTINGS_AND_CONSTANTS_H
|
|
|
|
///////////////////////////// END DERIVED-SETTINGS-AND-CONSTANTS ////////////////////////////
|
|
|
|
//#include "bind-shader-h"
|
|
|
|
///////////////////////////// BEGIN BIND-SHADER-PARAMS ////////////////////////////
|
|
|
|
#ifndef BIND_SHADER_PARAMS_H
|
|
#define BIND_SHADER_PARAMS_H
|
|
|
|
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
|
|
|
|
// crt-royale: A full-featured CRT shader, with cheese.
|
|
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
|
|
//
|
|
// This program is free software; you can redistribute it and/or modify it
|
|
// under the terms of the GNU General Public License as published by the Free
|
|
// Software Foundation; either version 2 of the License, or any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
// more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License along with
|
|
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
|
// Place, Suite 330, Boston, MA 02111-1307 USA
|
|
|
|
|
|
///////////////////////////// SETTINGS MANAGEMENT ////////////////////////////
|
|
|
|
/////////////////////////////// BEGIN INCLUDES ///////////////////////////////
|
|
|
|
//#include "../user-settings.h"
|
|
|
|
///////////////////////////// BEGIN USER-SETTINGS ////////////////////////////
|
|
|
|
#ifndef USER_SETTINGS_H
|
|
#define USER_SETTINGS_H
|
|
|
|
///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
|
|
|
|
// The Cg compiler uses different "profiles" with different capabilities.
|
|
// This shader requires a Cg compilation profile >= arbfp1, but a few options
|
|
// require higher profiles like fp30 or fp40. The shader can't detect profile
|
|
// or driver capabilities, so instead you must comment or uncomment the lines
|
|
// below with "//" before "#define." Disable an option if you get compilation
|
|
// errors resembling those listed. Generally speaking, all of these options
|
|
// will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
|
|
// likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
|
|
|
|
// Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
|
|
// Among other things, derivatives help us fix anisotropic filtering artifacts
|
|
// with curved manually tiled phosphor mask coords. Related errors:
|
|
// error C3004: function "float2 ddx(float2);" not supported in this profile
|
|
// error C3004: function "float2 ddy(float2);" not supported in this profile
|
|
//#define DRIVERS_ALLOW_DERIVATIVES
|
|
|
|
// Fine derivatives: Unsupported on older ATI cards.
|
|
// Fine derivatives enable 2x2 fragment block communication, letting us perform
|
|
// fast single-pass blur operations. If your card uses coarse derivatives and
|
|
// these are enabled, blurs could look broken. Derivatives are a prerequisite.
|
|
#ifdef DRIVERS_ALLOW_DERIVATIVES
|
|
#define DRIVERS_ALLOW_FINE_DERIVATIVES
|
|
#endif
|
|
|
|
// Dynamic looping: Requires an fp30 or newer profile.
|
|
// This makes phosphor mask resampling faster in some cases. Related errors:
|
|
// error C5013: profile does not support "for" statements and "for" could not
|
|
// be unrolled
|
|
//#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
|
|
|
|
// Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
|
|
// Using one static loop avoids overhead if the user is right, but if the user
|
|
// is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
|
|
// binary search can potentially save some iterations. However, it may fail:
|
|
// error C6001: Temporary register limit of 32 exceeded; 35 registers
|
|
// needed to compile program
|
|
//#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
|
|
|
|
// tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
|
|
// anisotropic filtering, thereby fixing related artifacts. Related errors:
|
|
// error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
|
|
// this profile
|
|
//#define DRIVERS_ALLOW_TEX2DLOD
|
|
|
|
// tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
|
|
// artifacts from anisotropic filtering and mipmapping. Related errors:
|
|
// error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
|
|
// in this profile
|
|
//#define DRIVERS_ALLOW_TEX2DBIAS
|
|
|
|
// Integrated graphics compatibility: Integrated graphics like Intel HD 4000
|
|
// impose stricter limitations on register counts and instructions. Enable
|
|
// INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
|
|
// error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
|
|
// to compile program.
|
|
// Enabling integrated graphics compatibility mode will automatically disable:
|
|
// 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
|
|
// (This may be reenabled in a later release.)
|
|
// 2.) RUNTIME_GEOMETRY_MODE
|
|
// 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
|
|
//#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
|
|
|
|
|
|
//////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
|
|
|
|
// To disable a #define option, turn its line into a comment with "//."
|
|
|
|
// RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
|
|
// Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
|
|
// many of the options in this file and allow real-time tuning, but many of
|
|
// them are slower. Disabling them and using this text file will boost FPS.
|
|
#define RUNTIME_SHADER_PARAMS_ENABLE
|
|
// Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
|
|
// it's the only way to do a wide-enough full bloom with a runtime dot pitch.
|
|
#define RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
|
// Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
|
|
#define RUNTIME_ANTIALIAS_WEIGHTS
|
|
// Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
|
|
//#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
|
// Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
|
|
// parameters? This will require more math or dynamic branching.
|
|
#define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
|
// Specify the tilt at runtime? This makes things about 3% slower.
|
|
#define RUNTIME_GEOMETRY_TILT
|
|
// Specify the geometry mode at runtime?
|
|
#define RUNTIME_GEOMETRY_MODE
|
|
// Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
|
|
// mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
|
|
// dynamic branches? This is cheap if mask_resize_viewport_scale is small.
|
|
#define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
|
|
|
// PHOSPHOR MASK:
|
|
// Manually resize the phosphor mask for best results (slower)? Disabling this
|
|
// removes the option to do so, but it may be faster without dynamic branches.
|
|
#define PHOSPHOR_MASK_MANUALLY_RESIZE
|
|
// If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
|
|
#define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
|
|
// Larger blurs are expensive, but we need them to blur larger triads. We can
|
|
// detect the right blur if the triad size is static or our profile allows
|
|
// dynamic branches, but otherwise we use the largest blur the user indicates
|
|
// they might need:
|
|
#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
|
|
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
|
|
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
|
|
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
|
|
// Here's a helpful chart:
|
|
// MaxTriadSize BlurSize MinTriadCountsByResolution
|
|
// 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
|
// 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
|
// 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
|
// 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
|
// 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
|
|
|
|
|
/////////////////////////////// USER PARAMETERS //////////////////////////////
|
|
|
|
// Note: Many of these static parameters are overridden by runtime shader
|
|
// parameters when those are enabled. However, many others are static codepath
|
|
// options that were cleaner or more convert to code as static constants.
|
|
|
|
// GAMMA:
|
|
static const float crt_gamma_static = 2.5; // range [1, 5]
|
|
static const float lcd_gamma_static = 2.2; // range [1, 5]
|
|
|
|
// LEVELS MANAGEMENT:
|
|
// Control the final multiplicative image contrast:
|
|
static const float levels_contrast_static = 1.0; // range [0, 4)
|
|
// We auto-dim to avoid clipping between passes and restore brightness
|
|
// later. Control the dim factor here: Lower values clip less but crush
|
|
// blacks more (static only for now).
|
|
static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0
|
|
|
|
// HALATION/DIFFUSION/BLOOM:
|
|
// Halation weight: How much energy should be lost to electrons bounding
|
|
// around under the CRT glass and exciting random phosphors?
|
|
static const float halation_weight_static = 0.0; // range [0, 1]
|
|
// Refractive diffusion weight: How much light should spread/diffuse from
|
|
// refracting through the CRT glass?
|
|
static const float diffusion_weight_static = 0.075; // range [0, 1]
|
|
// Underestimate brightness: Bright areas bloom more, but we can base the
|
|
// bloom brightpass on a lower brightness to sharpen phosphors, or a higher
|
|
// brightness to soften them. Low values clip, but >= 0.8 looks okay.
|
|
static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
|
|
// Blur all colors more than necessary for a softer phosphor bloom?
|
|
static const float bloom_excess_static = 0.0; // range [0, 1]
|
|
// The BLOOM_APPROX pass approximates a phosphor blur early on with a small
|
|
// blurred resize of the input (convergence offsets are applied as well).
|
|
// There are three filter options (static option only for now):
|
|
// 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
|
|
// if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
|
|
// and beam_max_sigma is low.
|
|
// 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
|
|
// always uses a static sigma regardless of beam_max_sigma or
|
|
// mask_num_triads_desired.
|
|
// 2.) True 4x4 Gaussian resize: Slowest, technically correct.
|
|
// These options are more pronounced for the fast, unbloomed shader version.
|
|
#ifndef RADEON_FIX
|
|
static const float bloom_approx_filter_static = 2.0;
|
|
#else
|
|
static const float bloom_approx_filter_static = 1.0;
|
|
#endif
|
|
|
|
// ELECTRON BEAM SCANLINE DISTRIBUTION:
|
|
// How many scanlines should contribute light to each pixel? Using more
|
|
// scanlines is slower (especially for a generalized Gaussian) but less
|
|
// distorted with larger beam sigmas (especially for a pure Gaussian). The
|
|
// max_beam_sigma at which the closest unused weight is guaranteed <
|
|
// 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
|
|
// 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
|
|
// 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
|
|
// 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
|
|
// 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
|
|
// 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
|
|
static const float beam_num_scanlines = 3.0; // range [2, 6]
|
|
// A generalized Gaussian beam varies shape with color too, now just width.
|
|
// It's slower but more flexible (static option only for now).
|
|
static const bool beam_generalized_gaussian = true;
|
|
// What kind of scanline antialiasing do you want?
|
|
// 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
|
|
// Integrals are slow (especially for generalized Gaussians) and rarely any
|
|
// better than 3x antialiasing (static option only for now).
|
|
static const float beam_antialias_level = 1.0; // range [0, 2]
|
|
// Min/max standard deviations for scanline beams: Higher values widen and
|
|
// soften scanlines. Depending on other options, low min sigmas can alias.
|
|
static const float beam_min_sigma_static = 0.02; // range (0, 1]
|
|
static const float beam_max_sigma_static = 0.3; // range (0, 1]
|
|
// Beam width varies as a function of color: A power function (0) is more
|
|
// configurable, but a spherical function (1) gives the widest beam
|
|
// variability without aliasing (static option only for now).
|
|
static const float beam_spot_shape_function = 0.0;
|
|
// Spot shape power: Powers <= 1 give smoother spot shapes but lower
|
|
// sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
|
|
static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
|
|
// Generalized Gaussian max shape parameters: Higher values give flatter
|
|
// scanline plateaus and steeper dropoffs, simultaneously widening and
|
|
// sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
|
|
// values > ~40.0 cause artifacts with integrals.
|
|
static const float beam_min_shape_static = 2.0; // range [2, 32]
|
|
static const float beam_max_shape_static = 4.0; // range [2, 32]
|
|
// Generalized Gaussian shape power: Affects how quickly the distribution
|
|
// changes shape from Gaussian to steep/plateaued as color increases from 0
|
|
// to 1.0. Higher powers appear softer for most colors, and lower powers
|
|
// appear sharper for most colors.
|
|
static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
|
|
// What filter should be used to sample scanlines horizontally?
|
|
// 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
|
|
static const float beam_horiz_filter_static = 0.0;
|
|
// Standard deviation for horizontal Gaussian resampling:
|
|
static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
|
|
// Do horizontal scanline sampling in linear RGB (correct light mixing),
|
|
// gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
|
|
// limiting circuitry in some CRT's), or a weighted avg.?
|
|
static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
|
|
// Simulate scanline misconvergence? This needs 3x horizontal texture
|
|
// samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
|
|
// later passes (static option only for now).
|
|
static const bool beam_misconvergence = true;
|
|
// Convergence offsets in x/y directions for R/G/B scanline beams in units
|
|
// of scanlines. Positive offsets go right/down; ranges [-2, 2]
|
|
static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
|
|
static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
|
|
static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
|
|
// Detect interlacing (static option only for now)?
|
|
static const bool interlace_detect = true;
|
|
// Assume 1080-line sources are interlaced?
|
|
static const bool interlace_1080i_static = false;
|
|
// For interlaced sources, assume TFF (top-field first) or BFF order?
|
|
// (Whether this matters depends on the nature of the interlaced input.)
|
|
static const bool interlace_bff_static = false;
|
|
|
|
// ANTIALIASING:
|
|
// What AA level do you want for curvature/overscan/subpixels? Options:
|
|
// 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
|
|
// (Static option only for now)
|
|
static const float aa_level = 12.0; // range [0, 24]
|
|
// What antialiasing filter do you want (static option only)? Options:
|
|
// 0: Box (separable), 1: Box (cylindrical),
|
|
// 2: Tent (separable), 3: Tent (cylindrical),
|
|
// 4: Gaussian (separable), 5: Gaussian (cylindrical),
|
|
// 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
|
|
// 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
|
|
// * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
|
|
static const float aa_filter = 6.0; // range [0, 9]
|
|
// Flip the sample grid on odd/even frames (static option only for now)?
|
|
static const bool aa_temporal = false;
|
|
// Use RGB subpixel offsets for antialiasing? The pixel is at green, and
|
|
// the blue offset is the negative r offset; range [0, 0.5]
|
|
static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
|
|
// Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
|
|
// 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
|
|
// 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
|
|
// 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
|
|
// 4.) C = 0.0 is a soft spline filter.
|
|
static const float aa_cubic_c_static = 0.5; // range [0, 4]
|
|
// Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
|
|
static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
|
|
|
|
// PHOSPHOR MASK:
|
|
// Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
|
|
static const float mask_type_static = 1.0; // range [0, 2]
|
|
// We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
|
|
// 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
|
|
// This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
|
|
// 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
|
|
// is halfway decent with LUT mipmapping but atrocious without it.
|
|
// 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
|
|
// (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
|
|
// This mode reuses the same masks, so triads will be enormous unless
|
|
// you change the mask LUT filenames in your .cgp file.
|
|
static const float mask_sample_mode_static = 0.0; // range [0, 2]
|
|
// Prefer setting the triad size (0.0) or number on the screen (1.0)?
|
|
// If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
|
|
// will always be used to calculate the full bloom sigma statically.
|
|
static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
|
|
// Specify the phosphor triad size, in pixels. Each tile (usually with 8
|
|
// triads) will be rounded to the nearest integer tile size and clamped to
|
|
// obey minimum size constraints (imposed to reduce downsize taps) and
|
|
// maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
|
|
// To increase the size limit, double the viewport-relative scales for the
|
|
// two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
|
|
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
|
static const float mask_triad_size_desired_static = 24.0 / 8.0;
|
|
// If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
|
|
// final size will be rounded and constrained as above); default 480.0
|
|
static const float mask_num_triads_desired_static = 480.0;
|
|
// How many lobes should the sinc/Lanczos resizer use? More lobes require
|
|
// more samples and avoid moire a bit better, but some is unavoidable
|
|
// depending on the destination size (static option for now).
|
|
static const float mask_sinc_lobes = 3.0; // range [2, 4]
|
|
// The mask is resized using a variable number of taps in each dimension,
|
|
// but some Cg profiles always fetch a constant number of taps no matter
|
|
// what (no dynamic branching). We can limit the maximum number of taps if
|
|
// we statically limit the minimum phosphor triad size. Larger values are
|
|
// faster, but the limit IS enforced (static option only, forever);
|
|
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
|
// TODO: Make this 1.0 and compensate with smarter sampling!
|
|
static const float mask_min_allowed_triad_size = 2.0;
|
|
|
|
// GEOMETRY:
|
|
// Geometry mode:
|
|
// 0: Off (default), 1: Spherical mapping (like cgwg's),
|
|
// 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
|
|
static const float geom_mode_static = 0.0; // range [0, 3]
|
|
// Radius of curvature: Measured in units of your viewport's diagonal size.
|
|
static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
|
|
// View dist is the distance from the player to their physical screen, in
|
|
// units of the viewport's diagonal size. It controls the field of view.
|
|
static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
|
|
// Tilt angle in radians (clockwise around up and right vectors):
|
|
static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
|
|
// Aspect ratio: When the true viewport size is unknown, this value is used
|
|
// to help convert between the phosphor triad size and count, along with
|
|
// the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
|
|
// this equal to Retroarch's display aspect ratio (DAR) for best results;
|
|
// range [1, geom_max_aspect_ratio from user-cgp-constants.h];
|
|
// default (256/224)*(54/47) = 1.313069909 (see below)
|
|
static const float geom_aspect_ratio_static = 1.313069909;
|
|
// Before getting into overscan, here's some general aspect ratio info:
|
|
// - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
|
|
// - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
|
|
// - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
|
|
// Geometry processing has to "undo" the screen-space 2D DAR to calculate
|
|
// 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
|
|
// uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
|
|
// a.) Enable Retroarch's "Crop Overscan"
|
|
// b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
|
|
// Real consoles use horizontal black padding in the signal, but emulators
|
|
// often crop this without cropping the vertical padding; a 256x224 [S]NES
|
|
// frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
|
|
// The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
|
|
// http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
|
|
// http://forums.nesdev.com/viewtopic.php?p=24815#p24815
|
|
// For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
|
|
// without doing a. or b., but horizontal image borders will be tighter
|
|
// than vertical ones, messing up curvature and overscan. Fixing the
|
|
// padding first corrects this.
|
|
// Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
|
|
// or adjust x/y independently to e.g. readd horizontal padding, as noted
|
|
// above: Values < 1.0 zoom out; range (0, inf)
|
|
static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
|
|
// Compute a proper pixel-space to texture-space matrix even without ddx()/
|
|
// ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
|
|
// with strong curvature (static option only for now).
|
|
static const bool geom_force_correct_tangent_matrix = true;
|
|
|
|
// BORDERS:
|
|
// Rounded border size in texture uv coords:
|
|
static const float border_size_static = 0.015; // range [0, 0.5]
|
|
// Border darkness: Moderate values darken the border smoothly, and high
|
|
// values make the image very dark just inside the border:
|
|
static const float border_darkness_static = 2.0; // range [0, inf)
|
|
// Border compression: High numbers compress border transitions, narrowing
|
|
// the dark border area.
|
|
static const float border_compress_static = 2.5; // range [1, inf)
|
|
|
|
|
|
#endif // USER_SETTINGS_H
|
|
|
|
///////////////////////////// END USER-SETTINGS ////////////////////////////
|
|
|
|
//#include "derived-settings-and-constants.h"
|
|
|
|
///////////////////// BEGIN DERIVED-SETTINGS-AND-CONSTANTS ////////////////////
|
|
|
|
#ifndef DERIVED_SETTINGS_AND_CONSTANTS_H
|
|
#define DERIVED_SETTINGS_AND_CONSTANTS_H
|
|
|
|
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
|
|
|
|
// crt-royale: A full-featured CRT shader, with cheese.
|
|
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
|
|
//
|
|
// This program is free software; you can redistribute it and/or modify it
|
|
// under the terms of the GNU General Public License as published by the Free
|
|
// Software Foundation; either version 2 of the License, or any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
// more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License along with
|
|
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
|
// Place, Suite 330, Boston, MA 02111-1307 USA
|
|
|
|
|
|
///////////////////////////////// DESCRIPTION ////////////////////////////////
|
|
|
|
// These macros and constants can be used across the whole codebase.
|
|
// Unlike the values in user-settings.cgh, end users shouldn't modify these.
|
|
|
|
|
|
/////////////////////////////// BEGIN INCLUDES ///////////////////////////////
|
|
|
|
//#include "../user-settings.h"
|
|
|
|
///////////////////////////// BEGIN USER-SETTINGS ////////////////////////////
|
|
|
|
#ifndef USER_SETTINGS_H
|
|
#define USER_SETTINGS_H
|
|
|
|
///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
|
|
|
|
// The Cg compiler uses different "profiles" with different capabilities.
|
|
// This shader requires a Cg compilation profile >= arbfp1, but a few options
|
|
// require higher profiles like fp30 or fp40. The shader can't detect profile
|
|
// or driver capabilities, so instead you must comment or uncomment the lines
|
|
// below with "//" before "#define." Disable an option if you get compilation
|
|
// errors resembling those listed. Generally speaking, all of these options
|
|
// will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
|
|
// likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
|
|
|
|
// Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
|
|
// Among other things, derivatives help us fix anisotropic filtering artifacts
|
|
// with curved manually tiled phosphor mask coords. Related errors:
|
|
// error C3004: function "float2 ddx(float2);" not supported in this profile
|
|
// error C3004: function "float2 ddy(float2);" not supported in this profile
|
|
//#define DRIVERS_ALLOW_DERIVATIVES
|
|
|
|
// Fine derivatives: Unsupported on older ATI cards.
|
|
// Fine derivatives enable 2x2 fragment block communication, letting us perform
|
|
// fast single-pass blur operations. If your card uses coarse derivatives and
|
|
// these are enabled, blurs could look broken. Derivatives are a prerequisite.
|
|
#ifdef DRIVERS_ALLOW_DERIVATIVES
|
|
#define DRIVERS_ALLOW_FINE_DERIVATIVES
|
|
#endif
|
|
|
|
// Dynamic looping: Requires an fp30 or newer profile.
|
|
// This makes phosphor mask resampling faster in some cases. Related errors:
|
|
// error C5013: profile does not support "for" statements and "for" could not
|
|
// be unrolled
|
|
//#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
|
|
|
|
// Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
|
|
// Using one static loop avoids overhead if the user is right, but if the user
|
|
// is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
|
|
// binary search can potentially save some iterations. However, it may fail:
|
|
// error C6001: Temporary register limit of 32 exceeded; 35 registers
|
|
// needed to compile program
|
|
//#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
|
|
|
|
// tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
|
|
// anisotropic filtering, thereby fixing related artifacts. Related errors:
|
|
// error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
|
|
// this profile
|
|
//#define DRIVERS_ALLOW_TEX2DLOD
|
|
|
|
// tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
|
|
// artifacts from anisotropic filtering and mipmapping. Related errors:
|
|
// error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
|
|
// in this profile
|
|
//#define DRIVERS_ALLOW_TEX2DBIAS
|
|
|
|
// Integrated graphics compatibility: Integrated graphics like Intel HD 4000
|
|
// impose stricter limitations on register counts and instructions. Enable
|
|
// INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
|
|
// error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
|
|
// to compile program.
|
|
// Enabling integrated graphics compatibility mode will automatically disable:
|
|
// 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
|
|
// (This may be reenabled in a later release.)
|
|
// 2.) RUNTIME_GEOMETRY_MODE
|
|
// 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
|
|
//#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
|
|
|
|
|
|
//////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
|
|
|
|
// To disable a #define option, turn its line into a comment with "//."
|
|
|
|
// RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
|
|
// Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
|
|
// many of the options in this file and allow real-time tuning, but many of
|
|
// them are slower. Disabling them and using this text file will boost FPS.
|
|
#define RUNTIME_SHADER_PARAMS_ENABLE
|
|
// Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
|
|
// it's the only way to do a wide-enough full bloom with a runtime dot pitch.
|
|
#define RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
|
// Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
|
|
#define RUNTIME_ANTIALIAS_WEIGHTS
|
|
// Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
|
|
//#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
|
// Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
|
|
// parameters? This will require more math or dynamic branching.
|
|
#define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
|
// Specify the tilt at runtime? This makes things about 3% slower.
|
|
#define RUNTIME_GEOMETRY_TILT
|
|
// Specify the geometry mode at runtime?
|
|
#define RUNTIME_GEOMETRY_MODE
|
|
// Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
|
|
// mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
|
|
// dynamic branches? This is cheap if mask_resize_viewport_scale is small.
|
|
#define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
|
|
|
// PHOSPHOR MASK:
|
|
// Manually resize the phosphor mask for best results (slower)? Disabling this
|
|
// removes the option to do so, but it may be faster without dynamic branches.
|
|
#define PHOSPHOR_MASK_MANUALLY_RESIZE
|
|
// If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
|
|
#define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
|
|
// Larger blurs are expensive, but we need them to blur larger triads. We can
|
|
// detect the right blur if the triad size is static or our profile allows
|
|
// dynamic branches, but otherwise we use the largest blur the user indicates
|
|
// they might need:
|
|
#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
|
|
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
|
|
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
|
|
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
|
|
// Here's a helpful chart:
|
|
// MaxTriadSize BlurSize MinTriadCountsByResolution
|
|
// 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
|
// 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
|
// 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
|
// 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
|
// 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
|
|
|
|
|
|
/////////////////////////////// USER PARAMETERS //////////////////////////////
|
|
|
|
// Note: Many of these static parameters are overridden by runtime shader
|
|
// parameters when those are enabled. However, many others are static codepath
|
|
// options that were cleaner or more convert to code as static constants.
|
|
|
|
// GAMMA:
|
|
static const float crt_gamma_static = 2.5; // range [1, 5]
|
|
static const float lcd_gamma_static = 2.2; // range [1, 5]
|
|
|
|
// LEVELS MANAGEMENT:
|
|
// Control the final multiplicative image contrast:
|
|
static const float levels_contrast_static = 1.0; // range [0, 4)
|
|
// We auto-dim to avoid clipping between passes and restore brightness
|
|
// later. Control the dim factor here: Lower values clip less but crush
|
|
// blacks more (static only for now).
|
|
static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0
|
|
|
|
// HALATION/DIFFUSION/BLOOM:
|
|
// Halation weight: How much energy should be lost to electrons bounding
|
|
// around under the CRT glass and exciting random phosphors?
|
|
static const float halation_weight_static = 0.0; // range [0, 1]
|
|
// Refractive diffusion weight: How much light should spread/diffuse from
|
|
// refracting through the CRT glass?
|
|
static const float diffusion_weight_static = 0.075; // range [0, 1]
|
|
// Underestimate brightness: Bright areas bloom more, but we can base the
|
|
// bloom brightpass on a lower brightness to sharpen phosphors, or a higher
|
|
// brightness to soften them. Low values clip, but >= 0.8 looks okay.
|
|
static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
|
|
// Blur all colors more than necessary for a softer phosphor bloom?
|
|
static const float bloom_excess_static = 0.0; // range [0, 1]
|
|
// The BLOOM_APPROX pass approximates a phosphor blur early on with a small
|
|
// blurred resize of the input (convergence offsets are applied as well).
|
|
// There are three filter options (static option only for now):
|
|
// 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
|
|
// if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
|
|
// and beam_max_sigma is low.
|
|
// 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
|
|
// always uses a static sigma regardless of beam_max_sigma or
|
|
// mask_num_triads_desired.
|
|
// 2.) True 4x4 Gaussian resize: Slowest, technically correct.
|
|
// These options are more pronounced for the fast, unbloomed shader version.
|
|
#ifndef RADEON_FIX
|
|
static const float bloom_approx_filter_static = 2.0;
|
|
#else
|
|
static const float bloom_approx_filter_static = 1.0;
|
|
#endif
|
|
|
|
// ELECTRON BEAM SCANLINE DISTRIBUTION:
|
|
// How many scanlines should contribute light to each pixel? Using more
|
|
// scanlines is slower (especially for a generalized Gaussian) but less
|
|
// distorted with larger beam sigmas (especially for a pure Gaussian). The
|
|
// max_beam_sigma at which the closest unused weight is guaranteed <
|
|
// 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
|
|
// 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
|
|
// 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
|
|
// 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
|
|
// 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
|
|
// 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
|
|
static const float beam_num_scanlines = 3.0; // range [2, 6]
|
|
// A generalized Gaussian beam varies shape with color too, now just width.
|
|
// It's slower but more flexible (static option only for now).
|
|
static const bool beam_generalized_gaussian = true;
|
|
// What kind of scanline antialiasing do you want?
|
|
// 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
|
|
// Integrals are slow (especially for generalized Gaussians) and rarely any
|
|
// better than 3x antialiasing (static option only for now).
|
|
static const float beam_antialias_level = 1.0; // range [0, 2]
|
|
// Min/max standard deviations for scanline beams: Higher values widen and
|
|
// soften scanlines. Depending on other options, low min sigmas can alias.
|
|
static const float beam_min_sigma_static = 0.02; // range (0, 1]
|
|
static const float beam_max_sigma_static = 0.3; // range (0, 1]
|
|
// Beam width varies as a function of color: A power function (0) is more
|
|
// configurable, but a spherical function (1) gives the widest beam
|
|
// variability without aliasing (static option only for now).
|
|
static const float beam_spot_shape_function = 0.0;
|
|
// Spot shape power: Powers <= 1 give smoother spot shapes but lower
|
|
// sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
|
|
static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
|
|
// Generalized Gaussian max shape parameters: Higher values give flatter
|
|
// scanline plateaus and steeper dropoffs, simultaneously widening and
|
|
// sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
|
|
// values > ~40.0 cause artifacts with integrals.
|
|
static const float beam_min_shape_static = 2.0; // range [2, 32]
|
|
static const float beam_max_shape_static = 4.0; // range [2, 32]
|
|
// Generalized Gaussian shape power: Affects how quickly the distribution
|
|
// changes shape from Gaussian to steep/plateaued as color increases from 0
|
|
// to 1.0. Higher powers appear softer for most colors, and lower powers
|
|
// appear sharper for most colors.
|
|
static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
|
|
// What filter should be used to sample scanlines horizontally?
|
|
// 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
|
|
static const float beam_horiz_filter_static = 0.0;
|
|
// Standard deviation for horizontal Gaussian resampling:
|
|
static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
|
|
// Do horizontal scanline sampling in linear RGB (correct light mixing),
|
|
// gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
|
|
// limiting circuitry in some CRT's), or a weighted avg.?
|
|
static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
|
|
// Simulate scanline misconvergence? This needs 3x horizontal texture
|
|
// samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
|
|
// later passes (static option only for now).
|
|
static const bool beam_misconvergence = true;
|
|
// Convergence offsets in x/y directions for R/G/B scanline beams in units
|
|
// of scanlines. Positive offsets go right/down; ranges [-2, 2]
|
|
static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
|
|
static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
|
|
static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
|
|
// Detect interlacing (static option only for now)?
|
|
static const bool interlace_detect = true;
|
|
// Assume 1080-line sources are interlaced?
|
|
static const bool interlace_1080i_static = false;
|
|
// For interlaced sources, assume TFF (top-field first) or BFF order?
|
|
// (Whether this matters depends on the nature of the interlaced input.)
|
|
static const bool interlace_bff_static = false;
|
|
|
|
// ANTIALIASING:
|
|
// What AA level do you want for curvature/overscan/subpixels? Options:
|
|
// 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
|
|
// (Static option only for now)
|
|
static const float aa_level = 12.0; // range [0, 24]
|
|
// What antialiasing filter do you want (static option only)? Options:
|
|
// 0: Box (separable), 1: Box (cylindrical),
|
|
// 2: Tent (separable), 3: Tent (cylindrical),
|
|
// 4: Gaussian (separable), 5: Gaussian (cylindrical),
|
|
// 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
|
|
// 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
|
|
// * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
|
|
static const float aa_filter = 6.0; // range [0, 9]
|
|
// Flip the sample grid on odd/even frames (static option only for now)?
|
|
static const bool aa_temporal = false;
|
|
// Use RGB subpixel offsets for antialiasing? The pixel is at green, and
|
|
// the blue offset is the negative r offset; range [0, 0.5]
|
|
static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
|
|
// Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
|
|
// 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
|
|
// 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
|
|
// 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
|
|
// 4.) C = 0.0 is a soft spline filter.
|
|
static const float aa_cubic_c_static = 0.5; // range [0, 4]
|
|
// Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
|
|
static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
|
|
|
|
// PHOSPHOR MASK:
|
|
// Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
|
|
static const float mask_type_static = 1.0; // range [0, 2]
|
|
// We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
|
|
// 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
|
|
// This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
|
|
// 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
|
|
// is halfway decent with LUT mipmapping but atrocious without it.
|
|
// 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
|
|
// (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
|
|
// This mode reuses the same masks, so triads will be enormous unless
|
|
// you change the mask LUT filenames in your .cgp file.
|
|
static const float mask_sample_mode_static = 0.0; // range [0, 2]
|
|
// Prefer setting the triad size (0.0) or number on the screen (1.0)?
|
|
// If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
|
|
// will always be used to calculate the full bloom sigma statically.
|
|
static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
|
|
// Specify the phosphor triad size, in pixels. Each tile (usually with 8
|
|
// triads) will be rounded to the nearest integer tile size and clamped to
|
|
// obey minimum size constraints (imposed to reduce downsize taps) and
|
|
// maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
|
|
// To increase the size limit, double the viewport-relative scales for the
|
|
// two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
|
|
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
|
static const float mask_triad_size_desired_static = 24.0 / 8.0;
|
|
// If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
|
|
// final size will be rounded and constrained as above); default 480.0
|
|
static const float mask_num_triads_desired_static = 480.0;
|
|
// How many lobes should the sinc/Lanczos resizer use? More lobes require
|
|
// more samples and avoid moire a bit better, but some is unavoidable
|
|
// depending on the destination size (static option for now).
|
|
static const float mask_sinc_lobes = 3.0; // range [2, 4]
|
|
// The mask is resized using a variable number of taps in each dimension,
|
|
// but some Cg profiles always fetch a constant number of taps no matter
|
|
// what (no dynamic branching). We can limit the maximum number of taps if
|
|
// we statically limit the minimum phosphor triad size. Larger values are
|
|
// faster, but the limit IS enforced (static option only, forever);
|
|
// range [1, mask_texture_small_size/mask_triads_per_tile]
|
|
// TODO: Make this 1.0 and compensate with smarter sampling!
|
|
static const float mask_min_allowed_triad_size = 2.0;
|
|
|
|
// GEOMETRY:
|
|
// Geometry mode:
|
|
// 0: Off (default), 1: Spherical mapping (like cgwg's),
|
|
// 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
|
|
static const float geom_mode_static = 0.0; // range [0, 3]
|
|
// Radius of curvature: Measured in units of your viewport's diagonal size.
|
|
static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
|
|
// View dist is the distance from the player to their physical screen, in
|
|
// units of the viewport's diagonal size. It controls the field of view.
|
|
static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
|
|
// Tilt angle in radians (clockwise around up and right vectors):
|
|
static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
|
|
// Aspect ratio: When the true viewport size is unknown, this value is used
|
|
// to help convert between the phosphor triad size and count, along with
|
|
// the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
|
|
// this equal to Retroarch's display aspect ratio (DAR) for best results;
|
|
// range [1, geom_max_aspect_ratio from user-cgp-constants.h];
|
|
// default (256/224)*(54/47) = 1.313069909 (see below)
|
|
static const float geom_aspect_ratio_static = 1.313069909;
|
|
// Before getting into overscan, here's some general aspect ratio info:
|
|
// - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
|
|
// - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
|
|
// - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
|
|
// Geometry processing has to "undo" the screen-space 2D DAR to calculate
|
|
// 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
|
|
// uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
|
|
// a.) Enable Retroarch's "Crop Overscan"
|
|
// b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
|
|
// Real consoles use horizontal black padding in the signal, but emulators
|
|
// often crop this without cropping the vertical padding; a 256x224 [S]NES
|
|
// frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
|
|
// The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
|
|
// http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
|
|
// http://forums.nesdev.com/viewtopic.php?p=24815#p24815
|
|
// For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
|
|
// without doing a. or b., but horizontal image borders will be tighter
|
|
// than vertical ones, messing up curvature and overscan. Fixing the
|
|
// padding first corrects this.
|
|
// Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
|
|
// or adjust x/y independently to e.g. readd horizontal padding, as noted
|
|
// above: Values < 1.0 zoom out; range (0, inf)
|
|
static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
|
|
// Compute a proper pixel-space to texture-space matrix even without ddx()/
|
|
// ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
|
|
// with strong curvature (static option only for now).
|
|
static const bool geom_force_correct_tangent_matrix = true;
|
|
|
|
// BORDERS:
|
|
// Rounded border size in texture uv coords:
|
|
static const float border_size_static = 0.015; // range [0, 0.5]
|
|
// Border darkness: Moderate values darken the border smoothly, and high
|
|
// values make the image very dark just inside the border:
|
|
static const float border_darkness_static = 2.0; // range [0, inf)
|
|
// Border compression: High numbers compress border transitions, narrowing
|
|
// the dark border area.
|
|
static const float border_compress_static = 2.5; // range [1, inf)
|
|
|
|
|
|
#endif // USER_SETTINGS_H
|
|
|
|
///////////////////////////// END USER-SETTINGS ////////////////////////////
|
|
|
|
//#include "user-cgp-constants.h"
|
|
|
|
///////////////////////// BEGIN USER-CGP-CONSTANTS /////////////////////////
|
|
|
|
#ifndef USER_CGP_CONSTANTS_H
|
|
#define USER_CGP_CONSTANTS_H
|
|
|
|
// IMPORTANT:
|
|
// These constants MUST be set appropriately for the settings in crt-royale.cgp
|
|
// (or whatever related .cgp file you're using). If they aren't, you're likely
|
|
// to get artifacts, the wrong phosphor mask size, etc. I wish these could be
|
|
// set directly in the .cgp file to make things easier, but...they can't.
|
|
|
|
// PASS SCALES AND RELATED CONSTANTS:
|
|
// Copy the absolute scale_x for BLOOM_APPROX. There are two major versions of
|
|
// this shader: One does a viewport-scale bloom, and the other skips it. The
|
|
// latter benefits from a higher bloom_approx_scale_x, so save both separately:
|
|
static const float bloom_approx_size_x = 320.0;
|
|
static const float bloom_approx_size_x_for_fake = 400.0;
|
|
// Copy the viewport-relative scales of the phosphor mask resize passes
|
|
// (MASK_RESIZE and the pass immediately preceding it):
|
|
static const float2 mask_resize_viewport_scale = float2(0.0625, 0.0625);
|
|
// Copy the geom_max_aspect_ratio used to calculate the MASK_RESIZE scales, etc.:
|
|
static const float geom_max_aspect_ratio = 4.0/3.0;
|
|
|
|
// PHOSPHOR MASK TEXTURE CONSTANTS:
|
|
// Set the following constants to reflect the properties of the phosphor mask
|
|
// texture named in crt-royale.cgp. The shader optionally resizes a mask tile
|
|
// based on user settings, then repeats a single tile until filling the screen.
|
|
// The shader must know the input texture size (default 64x64), and to manually
|
|
// resize, it must also know the horizontal triads per tile (default 8).
|
|
static const float2 mask_texture_small_size = float2(64.0, 64.0);
|
|
static const float2 mask_texture_large_size = float2(512.0, 512.0);
|
|
static const float mask_triads_per_tile = 8.0;
|
|
// We need the average brightness of the phosphor mask to compensate for the
|
|
// dimming it causes. The following four values are roughly correct for the
|
|
// masks included with the shader. Update the value for any LUT texture you
|
|
// change. [Un]comment "#define PHOSPHOR_MASK_GRILLE14" depending on whether
|
|
// the loaded aperture grille uses 14-pixel or 15-pixel stripes (default 15).
|
|
//#define PHOSPHOR_MASK_GRILLE14
|
|
static const float mask_grille14_avg_color = 50.6666666/255.0;
|
|
// TileableLinearApertureGrille14Wide7d33Spacing*.png
|
|
// TileableLinearApertureGrille14Wide10And6Spacing*.png
|
|
static const float mask_grille15_avg_color = 53.0/255.0;
|
|
// TileableLinearApertureGrille15Wide6d33Spacing*.png
|
|
// TileableLinearApertureGrille15Wide8And5d5Spacing*.png
|
|
static const float mask_slot_avg_color = 46.0/255.0;
|
|
// TileableLinearSlotMask15Wide9And4d5Horizontal8VerticalSpacing*.png
|
|
// TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacing*.png
|
|
static const float mask_shadow_avg_color = 41.0/255.0;
|
|
// TileableLinearShadowMask*.png
|
|
// TileableLinearShadowMaskEDP*.png
|
|
|
|
#ifdef PHOSPHOR_MASK_GRILLE14
|
|
static const float mask_grille_avg_color = mask_grille14_avg_color;
|
|
#else
|
|
static const float mask_grille_avg_color = mask_grille15_avg_color;
|
|
#endif
|
|
|
|
|
|
#endif // USER_CGP_CONSTANTS_H
|
|
|
|
////////////////////////// END USER-CGP-CONSTANTS //////////////////////////
|
|
|
|
//////////////////////////////// END INCLUDES ////////////////////////////////
|
|
|
|
/////////////////////////////// FIXED SETTINGS ///////////////////////////////
|
|
|
|
// Avoid dividing by zero; using a macro overloads for float, float2, etc.:
|
|
#define FIX_ZERO(c) (max(abs(c), 0.0000152587890625)) // 2^-16
|
|
|
|
// Ensure the first pass decodes CRT gamma and the last encodes LCD gamma.
|
|
#ifndef SIMULATE_CRT_ON_LCD
|
|
#define SIMULATE_CRT_ON_LCD
|
|
#endif
|
|
|
|
// Manually tiling a manually resized texture creates texture coord derivative
|
|
// discontinuities and confuses anisotropic filtering, causing discolored tile
|
|
// seams in the phosphor mask. Workarounds:
|
|
// a.) Using tex2Dlod disables anisotropic filtering for tiled masks. It's
|
|
// downgraded to tex2Dbias without DRIVERS_ALLOW_TEX2DLOD #defined and
|
|
// disabled without DRIVERS_ALLOW_TEX2DBIAS #defined either.
|
|
// b.) "Tile flat twice" requires drawing two full tiles without border padding
|
|
// to the resized mask FBO, and it's incompatible with same-pass curvature.
|
|
// (Same-pass curvature isn't used but could be in the future...maybe.)
|
|
// c.) "Fix discontinuities" requires derivatives and drawing one tile with
|
|
// border padding to the resized mask FBO, but it works with same-pass
|
|
// curvature. It's disabled without DRIVERS_ALLOW_DERIVATIVES #defined.
|
|
// Precedence: a, then, b, then c (if multiple strategies are #defined).
|
|
#define ANISOTROPIC_TILING_COMPAT_TEX2DLOD // 129.7 FPS, 4x, flat; 101.8 at fullscreen
|
|
#define ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE // 128.1 FPS, 4x, flat; 101.5 at fullscreen
|
|
#define ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES // 124.4 FPS, 4x, flat; 97.4 at fullscreen
|
|
// Also, manually resampling the phosphor mask is slightly blurrier with
|
|
// anisotropic filtering. (Resampling with mipmapping is even worse: It
|
|
// creates artifacts, but only with the fully bloomed shader.) The difference
|
|
// is subtle with small triads, but you can fix it for a small cost.
|
|
//#define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
|
|
|
|
|
////////////////////////////// DERIVED SETTINGS //////////////////////////////
|
|
|
|
// Intel HD 4000 GPU's can't handle manual mask resizing (for now), setting the
|
|
// geometry mode at runtime, or a 4x4 true Gaussian resize. Disable
|
|
// incompatible settings ASAP. (INTEGRATED_GRAPHICS_COMPATIBILITY_MODE may be
|
|
// #defined by either user-settings.h or a wrapper .cg that #includes the
|
|
// current .cg pass.)
|
|
#ifdef INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
|
|
#ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
|
|
#undef PHOSPHOR_MASK_MANUALLY_RESIZE
|
|
#endif
|
|
#ifdef RUNTIME_GEOMETRY_MODE
|
|
#undef RUNTIME_GEOMETRY_MODE
|
|
#endif
|
|
// Mode 2 (4x4 Gaussian resize) won't work, and mode 1 (3x3 blur) is
|
|
// inferior in most cases, so replace 2.0 with 0.0:
|
|
static const float bloom_approx_filter =
|
|
bloom_approx_filter_static > 1.5 ? 0.0 : bloom_approx_filter_static;
|
|
#else
|
|
static const float bloom_approx_filter = bloom_approx_filter_static;
|
|
#endif
|
|
|
|
// Disable slow runtime paths if static parameters are used. Most of these
|
|
// won't be a problem anyway once the params are disabled, but some will.
|
|
#ifndef RUNTIME_SHADER_PARAMS_ENABLE
|
|
#ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
|
#undef RUNTIME_PHOSPHOR_BLOOM_SIGMA
|
|
#endif
|
|
#ifdef RUNTIME_ANTIALIAS_WEIGHTS
|
|
#undef RUNTIME_ANTIALIAS_WEIGHTS
|
|
#endif
|
|
#ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
|
#undef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
|
#endif
|
|
#ifdef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
|
#undef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
|
|
#endif
|
|
#ifdef RUNTIME_GEOMETRY_TILT
|
|
#undef RUNTIME_GEOMETRY_TILT
|
|
#endif
|
|
#ifdef RUNTIME_GEOMETRY_MODE
|
|
#undef RUNTIME_GEOMETRY_MODE
|
|
#endif
|
|
#ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
|
#undef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
|
#endif
|
|
#endif
|
|
|
|
// Make tex2Dbias a backup for tex2Dlod for wider compatibility.
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
|
|
#define ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
|
#endif
|
|
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
|
#define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
|
|
#endif
|
|
// Rule out unavailable anisotropic compatibility strategies:
|
|
#ifndef DRIVERS_ALLOW_DERIVATIVES
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
|
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
|
#endif
|
|
#endif
|
|
#ifndef DRIVERS_ALLOW_TEX2DLOD
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
|
|
#undef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
|
|
#endif
|
|
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
|
#undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
|
#endif
|
|
#ifdef ANTIALIAS_DISABLE_ANISOTROPIC
|
|
#undef ANTIALIAS_DISABLE_ANISOTROPIC
|
|
#endif
|
|
#endif
|
|
#ifndef DRIVERS_ALLOW_TEX2DBIAS
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
|
#undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
|
#endif
|
|
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
|
|
#undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
|
|
#endif
|
|
#endif
|
|
// Prioritize anisotropic tiling compatibility strategies by performance and
|
|
// disable unused strategies. This concentrates all the nesting in one place.
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
|
#undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
|
#endif
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
|
#undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
|
#endif
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
|
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
|
#endif
|
|
#else
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
|
#undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
|
#endif
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
|
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
|
#endif
|
|
#else
|
|
// ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE is only compatible with
|
|
// flat texture coords in the same pass, but that's all we use.
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
|
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#endif
|
|
// The tex2Dlod and tex2Dbias strategies share a lot in common, and we can
|
|
// reduce some #ifdef nesting in the next section by essentially OR'ing them:
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
|
|
#define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
|
|
#endif
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
|
|
#define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
|
|
#endif
|
|
// Prioritize anisotropic resampling compatibility strategies the same way:
|
|
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
|
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
|
|
#undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
|
|
#endif
|
|
#endif
|
|
|
|
|
|
/////////////////////// DERIVED PHOSPHOR MASK CONSTANTS //////////////////////
|
|
|
|
// If we can use the large mipmapped LUT without mipmapping artifacts, we
|
|
// should: It gives us more options for using fewer samples.
|
|
#ifdef DRIVERS_ALLOW_TEX2DLOD
|
|
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
|
|
// TODO: Take advantage of this!
|
|
#define PHOSPHOR_MASK_RESIZE_MIPMAPPED_LUT
|
|
static const float2 mask_resize_src_lut_size = mask_texture_large_size;
|
|
#else
|
|
static const float2 mask_resize_src_lut_size = mask_texture_small_size;
|
|
#endif
|
|
#else
|
|
static const float2 mask_resize_src_lut_size = mask_texture_small_size;
|
|
#endif
|
|
|
|
|
|
// tex2D's sampler2D parameter MUST be a uniform global, a uniform input to
|
|
// main_fragment, or a static alias of one of the above. This makes it hard
|
|
// to select the phosphor mask at runtime: We can't even assign to a uniform
|
|
// global in the vertex shader or select a sampler2D in the vertex shader and
|
|
// pass it to the fragment shader (even with explicit TEXUNIT# bindings),
|
|
// because it just gives us the input texture or a black screen. However, we
|
|
// can get around these limitations by calling tex2D three times with different
|
|
// uniform samplers (or resizing the phosphor mask three times altogether).
|
|
// With dynamic branches, we can process only one of these branches on top of
|
|
// quickly discarding fragments we don't need (cgc seems able to overcome
|
|
// limigations around dependent texture fetches inside of branches). Without
|
|
// dynamic branches, we have to process every branch for every fragment...which
|
|
// is slower. Runtime sampling mode selection is slower without dynamic
|
|
// branches as well. Let the user's static #defines decide if it's worth it.
|
|
#ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES
|
|
#define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
|
#else
|
|
#ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
|
#define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
|
#endif
|
|
#endif
|
|
|
|
// We need to render some minimum number of tiles in the resize passes.
|
|
// We need at least 1.0 just to repeat a single tile, and we need extra
|
|
// padding beyond that for anisotropic filtering, discontinuitity fixing,
|
|
// antialiasing, same-pass curvature (not currently used), etc. First
|
|
// determine how many border texels and tiles we need, based on how the result
|
|
// will be sampled:
|
|
#ifdef GEOMETRY_EARLY
|
|
static const float max_subpixel_offset = aa_subpixel_r_offset_static.x;
|
|
// Most antialiasing filters have a base radius of 4.0 pixels:
|
|
static const float max_aa_base_pixel_border = 4.0 +
|
|
max_subpixel_offset;
|
|
#else
|
|
static const float max_aa_base_pixel_border = 0.0;
|
|
#endif
|
|
// Anisotropic filtering adds about 0.5 to the pixel border:
|
|
#ifndef ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
|
|
static const float max_aniso_pixel_border = max_aa_base_pixel_border + 0.5;
|
|
#else
|
|
static const float max_aniso_pixel_border = max_aa_base_pixel_border;
|
|
#endif
|
|
// Fixing discontinuities adds 1.0 more to the pixel border:
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
|
|
static const float max_tiled_pixel_border = max_aniso_pixel_border + 1.0;
|
|
#else
|
|
static const float max_tiled_pixel_border = max_aniso_pixel_border;
|
|
#endif
|
|
// Convert the pixel border to an integer texel border. Assume same-pass
|
|
// curvature about triples the texel frequency:
|
|
#ifdef GEOMETRY_EARLY
|
|
static const float max_mask_texel_border =
|
|
ceil(max_tiled_pixel_border * 3.0);
|
|
#else
|
|
static const float max_mask_texel_border = ceil(max_tiled_pixel_border);
|
|
#endif
|
|
// Convert the texel border to a tile border using worst-case assumptions:
|
|
static const float max_mask_tile_border = max_mask_texel_border/
|
|
(mask_min_allowed_triad_size * mask_triads_per_tile);
|
|
|
|
// Finally, set the number of resized tiles to render to MASK_RESIZE, and set
|
|
// the starting texel (inside borders) for sampling it.
|
|
#ifndef GEOMETRY_EARLY
|
|
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
|
|
// Special case: Render two tiles without borders. Anisotropic
|
|
// filtering doesn't seem to be a problem here.
|
|
static const float mask_resize_num_tiles = 1.0 + 1.0;
|
|
static const float mask_start_texels = 0.0;
|
|
#else
|
|
static const float mask_resize_num_tiles = 1.0 +
|
|
2.0 * max_mask_tile_border;
|
|
static const float mask_start_texels = max_mask_texel_border;
|
|
#endif
|
|
#else
|
|
static const float mask_resize_num_tiles = 1.0 + 2.0*max_mask_tile_border;
|
|
static const float mask_start_texels = max_mask_texel_border;
|
|
#endif
|
|
|
|
// We have to fit mask_resize_num_tiles into an FBO with a viewport scale of
|
|
// mask_resize_viewport_scale. This limits the maximum final triad size.
|
|
// Estimate the minimum number of triads we can split the screen into in each
|
|
// dimension (we'll be as correct as mask_resize_viewport_scale is):
|
|
static const float mask_resize_num_triads =
|
|
mask_resize_num_tiles * mask_triads_per_tile;
|
|
static const float2 min_allowed_viewport_triads =
|
|
float2(mask_resize_num_triads) / mask_resize_viewport_scale;
|
|
|
|
|
|
//////////////////////// COMMON MATHEMATICAL CONSTANTS ///////////////////////
|
|
|
|
static const float pi = 3.141592653589;
|
|
// We often want to find the location of the previous texel, e.g.:
|
|
// const float2 curr_texel = uv * texture_size;
|
|
// const float2 prev_texel = floor(curr_texel - float2(0.5)) + float2(0.5);
|
|
// const float2 prev_texel_uv = prev_texel / texture_size;
|
|
// However, many GPU drivers round incorrectly around exact texel locations.
|
|
// We need to subtract a little less than 0.5 before flooring, and some GPU's
|
|
// require this value to be farther from 0.5 than others; define it here.
|
|
// const float2 prev_texel =
|
|
// floor(curr_texel - float2(under_half)) + float2(0.5);
|
|
static const float under_half = 0.4995;
|
|
|
|
|
|
#endif // DERIVED_SETTINGS_AND_CONSTANTS_H
|
|
|
|
//////////////////// END DERIVED-SETTINGS-AND-CONSTANTS /////////////////////
|
|
|
|
//////////////////////////////// END INCLUDES ////////////////////////////////
|
|
|
|
// Override some parameters for gamma-management.h and tex2Dantialias.h:
|
|
#define OVERRIDE_DEVICE_GAMMA
|
|
static const float gba_gamma = 3.5; // Irrelevant but necessary to define.
|
|
#define ANTIALIAS_OVERRIDE_BASICS
|
|
#define ANTIALIAS_OVERRIDE_PARAMETERS
|
|
|
|
// Provide accessors for vector constants that pack scalar uniforms:
|
|
inline float2 get_aspect_vector(const float geom_aspect_ratio)
|
|
{
|
|
// Get an aspect ratio vector. Enforce geom_max_aspect_ratio, and prevent
|
|
// the absolute scale from affecting the uv-mapping for curvature:
|
|
const float geom_clamped_aspect_ratio =
|
|
min(geom_aspect_ratio, geom_max_aspect_ratio);
|
|
const float2 geom_aspect =
|
|
normalize(float2(geom_clamped_aspect_ratio, 1.0));
|
|
return geom_aspect;
|
|
}
|
|
|
|
inline float2 get_geom_overscan_vector()
|
|
{
|
|
return float2(geom_overscan_x, geom_overscan_y);
|
|
}
|
|
|
|
inline float2 get_geom_tilt_angle_vector()
|
|
{
|
|
return float2(geom_tilt_angle_x, geom_tilt_angle_y);
|
|
}
|
|
|
|
inline float3 get_convergence_offsets_x_vector()
|
|
{
|
|
return float3(convergence_offset_x_r, convergence_offset_x_g,
|
|
convergence_offset_x_b);
|
|
}
|
|
|
|
inline float3 get_convergence_offsets_y_vector()
|
|
{
|
|
return float3(convergence_offset_y_r, convergence_offset_y_g,
|
|
convergence_offset_y_b);
|
|
}
|
|
|
|
inline float2 get_convergence_offsets_r_vector()
|
|
{
|
|
return float2(convergence_offset_x_r, convergence_offset_y_r);
|
|
}
|
|
|
|
inline float2 get_convergence_offsets_g_vector()
|
|
{
|
|
return float2(convergence_offset_x_g, convergence_offset_y_g);
|
|
}
|
|
|
|
inline float2 get_convergence_offsets_b_vector()
|
|
{
|
|
return float2(convergence_offset_x_b, convergence_offset_y_b);
|
|
}
|
|
|
|
inline float2 get_aa_subpixel_r_offset()
|
|
{
|
|
#ifdef RUNTIME_ANTIALIAS_WEIGHTS
|
|
#ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
|
|
// WARNING: THIS IS EXTREMELY EXPENSIVE.
|
|
return float2(aa_subpixel_r_offset_x_runtime,
|
|
aa_subpixel_r_offset_y_runtime);
|
|
#else
|
|
return aa_subpixel_r_offset_static;
|
|
#endif
|
|
#else
|
|
return aa_subpixel_r_offset_static;
|
|
#endif
|
|
}
|
|
|
|
// Provide accessors settings which still need "cooking:"
|
|
inline float get_mask_amplify()
|
|
{
|
|
static const float mask_grille_amplify = 1.0/mask_grille_avg_color;
|
|
static const float mask_slot_amplify = 1.0/mask_slot_avg_color;
|
|
static const float mask_shadow_amplify = 1.0/mask_shadow_avg_color;
|
|
return mask_type < 0.5 ? mask_grille_amplify :
|
|
mask_type < 1.5 ? mask_slot_amplify :
|
|
mask_shadow_amplify;
|
|
}
|
|
|
|
inline float get_mask_sample_mode()
|
|
{
|
|
#ifdef RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
|
|
#ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
|
|
return mask_sample_mode_desired;
|
|
#else
|
|
return clamp(mask_sample_mode_desired, 1.0, 2.0);
|
|
#endif
|
|
#else
|
|
#ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
|
|
return mask_sample_mode_static;
|
|
#else
|
|
return clamp(mask_sample_mode_static, 1.0, 2.0);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
#endif // BIND_SHADER_PARAMS_H
|
|
|
|
//////////////////////////// END BIND-SHADER-PARAMS ///////////////////////////
|
|
|
|
#ifndef RUNTIME_GEOMETRY_TILT
|
|
// Create a local-to-global rotation matrix for the CRT's coordinate frame
|
|
// and its global-to-local inverse. See the vertex shader for details.
|
|
// It's faster to compute these statically if possible.
|
|
static const float2 sin_tilt = sin(geom_tilt_angle_static);
|
|
static const float2 cos_tilt = cos(geom_tilt_angle_static);
|
|
static const float3x3 geom_local_to_global_static = float3x3(
|
|
cos_tilt.x, sin_tilt.y*sin_tilt.x, cos_tilt.y*sin_tilt.x,
|
|
0.0, cos_tilt.y, -sin_tilt.y,
|
|
-sin_tilt.x, sin_tilt.y*cos_tilt.x, cos_tilt.y*cos_tilt.x);
|
|
static const float3x3 geom_global_to_local_static = float3x3(
|
|
cos_tilt.x, 0.0, -sin_tilt.x,
|
|
sin_tilt.y*sin_tilt.x, cos_tilt.y, sin_tilt.y*cos_tilt.x,
|
|
cos_tilt.y*sin_tilt.x, -sin_tilt.y, cos_tilt.y*cos_tilt.x);
|
|
#endif
|
|
|
|
////////////////////////////////// INCLUDES //////////////////////////////////
|
|
|
|
//#include "../../../../include/gamma-management.h"
|
|
|
|
//////////////////////////// BEGIN GAMMA-MANAGEMENT //////////////////////////
|
|
|
|
#ifndef GAMMA_MANAGEMENT_H
|
|
#define GAMMA_MANAGEMENT_H
|
|
|
|
///////////////////////////////// MIT LICENSE ////////////////////////////////
|
|
|
|
// Copyright (C) 2014 TroggleMonkey
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
// of this software and associated documentation files (the "Software"), to
|
|
// deal in the Software without restriction, including without limitation the
|
|
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
// sell copies of the Software, and to permit persons to whom the Software is
|
|
// furnished to do so, subject to the following conditions:
|
|
//
|
|
// The above copyright notice and this permission notice shall be included in
|
|
// all copies or substantial portions of the Software.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
// IN THE SOFTWARE.
|
|
|
|
///////////////////////////////// DESCRIPTION ////////////////////////////////
|
|
|
|
// This file provides gamma-aware tex*D*() and encode_output() functions.
|
|
// Requires: Before #include-ing this file, the including file must #define
|
|
// the following macros when applicable and follow their rules:
|
|
// 1.) #define FIRST_PASS if this is the first pass.
|
|
// 2.) #define LAST_PASS if this is the last pass.
|
|
// 3.) If sRGB is available, set srgb_framebufferN = "true" for
|
|
// every pass except the last in your .cgp preset.
|
|
// 4.) If sRGB isn't available but you want gamma-correctness with
|
|
// no banding, #define GAMMA_ENCODE_EVERY_FBO each pass.
|
|
// 5.) #define SIMULATE_CRT_ON_LCD if desired (precedence over 5-7)
|
|
// 6.) #define SIMULATE_GBA_ON_LCD if desired (precedence over 6-7)
|
|
// 7.) #define SIMULATE_LCD_ON_CRT if desired (precedence over 7)
|
|
// 8.) #define SIMULATE_GBA_ON_CRT if desired (precedence over -)
|
|
// If an option in [5, 8] is #defined in the first or last pass, it
|
|
// should be #defined for both. It shouldn't make a difference
|
|
// whether it's #defined for intermediate passes or not.
|
|
// Optional: The including file (or an earlier included file) may optionally
|
|
// #define a number of macros indicating it will override certain
|
|
// macros and associated constants are as follows:
|
|
// static constants with either static or uniform constants. The
|
|
// 1.) OVERRIDE_STANDARD_GAMMA: The user must first define:
|
|
// static const float ntsc_gamma
|
|
// static const float pal_gamma
|
|
// static const float crt_reference_gamma_high
|
|
// static const float crt_reference_gamma_low
|
|
// static const float lcd_reference_gamma
|
|
// static const float crt_office_gamma
|
|
// static const float lcd_office_gamma
|
|
// 2.) OVERRIDE_DEVICE_GAMMA: The user must first define:
|
|
// static const float crt_gamma
|
|
// static const float gba_gamma
|
|
// static const float lcd_gamma
|
|
// 3.) OVERRIDE_FINAL_GAMMA: The user must first define:
|
|
// static const float input_gamma
|
|
// static const float intermediate_gamma
|
|
// static const float output_gamma
|
|
// (intermediate_gamma is for GAMMA_ENCODE_EVERY_FBO.)
|
|
// 4.) OVERRIDE_ALPHA_ASSUMPTIONS: The user must first define:
|
|
// static const bool assume_opaque_alpha
|
|
// The gamma constant overrides must be used in every pass or none,
|
|
// and OVERRIDE_FINAL_GAMMA bypasses all of the SIMULATE* macros.
|
|
// OVERRIDE_ALPHA_ASSUMPTIONS may be set on a per-pass basis.
|
|
// Usage: After setting macros appropriately, ignore gamma correction and
|
|
// replace all tex*D*() calls with equivalent gamma-aware
|
|
// tex*D*_linearize calls, except:
|
|
// 1.) When you read an LUT, use regular tex*D or a gamma-specified
|
|
// function, depending on its gamma encoding:
|
|
// tex*D*_linearize_gamma (takes a runtime gamma parameter)
|
|
// 2.) If you must read pass0's original input in a later pass, use
|
|
// tex2D_linearize_ntsc_gamma. If you want to read pass0's
|
|
// input with gamma-corrected bilinear filtering, consider
|
|
// creating a first linearizing pass and reading from the input
|
|
// of pass1 later.
|
|
// Then, return encode_output(color) from every fragment shader.
|
|
// Finally, use the global gamma_aware_bilinear boolean if you want
|
|
// to statically branch based on whether bilinear filtering is
|
|
// gamma-correct or not (e.g. for placing Gaussian blur samples).
|
|
//
|
|
// Detailed Policy:
|
|
// tex*D*_linearize() functions enforce a consistent gamma-management policy
|
|
// based on the FIRST_PASS and GAMMA_ENCODE_EVERY_FBO settings. They assume
|
|
// their input texture has the same encoding characteristics as the input for
|
|
// the current pass (which doesn't apply to the exceptions listed above).
|
|
// Similarly, encode_output() enforces a policy based on the LAST_PASS and
|
|
// GAMMA_ENCODE_EVERY_FBO settings. Together, they result in one of the
|
|
// following two pipelines.
|
|
// Typical pipeline with intermediate sRGB framebuffers:
|
|
// linear_color = pow(pass0_encoded_color, input_gamma);
|
|
// intermediate_output = linear_color; // Automatic sRGB encoding
|
|
// linear_color = intermediate_output; // Automatic sRGB decoding
|
|
// final_output = pow(intermediate_output, 1.0/output_gamma);
|
|
// Typical pipeline without intermediate sRGB framebuffers:
|
|
// linear_color = pow(pass0_encoded_color, input_gamma);
|
|
// intermediate_output = pow(linear_color, 1.0/intermediate_gamma);
|
|
// linear_color = pow(intermediate_output, intermediate_gamma);
|
|
// final_output = pow(intermediate_output, 1.0/output_gamma);
|
|
// Using GAMMA_ENCODE_EVERY_FBO is much slower, but it's provided as a way to
|
|
// easily get gamma-correctness without banding on devices where sRGB isn't
|
|
// supported.
|
|
//
|
|
// Use This Header to Maximize Code Reuse:
|
|
// The purpose of this header is to provide a consistent interface for texture
|
|
// reads and output gamma-encoding that localizes and abstracts away all the
|
|
// annoying details. This greatly reduces the amount of code in each shader
|
|
// pass that depends on the pass number in the .cgp preset or whether sRGB
|
|
// FBO's are being used: You can trivially change the gamma behavior of your
|
|
// whole pass by commenting or uncommenting 1-3 #defines. To reuse the same
|
|
// code in your first, Nth, and last passes, you can even put it all in another
|
|
// header file and #include it from skeleton .cg files that #define the
|
|
// appropriate pass-specific settings.
|
|
//
|
|
// Rationale for Using Three Macros:
|
|
// This file uses GAMMA_ENCODE_EVERY_FBO instead of an opposite macro like
|
|
// SRGB_PIPELINE to ensure sRGB is assumed by default, which hopefully imposes
|
|
// a lower maintenance burden on each pass. At first glance it seems we could
|
|
// accomplish everything with two macros: GAMMA_CORRECT_IN / GAMMA_CORRECT_OUT.
|
|
// This works for simple use cases where input_gamma == output_gamma, but it
|
|
// breaks down for more complex scenarios like CRT simulation, where the pass
|
|
// number determines the gamma encoding of the input and output.
|
|
|
|
|
|
/////////////////////////////// BASE CONSTANTS ///////////////////////////////
|
|
|
|
// Set standard gamma constants, but allow users to override them:
|
|
#ifndef OVERRIDE_STANDARD_GAMMA
|
|
// Standard encoding gammas:
|
|
static const float ntsc_gamma = 2.2; // Best to use NTSC for PAL too?
|
|
static const float pal_gamma = 2.8; // Never actually 2.8 in practice
|
|
// Typical device decoding gammas (only use for emulating devices):
|
|
// CRT/LCD reference gammas are higher than NTSC and Rec.709 video standard
|
|
// gammas: The standards purposely undercorrected for an analog CRT's
|
|
// assumed 2.5 reference display gamma to maintain contrast in assumed
|
|
// [dark] viewing conditions: http://www.poynton.com/PDFs/GammaFAQ.pdf
|
|
// These unstated assumptions about display gamma and perceptual rendering
|
|
// intent caused a lot of confusion, and more modern CRT's seemed to target
|
|
// NTSC 2.2 gamma with circuitry. LCD displays seem to have followed suit
|
|
// (they struggle near black with 2.5 gamma anyway), especially PC/laptop
|
|
// displays designed to view sRGB in bright environments. (Standards are
|
|
// also in flux again with BT.1886, but it's underspecified for displays.)
|
|
static const float crt_reference_gamma_high = 2.5; // In (2.35, 2.55)
|
|
static const float crt_reference_gamma_low = 2.35; // In (2.35, 2.55)
|
|
static const float lcd_reference_gamma = 2.5; // To match CRT
|
|
static const float crt_office_gamma = 2.2; // Circuitry-adjusted for NTSC
|
|
static const float lcd_office_gamma = 2.2; // Approximates sRGB
|
|
#endif // OVERRIDE_STANDARD_GAMMA
|
|
|
|
// Assuming alpha == 1.0 might make it easier for users to avoid some bugs,
|
|
// but only if they're aware of it.
|
|
#ifndef OVERRIDE_ALPHA_ASSUMPTIONS
|
|
static const bool assume_opaque_alpha = false;
|
|
#endif
|
|
|
|
|
|
/////////////////////// DERIVED CONSTANTS AS FUNCTIONS ///////////////////////
|
|
|
|
// gamma-management.h should be compatible with overriding gamma values with
|
|
// runtime user parameters, but we can only define other global constants in
|
|
// terms of static constants, not uniform user parameters. To get around this
|
|
// limitation, we need to define derived constants using functions.
|
|
|
|
// Set device gamma constants, but allow users to override them:
|
|
#ifdef OVERRIDE_DEVICE_GAMMA
|
|
// The user promises to globally define the appropriate constants:
|
|
inline float get_crt_gamma() { return crt_gamma; }
|
|
inline float get_gba_gamma() { return gba_gamma; }
|
|
inline float get_lcd_gamma() { return lcd_gamma; }
|
|
#else
|
|
inline float get_crt_gamma() { return crt_reference_gamma_high; }
|
|
inline float get_gba_gamma() { return 3.5; } // Game Boy Advance; in (3.0, 4.0)
|
|
inline float get_lcd_gamma() { return lcd_office_gamma; }
|
|
#endif // OVERRIDE_DEVICE_GAMMA
|
|
|
|
// Set decoding/encoding gammas for the first/lass passes, but allow overrides:
|
|
#ifdef OVERRIDE_FINAL_GAMMA
|
|
// The user promises to globally define the appropriate constants:
|
|
inline float get_intermediate_gamma() { return intermediate_gamma; }
|
|
inline float get_input_gamma() { return input_gamma; }
|
|
inline float get_output_gamma() { return output_gamma; }
|
|
#else
|
|
// If we gamma-correct every pass, always use ntsc_gamma between passes to
|
|
// ensure middle passes don't need to care if anything is being simulated:
|
|
inline float get_intermediate_gamma() { return ntsc_gamma; }
|
|
#ifdef SIMULATE_CRT_ON_LCD
|
|
inline float get_input_gamma() { return get_crt_gamma(); }
|
|
inline float get_output_gamma() { return get_lcd_gamma(); }
|
|
#else
|
|
#ifdef SIMULATE_GBA_ON_LCD
|
|
inline float get_input_gamma() { return get_gba_gamma(); }
|
|
inline float get_output_gamma() { return get_lcd_gamma(); }
|
|
#else
|
|
#ifdef SIMULATE_LCD_ON_CRT
|
|
inline float get_input_gamma() { return get_lcd_gamma(); }
|
|
inline float get_output_gamma() { return get_crt_gamma(); }
|
|
#else
|
|
#ifdef SIMULATE_GBA_ON_CRT
|
|
inline float get_input_gamma() { return get_gba_gamma(); }
|
|
inline float get_output_gamma() { return get_crt_gamma(); }
|
|
#else // Don't simulate anything:
|
|
inline float get_input_gamma() { return ntsc_gamma; }
|
|
inline float get_output_gamma() { return ntsc_gamma; }
|
|
#endif // SIMULATE_GBA_ON_CRT
|
|
#endif // SIMULATE_LCD_ON_CRT
|
|
#endif // SIMULATE_GBA_ON_LCD
|
|
#endif // SIMULATE_CRT_ON_LCD
|
|
#endif // OVERRIDE_FINAL_GAMMA
|
|
|
|
// Set decoding/encoding gammas for the current pass. Use static constants for
|
|
// linearize_input and gamma_encode_output, because they aren't derived, and
|
|
// they let the compiler do dead-code elimination.
|
|
#ifndef GAMMA_ENCODE_EVERY_FBO
|
|
#ifdef FIRST_PASS
|
|
static const bool linearize_input = true;
|
|
inline float get_pass_input_gamma() { return get_input_gamma(); }
|
|
#else
|
|
static const bool linearize_input = false;
|
|
inline float get_pass_input_gamma() { return 1.0; }
|
|
#endif
|
|
#ifdef LAST_PASS
|
|
static const bool gamma_encode_output = true;
|
|
inline float get_pass_output_gamma() { return get_output_gamma(); }
|
|
#else
|
|
static const bool gamma_encode_output = false;
|
|
inline float get_pass_output_gamma() { return 1.0; }
|
|
#endif
|
|
#else
|
|
static const bool linearize_input = true;
|
|
static const bool gamma_encode_output = true;
|
|
#ifdef FIRST_PASS
|
|
inline float get_pass_input_gamma() { return get_input_gamma(); }
|
|
#else
|
|
inline float get_pass_input_gamma() { return get_intermediate_gamma(); }
|
|
#endif
|
|
#ifdef LAST_PASS
|
|
inline float get_pass_output_gamma() { return get_output_gamma(); }
|
|
#else
|
|
inline float get_pass_output_gamma() { return get_intermediate_gamma(); }
|
|
#endif
|
|
#endif
|
|
|
|
// Users might want to know if bilinear filtering will be gamma-correct:
|
|
static const bool gamma_aware_bilinear = !linearize_input;
|
|
|
|
|
|
////////////////////// COLOR ENCODING/DECODING FUNCTIONS /////////////////////
|
|
|
|
inline float4 encode_output(const float4 color)
|
|
{
|
|
if(gamma_encode_output)
|
|
{
|
|
if(assume_opaque_alpha)
|
|
{
|
|
return float4(pow(color.rgb, float3(1.0/get_pass_output_gamma())), 1.0);
|
|
}
|
|
else
|
|
{
|
|
return float4(pow(color.rgb, float3(1.0/get_pass_output_gamma())), color.a);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
return color;
|
|
}
|
|
}
|
|
|
|
inline float4 decode_input(const float4 color)
|
|
{
|
|
if(linearize_input)
|
|
{
|
|
if(assume_opaque_alpha)
|
|
{
|
|
return float4(pow(color.rgb, float3(get_pass_input_gamma())), 1.0);
|
|
}
|
|
else
|
|
{
|
|
return float4(pow(color.rgb, float3(get_pass_input_gamma())), color.a);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
return color;
|
|
}
|
|
}
|
|
|
|
inline float4 decode_gamma_input(const float4 color, const float3 gamma)
|
|
{
|
|
if(assume_opaque_alpha)
|
|
{
|
|
return float4(pow(color.rgb, gamma), 1.0);
|
|
}
|
|
else
|
|
{
|
|
return float4(pow(color.rgb, gamma), color.a);
|
|
}
|
|
}
|
|
|
|
//TODO/FIXME: I have no idea why replacing the lookup wrappers with this macro fixes the blurs being offset ¯\_(ツ)_/¯
|
|
//#define tex2D_linearize(C, D) decode_input(vec4(COMPAT_TEXTURE(C, D)))
|
|
// EDIT: it's the 'const' in front of the coords that's doing it
|
|
|
|
/////////////////////////// TEXTURE LOOKUP WRAPPERS //////////////////////////
|
|
|
|
// "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS:
|
|
// Provide a wide array of linearizing texture lookup wrapper functions. The
|
|
// Cg shader spec Retroarch uses only allows for 2D textures, but 1D and 3D
|
|
// lookups are provided for completeness in case that changes someday. Nobody
|
|
// is likely to use the *fetch and *proj functions, but they're included just
|
|
// in case. The only tex*D texture sampling functions omitted are:
|
|
// - tex*Dcmpbias
|
|
// - tex*Dcmplod
|
|
// - tex*DARRAY*
|
|
// - tex*DMS*
|
|
// - Variants returning integers
|
|
// Standard line length restrictions are ignored below for vertical brevity.
|
|
/*
|
|
// tex1D:
|
|
inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords)
|
|
{ return decode_input(tex1D(tex, tex_coords)); }
|
|
|
|
inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords)
|
|
{ return decode_input(tex1D(tex, tex_coords)); }
|
|
|
|
inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const int texel_off)
|
|
{ return decode_input(tex1D(tex, tex_coords, texel_off)); }
|
|
|
|
inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off)
|
|
{ return decode_input(tex1D(tex, tex_coords, texel_off)); }
|
|
|
|
inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy)
|
|
{ return decode_input(tex1D(tex, tex_coords, dx, dy)); }
|
|
|
|
inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy)
|
|
{ return decode_input(tex1D(tex, tex_coords, dx, dy)); }
|
|
|
|
inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy, const int texel_off)
|
|
{ return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); }
|
|
|
|
inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy, const int texel_off)
|
|
{ return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); }
|
|
|
|
// tex1Dbias:
|
|
inline float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords)
|
|
{ return decode_input(tex1Dbias(tex, tex_coords)); }
|
|
|
|
inline float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off)
|
|
{ return decode_input(tex1Dbias(tex, tex_coords, texel_off)); }
|
|
|
|
// tex1Dfetch:
|
|
inline float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords)
|
|
{ return decode_input(tex1Dfetch(tex, tex_coords)); }
|
|
|
|
inline float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords, const int texel_off)
|
|
{ return decode_input(tex1Dfetch(tex, tex_coords, texel_off)); }
|
|
|
|
// tex1Dlod:
|
|
inline float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords)
|
|
{ return decode_input(tex1Dlod(tex, tex_coords)); }
|
|
|
|
inline float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off)
|
|
{ return decode_input(tex1Dlod(tex, tex_coords, texel_off)); }
|
|
|
|
// tex1Dproj:
|
|
inline float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords)
|
|
{ return decode_input(tex1Dproj(tex, tex_coords)); }
|
|
|
|
inline float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords)
|
|
{ return decode_input(tex1Dproj(tex, tex_coords)); }
|
|
|
|
inline float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off)
|
|
{ return decode_input(tex1Dproj(tex, tex_coords, texel_off)); }
|
|
|
|
inline float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords, const int texel_off)
|
|
{ return decode_input(tex1Dproj(tex, tex_coords, texel_off)); }
|
|
*/
|
|
// tex2D:
|
|
inline float4 tex2D_linearize(const sampler2D tex, float2 tex_coords)
|
|
{ return decode_input(COMPAT_TEXTURE(tex, tex_coords)); }
|
|
|
|
inline float4 tex2D_linearize(const sampler2D tex, float3 tex_coords)
|
|
{ return decode_input(COMPAT_TEXTURE(tex, tex_coords.xy)); }
|
|
|
|
inline float4 tex2D_linearize(const sampler2D tex, float2 tex_coords, int texel_off)
|
|
{ return decode_input(textureLod(tex, tex_coords, texel_off)); }
|
|
|
|
inline float4 tex2D_linearize(const sampler2D tex, float3 tex_coords, int texel_off)
|
|
{ return decode_input(textureLod(tex, tex_coords.xy, texel_off)); }
|
|
|
|
//inline float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy)
|
|
//{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy)); }
|
|
|
|
//inline float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy)
|
|
//{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy)); }
|
|
|
|
//inline float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off)
|
|
//{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off)); }
|
|
|
|
//inline float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off)
|
|
//{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off)); }
|
|
|
|
// tex2Dbias:
|
|
//inline float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords)
|
|
//{ return decode_input(tex2Dbias(tex, tex_coords)); }
|
|
|
|
//inline float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off)
|
|
//{ return decode_input(tex2Dbias(tex, tex_coords, texel_off)); }
|
|
|
|
// tex2Dfetch:
|
|
//inline float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords)
|
|
//{ return decode_input(tex2Dfetch(tex, tex_coords)); }
|
|
|
|
//inline float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords, const int texel_off)
|
|
//{ return decode_input(tex2Dfetch(tex, tex_coords, texel_off)); }
|
|
|
|
// tex2Dlod:
|
|
inline float4 tex2Dlod_linearize(const sampler2D tex, float4 tex_coords)
|
|
{ return decode_input(textureLod(tex, tex_coords.xy, 0.0)); }
|
|
|
|
inline float4 tex2Dlod_linearize(const sampler2D tex, float4 tex_coords, int texel_off)
|
|
{ return decode_input(textureLod(tex, tex_coords.xy, texel_off)); }
|
|
/*
|
|
// tex2Dproj:
|
|
inline float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords)
|
|
{ return decode_input(tex2Dproj(tex, tex_coords)); }
|
|
|
|
inline float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords)
|
|
{ return decode_input(tex2Dproj(tex, tex_coords)); }
|
|
|
|
inline float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords, const int texel_off)
|
|
{ return decode_input(tex2Dproj(tex, tex_coords, texel_off)); }
|
|
|
|
inline float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off)
|
|
{ return decode_input(tex2Dproj(tex, tex_coords, texel_off)); }
|
|
*/
|
|
/*
|
|
// tex3D:
|
|
inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords)
|
|
{ return decode_input(tex3D(tex, tex_coords)); }
|
|
|
|
inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const int texel_off)
|
|
{ return decode_input(tex3D(tex, tex_coords, texel_off)); }
|
|
|
|
inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy)
|
|
{ return decode_input(tex3D(tex, tex_coords, dx, dy)); }
|
|
|
|
inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy, const int texel_off)
|
|
{ return decode_input(tex3D(tex, tex_coords, dx, dy, texel_off)); }
|
|
|
|
// tex3Dbias:
|
|
inline float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords)
|
|
{ return decode_input(tex3Dbias(tex, tex_coords)); }
|
|
|
|
inline float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
|
|
{ return decode_input(tex3Dbias(tex, tex_coords, texel_off)); }
|
|
|
|
// tex3Dfetch:
|
|
inline float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords)
|
|
{ return decode_input(tex3Dfetch(tex, tex_coords)); }
|
|
|
|
inline float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords, const int texel_off)
|
|
{ return decode_input(tex3Dfetch(tex, tex_coords, texel_off)); }
|
|
|
|
// tex3Dlod:
|
|
inline float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords)
|
|
{ return decode_input(tex3Dlod(tex, tex_coords)); }
|
|
|
|
inline float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
|
|
{ return decode_input(tex3Dlod(tex, tex_coords, texel_off)); }
|
|
|
|
// tex3Dproj:
|
|
inline float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords)
|
|
{ return decode_input(tex3Dproj(tex, tex_coords)); }
|
|
|
|
inline float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
|
|
{ return decode_input(tex3Dproj(tex, tex_coords, texel_off)); }
|
|
/////////*
|
|
|
|
// NONSTANDARD "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS:
|
|
// This narrow selection of nonstandard tex2D* functions can be useful:
|
|
|
|
// tex2Dlod0: Automatically fill in the tex2D LOD parameter for mip level 0.
|
|
//inline float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords)
|
|
//{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0))); }
|
|
|
|
//inline float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords, const int texel_off)
|
|
//{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0), texel_off)); }
|
|
|
|
|
|
// MANUALLY LINEARIZING TEXTURE LOOKUP FUNCTIONS:
|
|
// Provide a narrower selection of tex2D* wrapper functions that decode an
|
|
// input sample with a specified gamma value. These are useful for reading
|
|
// LUT's and for reading the input of pass0 in a later pass.
|
|
|
|
// tex2D:
|
|
inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float3 gamma)
|
|
{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords), gamma); }
|
|
|
|
inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float3 gamma)
|
|
{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords.xy), gamma); }
|
|
|
|
//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const int texel_off, const float3 gamma)
|
|
//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, texel_off), gamma); }
|
|
|
|
//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const int texel_off, const float3 gamma)
|
|
//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, texel_off), gamma); }
|
|
|
|
//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const float3 gamma)
|
|
//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy), gamma); }
|
|
|
|
//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const float3 gamma)
|
|
//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy), gamma); }
|
|
|
|
//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma)
|
|
//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off), gamma); }
|
|
|
|
//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma)
|
|
//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off), gamma); }
|
|
/*
|
|
// tex2Dbias:
|
|
inline float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const float3 gamma)
|
|
{ return decode_gamma_input(tex2Dbias(tex, tex_coords), gamma); }
|
|
|
|
inline float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const int texel_off, const float3 gamma)
|
|
{ return decode_gamma_input(tex2Dbias(tex, tex_coords, texel_off), gamma); }
|
|
|
|
// tex2Dfetch:
|
|
inline float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const float3 gamma)
|
|
{ return decode_gamma_input(tex2Dfetch(tex, tex_coords), gamma); }
|
|
|
|
inline float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const int texel_off, const float3 gamma)
|
|
{ return decode_gamma_input(tex2Dfetch(tex, tex_coords, texel_off), gamma); }
|
|
*/
|
|
// tex2Dlod:
|
|
inline float4 tex2Dlod_linearize_gamma(const sampler2D tex, float4 tex_coords, float3 gamma)
|
|
{ return decode_gamma_input(textureLod(tex, tex_coords.xy, 0.0), gamma); }
|
|
|
|
inline float4 tex2Dlod_linearize_gamma(const sampler2D tex, float4 tex_coords, int texel_off, float3 gamma)
|
|
{ return decode_gamma_input(textureLod(tex, tex_coords.xy, texel_off), gamma); }
|
|
|
|
|
|
#endif // GAMMA_MANAGEMENT_H
|
|
|
|
//////////////////////////// END GAMMA-MANAGEMENT //////////////////////////
|
|
|
|
//#include "tex2Dantialias.h"
|
|
|
|
///////////////////////// BEGIN TEX2DANTIALIAS /////////////////////////
|
|
|
|
#ifndef TEX2DANTIALIAS_H
|
|
#define TEX2DANTIALIAS_H
|
|
|
|
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
|
|
|
|
// crt-royale: A full-featured CRT shader, with cheese.
|
|
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
|
|
//
|
|
// This program is free software; you can redistribute it and/or modify it
|
|
// under the terms of the GNU General Public License as published by the Free
|
|
// Software Foundation; either version 2 of the License, or any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
// more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License along with
|
|
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
|
// Place, Suite 330, Boston, MA 02111-1307 USA
|
|
|
|
|
|
///////////////////////////////// DESCRIPTION ////////////////////////////////
|
|
|
|
// This file provides antialiased and subpixel-aware tex2D lookups.
|
|
// Requires: All functions share these requirements:
|
|
// 1.) All requirements of gamma-management.h must be satisfied!
|
|
// 2.) pixel_to_tex_uv must be a 2x2 matrix that transforms pixe-
|
|
// space offsets to texture uv offsets. You can get this with:
|
|
// const float2 duv_dx = ddx(tex_uv);
|
|
// const float2 duv_dy = ddy(tex_uv);
|
|
// const float2x2 pixel_to_tex_uv = float2x2(
|
|
// duv_dx.x, duv_dy.x,
|
|
// duv_dx.y, duv_dy.y);
|
|
// This is left to the user in case the current Cg profile
|
|
// doesn't support ddx()/ddy(). Ideally, the user could find
|
|
// calculate a distorted tangent-space mapping analytically.
|
|
// If not, a simple flat mapping can be obtained with:
|
|
// const float2 xy_to_uv_scale = output_size *
|
|
// video_size/texture_size;
|
|
// const float2x2 pixel_to_tex_uv = float2x2(
|
|
// xy_to_uv_scale.x, 0.0,
|
|
// 0.0, xy_to_uv_scale.y);
|
|
// Optional: To set basic AA settings, #define ANTIALIAS_OVERRIDE_BASICS and:
|
|
// 1.) Set an antialiasing level:
|
|
// static const float aa_level = {0 (none),
|
|
// 1 (sample subpixels), 4, 5, 6, 7, 8, 12, 16, 20, 24}
|
|
// 2.) Set a filter type:
|
|
// static const float aa_filter = {
|
|
// 0 (Box, Separable), 1 (Box, Cylindrical),
|
|
// 2 (Tent, Separable), 3 (Tent, Cylindrical)
|
|
// 4 (Gaussian, Separable), 5 (Gaussian, Cylindrical)
|
|
// 6 (Cubic, Separable), 7 (Cubic, Cylindrical)
|
|
// 8 (Lanczos Sinc, Separable),
|
|
// 9 (Lanczos Jinc, Cylindrical)}
|
|
// If the input is unknown, a separable box filter is used.
|
|
// Note: Lanczos Jinc is terrible for sparse sampling, and
|
|
// using aa_axis_importance (see below) defeats the purpose.
|
|
// 3.) Mirror the sample pattern on odd frames?
|
|
// static const bool aa_temporal = {true, false]
|
|
// This helps rotational invariance but can look "fluttery."
|
|
// The user may #define ANTIALIAS_OVERRIDE_PARAMETERS to override
|
|
// (all of) the following default parameters with static or uniform
|
|
// constants (or an accessor function for subpixel offsets):
|
|
// 1.) Cubic parameters:
|
|
// static const float aa_cubic_c = 0.5;
|
|
// See http://www.imagemagick.org/Usage/filter/#mitchell
|
|
// 2.) Gaussian parameters:
|
|
// static const float aa_gauss_sigma =
|
|
// 0.5/aa_pixel_diameter;
|
|
// 3.) Set subpixel offsets. This requires an accessor function
|
|
// for compatibility with scalar runtime shader Return
|
|
// a float2 pixel offset in [-0.5, 0.5] for the red subpixel:
|
|
// float2 get_aa_subpixel_r_offset()
|
|
// The user may also #define ANTIALIAS_OVERRIDE_STATIC_CONSTANTS to
|
|
// override (all of) the following default static values. However,
|
|
// the file's structure requires them to be declared static const:
|
|
// 1.) static const float aa_lanczos_lobes = 3.0;
|
|
// 2.) static const float aa_gauss_support = 1.0/aa_pixel_diameter;
|
|
// Note the default tent/Gaussian support radii may appear
|
|
// arbitrary, but extensive testing found them nearly optimal
|
|
// for tough cases like strong distortion at low AA levels.
|
|
// (The Gaussian default is only best for practical gauss_sigma
|
|
// values; much larger gauss_sigmas ironically prefer slightly
|
|
// smaller support given sparse sampling, and vice versa.)
|
|
// 3.) static const float aa_tent_support = 1.0 / aa_pixel_diameter;
|
|
// 4.) static const float2 aa_xy_axis_importance:
|
|
// The sparse N-queens sampling grid interacts poorly with
|
|
// negative-lobed 2D filters. However, if aliasing is much
|
|
// stronger in one direction (e.g. horizontally with a phosphor
|
|
// mask), it can be useful to downplay sample offsets along the
|
|
// other axis. The support radius in each direction scales with
|
|
// aa_xy_axis_importance down to a minimum of 0.5 (box support),
|
|
// after which point only the offsets used for calculating
|
|
// weights continue to scale downward. This works as follows:
|
|
// If aa_xy_axis_importance = float2(1.0, 1.0/support_radius),
|
|
// the vertical support radius will drop to 1.0, and we'll just
|
|
// filter vertical offsets with the first filter lobe, while
|
|
// horizontal offsets go through the full multi-lobe filter.
|
|
// If aa_xy_axis_importance = float2(1.0, 0.0), the vertical
|
|
// support radius will drop to box support, and the vertical
|
|
// offsets will be ignored entirely (essentially giving us a
|
|
// box filter vertically). The former is potentially smoother
|
|
// (but less predictable) and the default behavior of Lanczos
|
|
// jinc, whereas the latter is sharper and the default behavior
|
|
// of cubics and Lanczos sinc.
|
|
// 5.) static const float aa_pixel_diameter: You can expand the
|
|
// pixel diameter to e.g. sqrt(2.0), which may be a better
|
|
// support range for cylindrical filters (they don't
|
|
// currently discard out-of-circle samples though).
|
|
// Finally, there are two miscellaneous options:
|
|
// 1.) If you want to antialias a manually tiled texture, you can
|
|
// #define ANTIALIAS_DISABLE_ANISOTROPIC to use tex2Dlod() to
|
|
// fix incompatibilities with anisotropic filtering. This is
|
|
// slower, and the Cg profile must support tex2Dlod().
|
|
// 2.) If aa_cubic_c is a runtime uniform, you can #define
|
|
// RUNTIME_ANTIALIAS_WEIGHTS to evaluate cubic weights once per
|
|
// fragment instead of at the usage site (which is used by
|
|
// default, because it enables static evaluation).
|
|
// Description:
|
|
// Each antialiased lookup follows these steps:
|
|
// 1.) Define a sample pattern of pixel offsets in the range of [-0.5, 0.5]
|
|
// pixels, spanning the diameter of a rectangular box filter.
|
|
// 2.) Scale these offsets by the support diameter of the user's chosen filter.
|
|
// 3.) Using these pixel offsets from the pixel center, compute the offsets to
|
|
// predefined subpixel locations.
|
|
// 4.) Compute filter weights based on subpixel offsets.
|
|
// Much of that can often be done at compile-time. At runtime:
|
|
// 1.) Project pixel-space offsets into uv-space with a matrix multiplication
|
|
// to get the uv offsets for each sample. Rectangular pixels have a
|
|
// diameter of 1.0. Circular pixels are not currently supported, but they
|
|
// might be better with a diameter of sqrt(2.0) to ensure there are no gaps
|
|
// between them.
|
|
// 2.) Load, weight, and sum samples.
|
|
// We use a sparse bilinear sampling grid, so there are two major implications:
|
|
// 1.) We can directly project the pixel-space support box into uv-space even
|
|
// if we're upsizing. This wouldn't be the case for nearest neighbor,
|
|
// where we'd have to expand the uv-space diameter to at least the support
|
|
// size to ensure sufficient filter support. In our case, this allows us
|
|
// to treat upsizing the same as downsizing and use static weighting. :)
|
|
// 2.) For decent results, negative-lobed filters must be computed based on
|
|
// separable weights, not radial distances, because the sparse sampling
|
|
// makes no guarantees about radial distributions. Even then, it's much
|
|
// better to set aa_xy_axis_importance to e.g. float2(1.0, 0.0) to use e.g.
|
|
// Lanczos2 horizontally and a box filter vertically. This is mainly due
|
|
// to the sparse N-queens sampling and a statistically enormous positive or
|
|
// negative covariance between horizontal and vertical weights.
|
|
//
|
|
// Design Decision Comments:
|
|
// "aa_temporal" mirrors the sample pattern on odd frames along the axis that
|
|
// keeps subpixel weights constant. This helps with rotational invariance, but
|
|
// it can cause distracting fluctuations, and horizontal and vertical edges
|
|
// will look the same. Using a different pattern on a shifted grid would
|
|
// exploit temporal AA better, but it would require a dynamic branch or a lot
|
|
// of conditional moves, so it's prohibitively slow for the minor benefit.
|
|
|
|
|
|
///////////////////////////// SETTINGS MANAGEMENT ////////////////////////////
|
|
|
|
#ifndef ANTIALIAS_OVERRIDE_BASICS
|
|
// The following settings must be static constants:
|
|
static const float aa_level = 12.0;
|
|
static const float aa_filter = 0.0;
|
|
static const bool aa_temporal = false;
|
|
#endif
|
|
|
|
#ifndef ANTIALIAS_OVERRIDE_STATIC_CONSTANTS
|
|
// Users may override these parameters, but the file structure requires
|
|
// them to be static constants; see the descriptions above.
|
|
static const float aa_pixel_diameter = 1.0;
|
|
static const float aa_lanczos_lobes = 3.0;
|
|
static const float aa_gauss_support = 1.0 / aa_pixel_diameter;
|
|
static const float aa_tent_support = 1.0 / aa_pixel_diameter;
|
|
|
|
// If we're using a negative-lobed filter, default to using it horizontally
|
|
// only, and use only the first lobe vertically or a box filter, over a
|
|
// correspondingly smaller range. This compensates for the sparse sampling
|
|
// grid's typically large positive/negative x/y covariance.
|
|
static const float2 aa_xy_axis_importance =
|
|
aa_filter < 5.5 ? float2(1.0) : // Box, tent, Gaussian
|
|
aa_filter < 8.5 ? float2(1.0, 0.0) : // Cubic and Lanczos sinc
|
|
aa_filter < 9.5 ? float2(1.0, 1.0/aa_lanczos_lobes) : // Lanczos jinc
|
|
float2(1.0); // Default to box
|
|
#endif
|
|
|
|
#ifndef ANTIALIAS_OVERRIDE_PARAMETERS
|
|
// Users may override these values with their own uniform or static consts.
|
|
// Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
|
|
// 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
|
|
// 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
|
|
// 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
|
|
// 4.) C = 0.0 is a soft spline filter.
|
|
static const float aa_cubic_c = 0.5;
|
|
static const float aa_gauss_sigma = 0.5 / aa_pixel_diameter;
|
|
// Users may override the subpixel offset accessor function with their own.
|
|
// A function is used for compatibility with scalar runtime shader
|
|
inline float2 get_aa_subpixel_r_offset()
|
|
{
|
|
return float2(0.0, 0.0);
|
|
}
|
|
#endif
|
|
|
|
|
|
////////////////////////////////// INCLUDES //////////////////////////////////
|
|
|
|
//#include "../../../../include/gamma-management.h"
|
|
|
|
|
|
////////////////////////////////// CONSTANTS /////////////////////////////////
|
|
|
|
static const float aa_box_support = 0.5;
|
|
static const float aa_cubic_support = 2.0;
|
|
|
|
|
|
//////////////////////////// GLOBAL NON-CONSTANTS ////////////////////////////
|
|
|
|
// We'll want to define these only once per fragment at most.
|
|
#ifdef RUNTIME_ANTIALIAS_WEIGHTS
|
|
float aa_cubic_b;
|
|
float cubic_branch1_x3_coeff;
|
|
float cubic_branch1_x2_coeff;
|
|
float cubic_branch1_x0_coeff;
|
|
float cubic_branch2_x3_coeff;
|
|
float cubic_branch2_x2_coeff;
|
|
float cubic_branch2_x1_coeff;
|
|
float cubic_branch2_x0_coeff;
|
|
#endif
|
|
|
|
|
|
/////////////////////////////////// HELPERS //////////////////////////////////
|
|
|
|
void assign_aa_cubic_constants()
|
|
{
|
|
// Compute cubic coefficients on demand at runtime, and save them to global
|
|
// uniforms. The B parameter is computed from C, because "Keys cubics"
|
|
// with B = 1 - 2C are considered the highest quality.
|
|
#ifdef RUNTIME_ANTIALIAS_WEIGHTS
|
|
if(aa_filter > 5.5 && aa_filter < 7.5)
|
|
{
|
|
aa_cubic_b = 1.0 - 2.0*aa_cubic_c;
|
|
cubic_branch1_x3_coeff = 12.0 - 9.0*aa_cubic_b - 6.0*aa_cubic_c;
|
|
cubic_branch1_x2_coeff = -18.0 + 12.0*aa_cubic_b + 6.0*aa_cubic_c;
|
|
cubic_branch1_x0_coeff = 6.0 - 2.0 * aa_cubic_b;
|
|
cubic_branch2_x3_coeff = -aa_cubic_b - 6.0 * aa_cubic_c;
|
|
cubic_branch2_x2_coeff = 6.0*aa_cubic_b + 30.0*aa_cubic_c;
|
|
cubic_branch2_x1_coeff = -12.0*aa_cubic_b - 48.0*aa_cubic_c;
|
|
cubic_branch2_x0_coeff = 8.0*aa_cubic_b + 24.0*aa_cubic_c;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
inline float4 get_subpixel_support_diam_and_final_axis_importance()
|
|
{
|
|
// Statically select the base support radius:
|
|
static const float base_support_radius =
|
|
aa_filter < 1.5 ? aa_box_support :
|
|
aa_filter < 3.5 ? aa_tent_support :
|
|
aa_filter < 5.5 ? aa_gauss_support :
|
|
aa_filter < 7.5 ? aa_cubic_support :
|
|
aa_filter < 9.5 ? aa_lanczos_lobes :
|
|
aa_box_support; // Default to box
|
|
// Expand the filter support for subpixel filtering.
|
|
const float2 subpixel_support_radius_raw =
|
|
float2(base_support_radius) + abs(get_aa_subpixel_r_offset());
|
|
if(aa_filter < 1.5)
|
|
{
|
|
// Ignore aa_xy_axis_importance for box filtering.
|
|
const float2 subpixel_support_diam =
|
|
2.0 * subpixel_support_radius_raw;
|
|
const float2 final_axis_importance = float2(1.0);
|
|
return float4(subpixel_support_diam, final_axis_importance);
|
|
}
|
|
else
|
|
{
|
|
// Scale the support window by aa_xy_axis_importance, but don't narrow
|
|
// it further than box support. This allows decent vertical AA without
|
|
// messing up horizontal weights or using something silly like Lanczos4
|
|
// horizontally with a huge vertical average over an 8-pixel radius.
|
|
const float2 subpixel_support_radius = max(float2(aa_box_support, aa_box_support),
|
|
subpixel_support_radius_raw * aa_xy_axis_importance);
|
|
// Adjust aa_xy_axis_importance to compensate for what's already done:
|
|
const float2 final_axis_importance = aa_xy_axis_importance *
|
|
subpixel_support_radius_raw/subpixel_support_radius;
|
|
const float2 subpixel_support_diam = 2.0 * subpixel_support_radius;
|
|
return float4(subpixel_support_diam, final_axis_importance);
|
|
}
|
|
}
|
|
|
|
|
|
/////////////////////////// FILTER WEIGHT FUNCTIONS //////////////////////////
|
|
|
|
inline float eval_box_filter(const float dist)
|
|
{
|
|
return float(abs(dist) <= aa_box_support);
|
|
}
|
|
|
|
inline float eval_separable_box_filter(const float2 offset)
|
|
{
|
|
return float(all(bool2((abs(offset.x) <= aa_box_support), (abs(offset.y) <= aa_box_support))));
|
|
}
|
|
|
|
inline float eval_tent_filter(const float dist)
|
|
{
|
|
return clamp((aa_tent_support - dist)/
|
|
aa_tent_support, 0.0, 1.0);
|
|
}
|
|
|
|
inline float eval_gaussian_filter(const float dist)
|
|
{
|
|
return exp(-(dist*dist) / (2.0*aa_gauss_sigma*aa_gauss_sigma));
|
|
}
|
|
|
|
inline float eval_cubic_filter(const float dist)
|
|
{
|
|
// Compute coefficients like assign_aa_cubic_constants(), but statically.
|
|
#ifndef RUNTIME_ANTIALIAS_WEIGHTS
|
|
// When runtime weights are used, these values are instead written to
|
|
// global uniforms at the beginning of each tex2Daa* call.
|
|
const float aa_cubic_b = 1.0 - 2.0*aa_cubic_c;
|
|
const float cubic_branch1_x3_coeff = 12.0 - 9.0*aa_cubic_b - 6.0*aa_cubic_c;
|
|
const float cubic_branch1_x2_coeff = -18.0 + 12.0*aa_cubic_b + 6.0*aa_cubic_c;
|
|
const float cubic_branch1_x0_coeff = 6.0 - 2.0 * aa_cubic_b;
|
|
const float cubic_branch2_x3_coeff = -aa_cubic_b - 6.0 * aa_cubic_c;
|
|
const float cubic_branch2_x2_coeff = 6.0*aa_cubic_b + 30.0*aa_cubic_c;
|
|
const float cubic_branch2_x1_coeff = -12.0*aa_cubic_b - 48.0*aa_cubic_c;
|
|
const float cubic_branch2_x0_coeff = 8.0*aa_cubic_b + 24.0*aa_cubic_c;
|
|
#endif
|
|
const float abs_dist = abs(dist);
|
|
// Compute the cubic based on the Horner's method formula in:
|
|
// http://www.cs.utexas.edu/users/fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf
|
|
return (abs_dist < 1.0 ?
|
|
(cubic_branch1_x3_coeff*abs_dist +
|
|
cubic_branch1_x2_coeff)*abs_dist*abs_dist +
|
|
cubic_branch1_x0_coeff :
|
|
abs_dist < 2.0 ?
|
|
((cubic_branch2_x3_coeff*abs_dist +
|
|
cubic_branch2_x2_coeff)*abs_dist +
|
|
cubic_branch2_x1_coeff)*abs_dist + cubic_branch2_x0_coeff :
|
|
0.0)/6.0;
|
|
}
|
|
|
|
inline float eval_separable_cubic_filter(const float2 offset)
|
|
{
|
|
// This is faster than using a specific float2 version:
|
|
return eval_cubic_filter(offset.x) *
|
|
eval_cubic_filter(offset.y);
|
|
}
|
|
|
|
inline float2 eval_sinc_filter(const float2 offset)
|
|
{
|
|
// It's faster to let the caller handle the zero case, or at least it
|
|
// was when I used macros and the shader preset took a full minute to load.
|
|
const float2 pi_offset = pi * offset;
|
|
return sin(pi_offset)/pi_offset;
|
|
}
|
|
|
|
inline float eval_separable_lanczos_sinc_filter(const float2 offset_unsafe)
|
|
{
|
|
// Note: For sparse sampling, you really need to pick an axis to use
|
|
// Lanczos along (e.g. set aa_xy_axis_importance = float2(1.0, 0.0)).
|
|
const float2 offset = FIX_ZERO(offset_unsafe);
|
|
const float2 xy_weights = eval_sinc_filter(offset) *
|
|
eval_sinc_filter(offset/aa_lanczos_lobes);
|
|
return xy_weights.x * xy_weights.y;
|
|
}
|
|
|
|
inline float eval_jinc_filter_unorm(const float x)
|
|
{
|
|
// This is a Jinc approximation for x in [0, 45). We'll use x in range
|
|
// [0, 4*pi) or so. There are faster/closer approximations based on
|
|
// piecewise cubics from [0, 45) and asymptotic approximations beyond that,
|
|
// but this has a maximum absolute error < 1/512, and it's simpler/faster
|
|
// for shaders...not that it's all that useful for sparse sampling anyway.
|
|
const float point3845_x = 0.38448566093564*x;
|
|
const float exp_term = exp(-(point3845_x*point3845_x));
|
|
const float point8154_plus_x = 0.815362332840791 + x;
|
|
const float cos_term = cos(point8154_plus_x);
|
|
return (
|
|
0.0264727330997042*min(x, 6.83134964622778) +
|
|
0.680823557250528*exp_term +
|
|
-0.0597255978950933*min(7.41043194481873, x)*cos_term /
|
|
(point8154_plus_x + 0.0646074538634482*(x*x) +
|
|
cos(x)*max(exp_term, cos(x) + cos_term)) -
|
|
0.180837503591406);
|
|
}
|
|
|
|
inline float eval_jinc_filter(const float dist)
|
|
{
|
|
return eval_jinc_filter_unorm(pi * dist);
|
|
}
|
|
|
|
inline float eval_lanczos_jinc_filter(const float dist)
|
|
{
|
|
return eval_jinc_filter(dist) * eval_jinc_filter(dist/aa_lanczos_lobes);
|
|
}
|
|
|
|
|
|
inline float3 eval_unorm_rgb_weights(const float2 offset,
|
|
const float2 final_axis_importance)
|
|
{
|
|
// Requires: 1.) final_axis_impportance must be computed according to
|
|
// get_subpixel_support_diam_and_final_axis_importance().
|
|
// 2.) aa_filter must be a global constant.
|
|
// 3.) offset must be an xy pixel offset in the range:
|
|
// ([-subpixel_support_diameter.x/2,
|
|
// subpixel_support_diameter.x/2],
|
|
// [-subpixel_support_diameter.y/2,
|
|
// subpixel_support_diameter.y/2])
|
|
// Returns: Sample weights at R/G/B destination subpixels for the
|
|
// given xy pixel offset.
|
|
const float2 offset_g = offset * final_axis_importance;
|
|
const float2 aa_r_offset = get_aa_subpixel_r_offset();
|
|
const float2 offset_r = offset_g - aa_r_offset * final_axis_importance;
|
|
const float2 offset_b = offset_g + aa_r_offset * final_axis_importance;
|
|
// Statically select a filter:
|
|
if(aa_filter < 0.5)
|
|
{
|
|
return float3(eval_separable_box_filter(offset_r),
|
|
eval_separable_box_filter(offset_g),
|
|
eval_separable_box_filter(offset_b));
|
|
}
|
|
else if(aa_filter < 1.5)
|
|
{
|
|
return float3(eval_box_filter(length(offset_r)),
|
|
eval_box_filter(length(offset_g)),
|
|
eval_box_filter(length(offset_b)));
|
|
}
|
|
else if(aa_filter < 2.5)
|
|
{
|
|
return float3(
|
|
eval_tent_filter(offset_r.x) * eval_tent_filter(offset_r.y),
|
|
eval_tent_filter(offset_g.x) * eval_tent_filter(offset_g.y),
|
|
eval_tent_filter(offset_b.x) * eval_tent_filter(offset_b.y));
|
|
}
|
|
else if(aa_filter < 3.5)
|
|
{
|
|
return float3(eval_tent_filter(length(offset_r)),
|
|
eval_tent_filter(length(offset_g)),
|
|
eval_tent_filter(length(offset_b)));
|
|
}
|
|
else if(aa_filter < 4.5)
|
|
{
|
|
return float3(
|
|
eval_gaussian_filter(offset_r.x) * eval_gaussian_filter(offset_r.y),
|
|
eval_gaussian_filter(offset_g.x) * eval_gaussian_filter(offset_g.y),
|
|
eval_gaussian_filter(offset_b.x) * eval_gaussian_filter(offset_b.y));
|
|
}
|
|
else if(aa_filter < 5.5)
|
|
{
|
|
return float3(eval_gaussian_filter(length(offset_r)),
|
|
eval_gaussian_filter(length(offset_g)),
|
|
eval_gaussian_filter(length(offset_b)));
|
|
}
|
|
else if(aa_filter < 6.5)
|
|
{
|
|
return float3(
|
|
eval_cubic_filter(offset_r.x) * eval_cubic_filter(offset_r.y),
|
|
eval_cubic_filter(offset_g.x) * eval_cubic_filter(offset_g.y),
|
|
eval_cubic_filter(offset_b.x) * eval_cubic_filter(offset_b.y));
|
|
}
|
|
else if(aa_filter < 7.5)
|
|
{
|
|
return float3(eval_cubic_filter(length(offset_r)),
|
|
eval_cubic_filter(length(offset_g)),
|
|
eval_cubic_filter(length(offset_b)));
|
|
}
|
|
else if(aa_filter < 8.5)
|
|
{
|
|
return float3(eval_separable_lanczos_sinc_filter(offset_r),
|
|
eval_separable_lanczos_sinc_filter(offset_g),
|
|
eval_separable_lanczos_sinc_filter(offset_b));
|
|
}
|
|
else if(aa_filter < 9.5)
|
|
{
|
|
return float3(eval_lanczos_jinc_filter(length(offset_r)),
|
|
eval_lanczos_jinc_filter(length(offset_g)),
|
|
eval_lanczos_jinc_filter(length(offset_b)));
|
|
}
|
|
else
|
|
{
|
|
// Default to a box, because Lanczos Jinc is so bad. ;)
|
|
return float3(eval_separable_box_filter(offset_r),
|
|
eval_separable_box_filter(offset_g),
|
|
eval_separable_box_filter(offset_b));
|
|
}
|
|
}
|
|
|
|
|
|
////////////////////////////// HELPER FUNCTIONS //////////////////////////////
|
|
|
|
inline float4 tex2Daa_tiled_linearize(const sampler2D samp, const float2 s)
|
|
{
|
|
// If we're manually tiling a texture, anisotropic filtering can get
|
|
// confused. This is one workaround:
|
|
#ifdef ANTIALIAS_DISABLE_ANISOTROPIC
|
|
// TODO: Use tex2Dlod_linearize with a calculated mip level.
|
|
return tex2Dlod_linearize(samp, float4(s, 0.0, 0.0));
|
|
#else
|
|
return tex2D_linearize(samp, s);
|
|
#endif
|
|
}
|
|
|
|
inline float2 get_frame_sign(const float frame)
|
|
{
|
|
if(aa_temporal)
|
|
{
|
|
// Mirror the sampling pattern for odd frames in a direction that
|
|
// lets us keep the same subpixel sample weights:
|
|
const float frame_odd = float(fmod(frame, 2.0) > 0.5);
|
|
const float2 aa_r_offset = get_aa_subpixel_r_offset();
|
|
const float2 mirror = -float2(abs(aa_r_offset.x) < (FIX_ZERO(0.0)), abs(aa_r_offset.y) < (FIX_ZERO(0.0)));
|
|
return mirror;
|
|
}
|
|
else
|
|
{
|
|
return float2(1.0, 1.0);
|
|
}
|
|
}
|
|
|
|
|
|
///////////////////////// ANTIALIASED TEXTURE LOOKUPS ////////////////////////
|
|
|
|
float3 tex2Daa_subpixel_weights_only(const sampler2D tex,
|
|
const float2 tex_uv, const float2x2 pixel_to_tex_uv)
|
|
{
|
|
// This function is unlike the others: Just perform a single independent
|
|
// lookup for each subpixel. It may be very aliased.
|
|
const float2 aa_r_offset = get_aa_subpixel_r_offset();
|
|
const float2 aa_r_offset_uv_offset = mul(pixel_to_tex_uv, aa_r_offset);
|
|
const float color_g = tex2D_linearize(tex, tex_uv).g;
|
|
const float color_r = tex2D_linearize(tex, tex_uv + aa_r_offset_uv_offset).r;
|
|
const float color_b = tex2D_linearize(tex, tex_uv - aa_r_offset_uv_offset).b;
|
|
return float3(color_r, color_g, color_b);
|
|
}
|
|
|
|
// The tex2Daa* functions compile very slowly due to all the macros and
|
|
// compile-time math, so only include the ones we'll actually use!
|
|
float3 tex2Daa4x(const sampler2D tex, const float2 tex_uv,
|
|
const float2x2 pixel_to_tex_uv, const float frame)
|
|
{
|
|
// Use an RGMS4 pattern (4-queens):
|
|
// . . Q . : off =(-1.5, -1.5)/4 + (2.0, 0.0)/4
|
|
// Q . . . : off =(-1.5, -1.5)/4 + (0.0, 1.0)/4
|
|
// . . . Q : off =(-1.5, -1.5)/4 + (3.0, 2.0)/4
|
|
// . Q . . : off =(-1.5, -1.5)/4 + (1.0, 3.0)/4
|
|
// Static screenspace sample offsets (compute some implicitly):
|
|
static const float grid_size = 4.0;
|
|
assign_aa_cubic_constants();
|
|
const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance();
|
|
const float2 subpixel_support_diameter = ssd_fai.xy;
|
|
const float2 final_axis_importance = ssd_fai.zw;
|
|
const float2 xy_step = float2(1.0,1.0)/grid_size * subpixel_support_diameter;
|
|
const float2 xy_start_offset = float2(0.5 - grid_size*0.5,0.5 - grid_size*0.5) * xy_step;
|
|
// Get the xy offset of each sample. Exploit diagonal symmetry:
|
|
const float2 xy_offset0 = xy_start_offset + float2(2.0, 0.0) * xy_step;
|
|
const float2 xy_offset1 = xy_start_offset + float2(0.0, 1.0) * xy_step;
|
|
// Compute subpixel weights, and exploit diagonal symmetry for speed.
|
|
const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance);
|
|
const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance);
|
|
const float3 w2 = w1.bgr;
|
|
const float3 w3 = w0.bgr;
|
|
// Get the weight sum to normalize the total to 1.0 later:
|
|
const float3 half_sum = w0 + w1;
|
|
const float3 w_sum = half_sum + half_sum.bgr;
|
|
const float3 w_sum_inv = float3(1.0,1.0,1.0)/(w_sum);
|
|
// Scale the pixel-space to texture offset matrix by the pixel diameter.
|
|
const float2x2 true_pixel_to_tex_uv =
|
|
float2x2(pixel_to_tex_uv * aa_pixel_diameter);
|
|
// Get uv sample offsets, mirror on odd frames if directed, and exploit
|
|
// diagonal symmetry:
|
|
const float2 frame_sign = get_frame_sign(frame);
|
|
const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign);
|
|
const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign);
|
|
// Load samples, linearizing if necessary, etc.:
|
|
const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0).rgb;
|
|
const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1).rgb;
|
|
const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1).rgb;
|
|
const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0).rgb;
|
|
// Sum weighted samples (weight sum must equal 1.0 for each channel):
|
|
return w_sum_inv * (w0 * sample0 + w1 * sample1 +
|
|
w2 * sample2 + w3 * sample3);
|
|
}
|
|
|
|
float3 tex2Daa5x(const sampler2D tex, const float2 tex_uv,
|
|
const float2x2 pixel_to_tex_uv, const float frame)
|
|
{
|
|
// Use a diagonally symmetric 5-queens pattern:
|
|
// . Q . . . : off =(-2.0, -2.0)/5 + (1.0, 0.0)/5
|
|
// . . . . Q : off =(-2.0, -2.0)/5 + (4.0, 1.0)/5
|
|
// . . Q . . : off =(-2.0, -2.0)/5 + (2.0, 2.0)/5
|
|
// Q . . . . : off =(-2.0, -2.0)/5 + (0.0, 3.0)/5
|
|
// . . . Q . : off =(-2.0, -2.0)/5 + (3.0, 4.0)/5
|
|
// Static screenspace sample offsets (compute some implicitly):
|
|
static const float grid_size = 5.0;
|
|
assign_aa_cubic_constants();
|
|
const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance();
|
|
const float2 subpixel_support_diameter = ssd_fai.xy;
|
|
const float2 final_axis_importance = ssd_fai.zw;
|
|
const float2 xy_step = float2(1.0)/grid_size * subpixel_support_diameter;
|
|
const float2 xy_start_offset = float2(0.5 - grid_size*0.5) * xy_step;
|
|
// Get the xy offset of each sample. Exploit diagonal symmetry:
|
|
const float2 xy_offset0 = xy_start_offset + float2(1.0, 0.0) * xy_step;
|
|
const float2 xy_offset1 = xy_start_offset + float2(4.0, 1.0) * xy_step;
|
|
const float2 xy_offset2 = xy_start_offset + float2(2.0, 2.0) * xy_step;
|
|
// Compute subpixel weights, and exploit diagonal symmetry for speed.
|
|
const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance);
|
|
const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance);
|
|
const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance);
|
|
const float3 w3 = w1.bgr;
|
|
const float3 w4 = w0.bgr;
|
|
// Get the weight sum to normalize the total to 1.0 later:
|
|
const float3 w_sum_inv = float3(1.0)/(w0 + w1 + w2 + w3 + w4);
|
|
// Scale the pixel-space to texture offset matrix by the pixel diameter.
|
|
const float2x2 true_pixel_to_tex_uv =
|
|
float2x2(pixel_to_tex_uv * aa_pixel_diameter);
|
|
// Get uv sample offsets, mirror on odd frames if directed, and exploit
|
|
// diagonal symmetry:
|
|
const float2 frame_sign = get_frame_sign(frame);
|
|
const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign);
|
|
const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign);
|
|
// Load samples, linearizing if necessary, etc.:
|
|
const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0).rgb;
|
|
const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1).rgb;
|
|
const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv).rgb;
|
|
const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1).rgb;
|
|
const float3 sample4 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0).rgb;
|
|
// Sum weighted samples (weight sum must equal 1.0 for each channel):
|
|
return w_sum_inv * (w0 * sample0 + w1 * sample1 +
|
|
w2 * sample2 + w3 * sample3 + w4 * sample4);
|
|
}
|
|
|
|
float3 tex2Daa6x(const sampler2D tex, const float2 tex_uv,
|
|
const float2x2 pixel_to_tex_uv, const float frame)
|
|
{
|
|
// Use a diagonally symmetric 6-queens pattern with a stronger horizontal
|
|
// than vertical slant:
|
|
// . . . . Q . : off =(-2.5, -2.5)/6 + (4.0, 0.0)/6
|
|
// . . Q . . . : off =(-2.5, -2.5)/6 + (2.0, 1.0)/6
|
|
// Q . . . . . : off =(-2.5, -2.5)/6 + (0.0, 2.0)/6
|
|
// . . . . . Q : off =(-2.5, -2.5)/6 + (5.0, 3.0)/6
|
|
// . . . Q . . : off =(-2.5, -2.5)/6 + (3.0, 4.0)/6
|
|
// . Q . . . . : off =(-2.5, -2.5)/6 + (1.0, 5.0)/6
|
|
// Static screenspace sample offsets (compute some implicitly):
|
|
static const float grid_size = 6.0;
|
|
assign_aa_cubic_constants();
|
|
const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance();
|
|
const float2 subpixel_support_diameter = ssd_fai.xy;
|
|
const float2 final_axis_importance = ssd_fai.zw;
|
|
const float2 xy_step = float2(1.0)/grid_size * subpixel_support_diameter;
|
|
const float2 xy_start_offset = float2(0.5 - grid_size*0.5) * xy_step;
|
|
// Get the xy offset of each sample. Exploit diagonal symmetry:
|
|
const float2 xy_offset0 = xy_start_offset + float2(4.0, 0.0) * xy_step;
|
|
const float2 xy_offset1 = xy_start_offset + float2(2.0, 1.0) * xy_step;
|
|
const float2 xy_offset2 = xy_start_offset + float2(0.0, 2.0) * xy_step;
|
|
// Compute subpixel weights, and exploit diagonal symmetry for speed.
|
|
const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance);
|
|
const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance);
|
|
const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance);
|
|
const float3 w3 = w2.bgr;
|
|
const float3 w4 = w1.bgr;
|
|
const float3 w5 = w0.bgr;
|
|
// Get the weight sum to normalize the total to 1.0 later:
|
|
const float3 half_sum = w0 + w1 + w2;
|
|
const float3 w_sum = half_sum + half_sum.bgr;
|
|
const float3 w_sum_inv = float3(1.0)/(w_sum);
|
|
// Scale the pixel-space to texture offset matrix by the pixel diameter.
|
|
const float2x2 true_pixel_to_tex_uv =
|
|
float2x2(pixel_to_tex_uv * aa_pixel_diameter);
|
|
// Get uv sample offsets, mirror on odd frames if directed, and exploit
|
|
// diagonal symmetry:
|
|
const float2 frame_sign = get_frame_sign(frame);
|
|
const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign);
|
|
const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign);
|
|
const float2 uv_offset2 = mul(true_pixel_to_tex_uv, xy_offset2 * frame_sign);
|
|
// Load samples, linearizing if necessary, etc.:
|
|
const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0).rgb;
|
|
const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1).rgb;
|
|
const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset2).rgb;
|
|
const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset2).rgb;
|
|
const float3 sample4 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1).rgb;
|
|
const float3 sample5 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0).rgb;
|
|
// Sum weighted samples (weight sum must equal 1.0 for each channel):
|
|
return w_sum_inv * (w0 * sample0 + w1 * sample1 + w2 * sample2 +
|
|
w3 * sample3 + w4 * sample4 + w5 * sample5);
|
|
}
|
|
|
|
float3 tex2Daa7x(const sampler2D tex, const float2 tex_uv,
|
|
const float2x2 pixel_to_tex_uv, const float frame)
|
|
{
|
|
// Use a diagonally symmetric 7-queens pattern with a queen in the center:
|
|
// . Q . . . . . : off =(-3.0, -3.0)/7 + (1.0, 0.0)/7
|
|
// . . . . Q . . : off =(-3.0, -3.0)/7 + (4.0, 1.0)/7
|
|
// Q . . . . . . : off =(-3.0, -3.0)/7 + (0.0, 2.0)/7
|
|
// . . . Q . . . : off =(-3.0, -3.0)/7 + (3.0, 3.0)/7
|
|
// . . . . . . Q : off =(-3.0, -3.0)/7 + (6.0, 4.0)/7
|
|
// . . Q . . . . : off =(-3.0, -3.0)/7 + (2.0, 5.0)/7
|
|
// . . . . . Q . : off =(-3.0, -3.0)/7 + (5.0, 6.0)/7
|
|
static const float grid_size = 7.0;
|
|
assign_aa_cubic_constants();
|
|
const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance();
|
|
const float2 subpixel_support_diameter = ssd_fai.xy;
|
|
const float2 final_axis_importance = ssd_fai.zw;
|
|
const float2 xy_step = float2(1.0)/grid_size * subpixel_support_diameter;
|
|
const float2 xy_start_offset = float2(0.5 - grid_size*0.5) * xy_step;
|
|
// Get the xy offset of each sample. Exploit diagonal symmetry:
|
|
const float2 xy_offset0 = xy_start_offset + float2(1.0, 0.0) * xy_step;
|
|
const float2 xy_offset1 = xy_start_offset + float2(4.0, 1.0) * xy_step;
|
|
const float2 xy_offset2 = xy_start_offset + float2(0.0, 2.0) * xy_step;
|
|
const float2 xy_offset3 = xy_start_offset + float2(3.0, 3.0) * xy_step;
|
|
// Compute subpixel weights, and exploit diagonal symmetry for speed.
|
|
const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance);
|
|
const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance);
|
|
const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance);
|
|
const float3 w3 = eval_unorm_rgb_weights(xy_offset3, final_axis_importance);
|
|
const float3 w4 = w2.bgr;
|
|
const float3 w5 = w1.bgr;
|
|
const float3 w6 = w0.bgr;
|
|
// Get the weight sum to normalize the total to 1.0 later:
|
|
const float3 half_sum = w0 + w1 + w2;
|
|
const float3 w_sum = half_sum + half_sum.bgr + w3;
|
|
const float3 w_sum_inv = float3(1.0)/(w_sum);
|
|
// Scale the pixel-space to texture offset matrix by the pixel diameter.
|
|
const float2x2 true_pixel_to_tex_uv =
|
|
float2x2(pixel_to_tex_uv * aa_pixel_diameter);
|
|
// Get uv sample offsets, mirror on odd frames if directed, and exploit
|
|
// diagonal symmetry:
|
|
const float2 frame_sign = get_frame_sign(frame);
|
|
const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign);
|
|
const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign);
|
|
const float2 uv_offset2 = mul(true_pixel_to_tex_uv, xy_offset2 * frame_sign);
|
|
// Load samples, linearizing if necessary, etc.:
|
|
const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0).rgb;
|
|
const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1).rgb;
|
|
const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset2).rgb;
|
|
const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv).rgb;
|
|
const float3 sample4 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset2).rgb;
|
|
const float3 sample5 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1).rgb;
|
|
const float3 sample6 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0).rgb;
|
|
// Sum weighted samples (weight sum must equal 1.0 for each channel):
|
|
return w_sum_inv * (
|
|
w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3 +
|
|
w4 * sample4 + w5 * sample5 + w6 * sample6);
|
|
}
|
|
|
|
float3 tex2Daa8x(const sampler2D tex, const float2 tex_uv,
|
|
const float2x2 pixel_to_tex_uv, const float frame)
|
|
{
|
|
// Use a diagonally symmetric 8-queens pattern.
|
|
// . . Q . . . . . : off =(-3.5, -3.5)/8 + (2.0, 0.0)/8
|
|
// . . . . Q . . . : off =(-3.5, -3.5)/8 + (4.0, 1.0)/8
|
|
// . Q . . . . . . : off =(-3.5, -3.5)/8 + (1.0, 2.0)/8
|
|
// . . . . . . . Q : off =(-3.5, -3.5)/8 + (7.0, 3.0)/8
|
|
// Q . . . . . . . : off =(-3.5, -3.5)/8 + (0.0, 4.0)/8
|
|
// . . . . . . Q . : off =(-3.5, -3.5)/8 + (6.0, 5.0)/8
|
|
// . . . Q . . . . : off =(-3.5, -3.5)/8 + (3.0, 6.0)/8
|
|
// . . . . . Q . . : off =(-3.5, -3.5)/8 + (5.0, 7.0)/8
|
|
static const float grid_size = 8.0;
|
|
assign_aa_cubic_constants();
|
|
const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance();
|
|
const float2 subpixel_support_diameter = ssd_fai.xy;
|
|
const float2 final_axis_importance = ssd_fai.zw;
|
|
const float2 xy_step = float2(1.0)/grid_size * subpixel_support_diameter;
|
|
const float2 xy_start_offset = float2(0.5 - grid_size*0.5) * xy_step;
|
|
// Get the xy offset of each sample. Exploit diagonal symmetry:
|
|
const float2 xy_offset0 = xy_start_offset + float2(2.0, 0.0) * xy_step;
|
|
const float2 xy_offset1 = xy_start_offset + float2(4.0, 1.0) * xy_step;
|
|
const float2 xy_offset2 = xy_start_offset + float2(1.0, 2.0) * xy_step;
|
|
const float2 xy_offset3 = xy_start_offset + float2(7.0, 3.0) * xy_step;
|
|
// Compute subpixel weights, and exploit diagonal symmetry for speed.
|
|
const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance);
|
|
const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance);
|
|
const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance);
|
|
const float3 w3 = eval_unorm_rgb_weights(xy_offset3, final_axis_importance);
|
|
const float3 w4 = w3.bgr;
|
|
const float3 w5 = w2.bgr;
|
|
const float3 w6 = w1.bgr;
|
|
const float3 w7 = w0.bgr;
|
|
// Get the weight sum to normalize the total to 1.0 later:
|
|
const float3 half_sum = w0 + w1 + w2 + w3;
|
|
const float3 w_sum = half_sum + half_sum.bgr;
|
|
const float3 w_sum_inv = float3(1.0)/(w_sum);
|
|
// Scale the pixel-space to texture offset matrix by the pixel diameter.
|
|
const float2x2 true_pixel_to_tex_uv =
|
|
float2x2(pixel_to_tex_uv * aa_pixel_diameter);
|
|
// Get uv sample offsets, and mirror on odd frames if directed:
|
|
const float2 frame_sign = get_frame_sign(frame);
|
|
const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign);
|
|
const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign);
|
|
const float2 uv_offset2 = mul(true_pixel_to_tex_uv, xy_offset2 * frame_sign);
|
|
const float2 uv_offset3 = mul(true_pixel_to_tex_uv, xy_offset3 * frame_sign);
|
|
// Load samples, linearizing if necessary, etc.:
|
|
const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0).rgb;
|
|
const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1).rgb;
|
|
const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset2).rgb;
|
|
const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset3).rgb;
|
|
const float3 sample4 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset3).rgb;
|
|
const float3 sample5 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset2).rgb;
|
|
const float3 sample6 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1).rgb;
|
|
const float3 sample7 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0).rgb;
|
|
// Sum weighted samples (weight sum must equal 1.0 for each channel):
|
|
return w_sum_inv * (
|
|
w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3 +
|
|
w4 * sample4 + w5 * sample5 + w6 * sample6 + w7 * sample7);
|
|
}
|
|
|
|
float3 tex2Daa12x(const sampler2D tex, const float2 tex_uv,
|
|
const float2x2 pixel_to_tex_uv, const float frame)
|
|
{
|
|
// Use a diagonally symmetric 12-superqueens pattern where no 3 points are
|
|
// exactly collinear.
|
|
// . . . Q . . . . . . . . : off =(-5.5, -5.5)/12 + (3.0, 0.0)/12
|
|
// . . . . . . . . . Q . . : off =(-5.5, -5.5)/12 + (9.0, 1.0)/12
|
|
// . . . . . . Q . . . . . : off =(-5.5, -5.5)/12 + (6.0, 2.0)/12
|
|
// . Q . . . . . . . . . . : off =(-5.5, -5.5)/12 + (1.0, 3.0)/12
|
|
// . . . . . . . . . . . Q : off =(-5.5, -5.5)/12 + (11.0, 4.0)/12
|
|
// . . . . Q . . . . . . . : off =(-5.5, -5.5)/12 + (4.0, 5.0)/12
|
|
// . . . . . . . Q . . . . : off =(-5.5, -5.5)/12 + (7.0, 6.0)/12
|
|
// Q . . . . . . . . . . . : off =(-5.5, -5.5)/12 + (0.0, 7.0)/12
|
|
// . . . . . . . . . . Q . : off =(-5.5, -5.5)/12 + (10.0, 8.0)/12
|
|
// . . . . . Q . . . . . . : off =(-5.5, -5.5)/12 + (5.0, 9.0)/12
|
|
// . . Q . . . . . . . . . : off =(-5.5, -5.5)/12 + (2.0, 10.0)/12
|
|
// . . . . . . . . Q . . . : off =(-5.5, -5.5)/12 + (8.0, 11.0)/12
|
|
static const float grid_size = 12.0;
|
|
assign_aa_cubic_constants();
|
|
const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance();
|
|
const float2 subpixel_support_diameter = ssd_fai.xy;
|
|
const float2 final_axis_importance = ssd_fai.zw;
|
|
const float2 xy_step = float2(1.0)/grid_size * subpixel_support_diameter;
|
|
const float2 xy_start_offset = float2(0.5 - grid_size*0.5) * xy_step;
|
|
// Get the xy offset of each sample. Exploit diagonal symmetry:
|
|
const float2 xy_offset0 = xy_start_offset + float2(3.0, 0.0) * xy_step;
|
|
const float2 xy_offset1 = xy_start_offset + float2(9.0, 1.0) * xy_step;
|
|
const float2 xy_offset2 = xy_start_offset + float2(6.0, 2.0) * xy_step;
|
|
const float2 xy_offset3 = xy_start_offset + float2(1.0, 3.0) * xy_step;
|
|
const float2 xy_offset4 = xy_start_offset + float2(11.0, 4.0) * xy_step;
|
|
const float2 xy_offset5 = xy_start_offset + float2(4.0, 5.0) * xy_step;
|
|
// Compute subpixel weights, and exploit diagonal symmetry for speed.
|
|
const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance);
|
|
const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance);
|
|
const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance);
|
|
const float3 w3 = eval_unorm_rgb_weights(xy_offset3, final_axis_importance);
|
|
const float3 w4 = eval_unorm_rgb_weights(xy_offset4, final_axis_importance);
|
|
const float3 w5 = eval_unorm_rgb_weights(xy_offset5, final_axis_importance);
|
|
const float3 w6 = w5.bgr;
|
|
const float3 w7 = w4.bgr;
|
|
const float3 w8 = w3.bgr;
|
|
const float3 w9 = w2.bgr;
|
|
const float3 w10 = w1.bgr;
|
|
const float3 w11 = w0.bgr;
|
|
// Get the weight sum to normalize the total to 1.0 later:
|
|
const float3 half_sum = w0 + w1 + w2 + w3 + w4 + w5;
|
|
const float3 w_sum = half_sum + half_sum.bgr;
|
|
const float3 w_sum_inv = float3(1.0)/w_sum;
|
|
// Scale the pixel-space to texture offset matrix by the pixel diameter.
|
|
const float2x2 true_pixel_to_tex_uv =
|
|
float2x2(pixel_to_tex_uv * aa_pixel_diameter);
|
|
// Get uv sample offsets, mirror on odd frames if directed, and exploit
|
|
// diagonal symmetry:
|
|
const float2 frame_sign = get_frame_sign(frame);
|
|
const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign);
|
|
const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign);
|
|
const float2 uv_offset2 = mul(true_pixel_to_tex_uv, xy_offset2 * frame_sign);
|
|
const float2 uv_offset3 = mul(true_pixel_to_tex_uv, xy_offset3 * frame_sign);
|
|
const float2 uv_offset4 = mul(true_pixel_to_tex_uv, xy_offset4 * frame_sign);
|
|
const float2 uv_offset5 = mul(true_pixel_to_tex_uv, xy_offset5 * frame_sign);
|
|
// Load samples, linearizing if necessary, etc.:
|
|
const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0).rgb;
|
|
const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1).rgb;
|
|
const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset2).rgb;
|
|
const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset3).rgb;
|
|
const float3 sample4 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset4).rgb;
|
|
const float3 sample5 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset5).rgb;
|
|
const float3 sample6 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset5).rgb;
|
|
const float3 sample7 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset4).rgb;
|
|
const float3 sample8 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset3).rgb;
|
|
const float3 sample9 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset2).rgb;
|
|
const float3 sample10 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1).rgb;
|
|
const float3 sample11 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0).rgb;
|
|
// Sum weighted samples (weight sum must equal 1.0 for each channel):
|
|
return w_sum_inv * (
|
|
w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3 +
|
|
w4 * sample4 + w5 * sample5 + w6 * sample6 + w7 * sample7 +
|
|
w8 * sample8 + w9 * sample9 + w10 * sample10 + w11 * sample11);
|
|
}
|
|
|
|
float3 tex2Daa16x(const sampler2D tex, const float2 tex_uv,
|
|
const float2x2 pixel_to_tex_uv, const float frame)
|
|
{
|
|
// Use a diagonally symmetric 16-superqueens pattern where no 3 points are
|
|
// exactly collinear.
|
|
// . . Q . . . . . . . . . . . . . : off =(-7.5, -7.5)/16 + (2.0, 0.0)/16
|
|
// . . . . . . . . . Q . . . . . . : off =(-7.5, -7.5)/16 + (9.0, 1.0)/16
|
|
// . . . . . . . . . . . . Q . . . : off =(-7.5, -7.5)/16 + (12.0, 2.0)/16
|
|
// . . . . Q . . . . . . . . . . . : off =(-7.5, -7.5)/16 + (4.0, 3.0)/16
|
|
// . . . . . . . . Q . . . . . . . : off =(-7.5, -7.5)/16 + (8.0, 4.0)/16
|
|
// . . . . . . . . . . . . . . Q . : off =(-7.5, -7.5)/16 + (14.0, 5.0)/16
|
|
// Q . . . . . . . . . . . . . . . : off =(-7.5, -7.5)/16 + (0.0, 6.0)/16
|
|
// . . . . . . . . . . Q . . . . . : off =(-7.5, -7.5)/16 + (10.0, 7.0)/16
|
|
// . . . . . Q . . . . . . . . . . : off =(-7.5, -7.5)/16 + (5.0, 8.0)/16
|
|
// . . . . . . . . . . . . . . . Q : off =(-7.5, -7.5)/16 + (15.0, 9.0)/16
|
|
// . Q . . . . . . . . . . . . . . : off =(-7.5, -7.5)/16 + (1.0, 10.0)/16
|
|
// . . . . . . . Q . . . . . . . . : off =(-7.5, -7.5)/16 + (7.0, 11.0)/16
|
|
// . . . . . . . . . . . Q . . . . : off =(-7.5, -7.5)/16 + (11.0, 12.0)/16
|
|
// . . . Q . . . . . . . . . . . . : off =(-7.5, -7.5)/16 + (3.0, 13.0)/16
|
|
// . . . . . . Q . . . . . . . . . : off =(-7.5, -7.5)/16 + (6.0, 14.0)/16
|
|
// . . . . . . . . . . . . . Q . . : off =(-7.5, -7.5)/16 + (13.0, 15.0)/16
|
|
static const float grid_size = 16.0;
|
|
assign_aa_cubic_constants();
|
|
const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance();
|
|
const float2 subpixel_support_diameter = ssd_fai.xy;
|
|
const float2 final_axis_importance = ssd_fai.zw;
|
|
const float2 xy_step = float2(1.0)/grid_size * subpixel_support_diameter;
|
|
const float2 xy_start_offset = float2(0.5 - grid_size*0.5) * xy_step;
|
|
// Get the xy offset of each sample. Exploit diagonal symmetry:
|
|
const float2 xy_offset0 = xy_start_offset + float2(2.0, 0.0) * xy_step;
|
|
const float2 xy_offset1 = xy_start_offset + float2(9.0, 1.0) * xy_step;
|
|
const float2 xy_offset2 = xy_start_offset + float2(12.0, 2.0) * xy_step;
|
|
const float2 xy_offset3 = xy_start_offset + float2(4.0, 3.0) * xy_step;
|
|
const float2 xy_offset4 = xy_start_offset + float2(8.0, 4.0) * xy_step;
|
|
const float2 xy_offset5 = xy_start_offset + float2(14.0, 5.0) * xy_step;
|
|
const float2 xy_offset6 = xy_start_offset + float2(0.0, 6.0) * xy_step;
|
|
const float2 xy_offset7 = xy_start_offset + float2(10.0, 7.0) * xy_step;
|
|
// Compute subpixel weights, and exploit diagonal symmetry for speed.
|
|
const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance);
|
|
const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance);
|
|
const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance);
|
|
const float3 w3 = eval_unorm_rgb_weights(xy_offset3, final_axis_importance);
|
|
const float3 w4 = eval_unorm_rgb_weights(xy_offset4, final_axis_importance);
|
|
const float3 w5 = eval_unorm_rgb_weights(xy_offset5, final_axis_importance);
|
|
const float3 w6 = eval_unorm_rgb_weights(xy_offset6, final_axis_importance);
|
|
const float3 w7 = eval_unorm_rgb_weights(xy_offset7, final_axis_importance);
|
|
const float3 w8 = w7.bgr;
|
|
const float3 w9 = w6.bgr;
|
|
const float3 w10 = w5.bgr;
|
|
const float3 w11 = w4.bgr;
|
|
const float3 w12 = w3.bgr;
|
|
const float3 w13 = w2.bgr;
|
|
const float3 w14 = w1.bgr;
|
|
const float3 w15 = w0.bgr;
|
|
// Get the weight sum to normalize the total to 1.0 later:
|
|
const float3 half_sum = w0 + w1 + w2 + w3 + w4 + w5 + w6 + w7;
|
|
const float3 w_sum = half_sum + half_sum.bgr;
|
|
const float3 w_sum_inv = float3(1.0)/(w_sum);
|
|
// Scale the pixel-space to texture offset matrix by the pixel diameter.
|
|
const float2x2 true_pixel_to_tex_uv =
|
|
float2x2(pixel_to_tex_uv * aa_pixel_diameter);
|
|
// Get uv sample offsets, mirror on odd frames if directed, and exploit
|
|
// diagonal symmetry:
|
|
const float2 frame_sign = get_frame_sign(frame);
|
|
const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign);
|
|
const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign);
|
|
const float2 uv_offset2 = mul(true_pixel_to_tex_uv, xy_offset2 * frame_sign);
|
|
const float2 uv_offset3 = mul(true_pixel_to_tex_uv, xy_offset3 * frame_sign);
|
|
const float2 uv_offset4 = mul(true_pixel_to_tex_uv, xy_offset4 * frame_sign);
|
|
const float2 uv_offset5 = mul(true_pixel_to_tex_uv, xy_offset5 * frame_sign);
|
|
const float2 uv_offset6 = mul(true_pixel_to_tex_uv, xy_offset6 * frame_sign);
|
|
const float2 uv_offset7 = mul(true_pixel_to_tex_uv, xy_offset7 * frame_sign);
|
|
// Load samples, linearizing if necessary, etc.:
|
|
const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0).rgb;
|
|
const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1).rgb;
|
|
const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset2).rgb;
|
|
const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset3).rgb;
|
|
const float3 sample4 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset4).rgb;
|
|
const float3 sample5 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset5).rgb;
|
|
const float3 sample6 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset6).rgb;
|
|
const float3 sample7 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset7).rgb;
|
|
const float3 sample8 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset7).rgb;
|
|
const float3 sample9 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset6).rgb;
|
|
const float3 sample10 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset5).rgb;
|
|
const float3 sample11 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset4).rgb;
|
|
const float3 sample12 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset3).rgb;
|
|
const float3 sample13 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset2).rgb;
|
|
const float3 sample14 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1).rgb;
|
|
const float3 sample15 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0).rgb;
|
|
// Sum weighted samples (weight sum must equal 1.0 for each channel):
|
|
return w_sum_inv * (
|
|
w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3 +
|
|
w4 * sample4 + w5 * sample5 + w6 * sample6 + w7 * sample7 +
|
|
w8 * sample8 + w9 * sample9 + w10 * sample10 + w11 * sample11 +
|
|
w12 * sample12 + w13 * sample13 + w14 * sample14 + w15 * sample15);
|
|
}
|
|
|
|
float3 tex2Daa20x(const sampler2D tex, const float2 tex_uv,
|
|
const float2x2 pixel_to_tex_uv, const float frame)
|
|
{
|
|
// Use a diagonally symmetric 20-superqueens pattern where no 3 points are
|
|
// exactly collinear and superqueens have a squared attack radius of 13.
|
|
// . . . . . . . Q . . . . . . . . . . . . : off =(-9.5, -9.5)/20 + (7.0, 0.0)/20
|
|
// . . . . . . . . . . . . . . . . Q . . . : off =(-9.5, -9.5)/20 + (16.0, 1.0)/20
|
|
// . . . . . . . . . . . Q . . . . . . . . : off =(-9.5, -9.5)/20 + (11.0, 2.0)/20
|
|
// . Q . . . . . . . . . . . . . . . . . . : off =(-9.5, -9.5)/20 + (1.0, 3.0)/20
|
|
// . . . . . Q . . . . . . . . . . . . . . : off =(-9.5, -9.5)/20 + (5.0, 4.0)/20
|
|
// . . . . . . . . . . . . . . . Q . . . . : off =(-9.5, -9.5)/20 + (15.0, 5.0)/20
|
|
// . . . . . . . . . . Q . . . . . . . . . : off =(-9.5, -9.5)/20 + (10.0, 6.0)/20
|
|
// . . . . . . . . . . . . . . . . . . . Q : off =(-9.5, -9.5)/20 + (19.0, 7.0)/20
|
|
// . . Q . . . . . . . . . . . . . . . . . : off =(-9.5, -9.5)/20 + (2.0, 8.0)/20
|
|
// . . . . . . Q . . . . . . . . . . . . . : off =(-9.5, -9.5)/20 + (6.0, 9.0)/20
|
|
// . . . . . . . . . . . . . Q . . . . . . : off =(-9.5, -9.5)/20 + (13.0, 10.0)/20
|
|
// . . . . . . . . . . . . . . . . . Q . . : off =(-9.5, -9.5)/20 + (17.0, 11.0)/20
|
|
// Q . . . . . . . . . . . . . . . . . . . : off =(-9.5, -9.5)/20 + (0.0, 12.0)/20
|
|
// . . . . . . . . . Q . . . . . . . . . . : off =(-9.5, -9.5)/20 + (9.0, 13.0)/20
|
|
// . . . . Q . . . . . . . . . . . . . . . : off =(-9.5, -9.5)/20 + (4.0, 14.0)/20
|
|
// . . . . . . . . . . . . . . Q . . . . . : off =(-9.5, -9.5)/20 + (14.0, 15.0)/20
|
|
// . . . . . . . . . . . . . . . . . . Q . : off =(-9.5, -9.5)/20 + (18.0, 16.0)/20
|
|
// . . . . . . . . Q . . . . . . . . . . . : off =(-9.5, -9.5)/20 + (8.0, 17.0)/20
|
|
// . . . Q . . . . . . . . . . . . . . . . : off =(-9.5, -9.5)/20 + (3.0, 18.0)/20
|
|
// . . . . . . . . . . . . Q . . . . . . . : off =(-9.5, -9.5)/20 + (12.0, 19.0)/20
|
|
static const float grid_size = 20.0;
|
|
assign_aa_cubic_constants();
|
|
const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance();
|
|
const float2 subpixel_support_diameter = ssd_fai.xy;
|
|
const float2 final_axis_importance = ssd_fai.zw;
|
|
const float2 xy_step = float2(1.0)/grid_size * subpixel_support_diameter;
|
|
const float2 xy_start_offset = float2(0.5 - grid_size*0.5) * xy_step;
|
|
// Get the xy offset of each sample. Exploit diagonal symmetry:
|
|
const float2 xy_offset0 = xy_start_offset + float2(7.0, 0.0) * xy_step;
|
|
const float2 xy_offset1 = xy_start_offset + float2(16.0, 1.0) * xy_step;
|
|
const float2 xy_offset2 = xy_start_offset + float2(11.0, 2.0) * xy_step;
|
|
const float2 xy_offset3 = xy_start_offset + float2(1.0, 3.0) * xy_step;
|
|
const float2 xy_offset4 = xy_start_offset + float2(5.0, 4.0) * xy_step;
|
|
const float2 xy_offset5 = xy_start_offset + float2(15.0, 5.0) * xy_step;
|
|
const float2 xy_offset6 = xy_start_offset + float2(10.0, 6.0) * xy_step;
|
|
const float2 xy_offset7 = xy_start_offset + float2(19.0, 7.0) * xy_step;
|
|
const float2 xy_offset8 = xy_start_offset + float2(2.0, 8.0) * xy_step;
|
|
const float2 xy_offset9 = xy_start_offset + float2(6.0, 9.0) * xy_step;
|
|
// Compute subpixel weights, and exploit diagonal symmetry for speed.
|
|
const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance);
|
|
const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance);
|
|
const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance);
|
|
const float3 w3 = eval_unorm_rgb_weights(xy_offset3, final_axis_importance);
|
|
const float3 w4 = eval_unorm_rgb_weights(xy_offset4, final_axis_importance);
|
|
const float3 w5 = eval_unorm_rgb_weights(xy_offset5, final_axis_importance);
|
|
const float3 w6 = eval_unorm_rgb_weights(xy_offset6, final_axis_importance);
|
|
const float3 w7 = eval_unorm_rgb_weights(xy_offset7, final_axis_importance);
|
|
const float3 w8 = eval_unorm_rgb_weights(xy_offset8, final_axis_importance);
|
|
const float3 w9 = eval_unorm_rgb_weights(xy_offset9, final_axis_importance);
|
|
const float3 w10 = w9.bgr;
|
|
const float3 w11 = w8.bgr;
|
|
const float3 w12 = w7.bgr;
|
|
const float3 w13 = w6.bgr;
|
|
const float3 w14 = w5.bgr;
|
|
const float3 w15 = w4.bgr;
|
|
const float3 w16 = w3.bgr;
|
|
const float3 w17 = w2.bgr;
|
|
const float3 w18 = w1.bgr;
|
|
const float3 w19 = w0.bgr;
|
|
// Get the weight sum to normalize the total to 1.0 later:
|
|
const float3 half_sum = w0 + w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9;
|
|
const float3 w_sum = half_sum + half_sum.bgr;
|
|
const float3 w_sum_inv = float3(1.0)/(w_sum);
|
|
// Scale the pixel-space to texture offset matrix by the pixel diameter.
|
|
const float2x2 true_pixel_to_tex_uv =
|
|
float2x2(pixel_to_tex_uv * aa_pixel_diameter);
|
|
// Get uv sample offsets, mirror on odd frames if directed, and exploit
|
|
// diagonal symmetry:
|
|
const float2 frame_sign = get_frame_sign(frame);
|
|
const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign);
|
|
const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign);
|
|
const float2 uv_offset2 = mul(true_pixel_to_tex_uv, xy_offset2 * frame_sign);
|
|
const float2 uv_offset3 = mul(true_pixel_to_tex_uv, xy_offset3 * frame_sign);
|
|
const float2 uv_offset4 = mul(true_pixel_to_tex_uv, xy_offset4 * frame_sign);
|
|
const float2 uv_offset5 = mul(true_pixel_to_tex_uv, xy_offset5 * frame_sign);
|
|
const float2 uv_offset6 = mul(true_pixel_to_tex_uv, xy_offset6 * frame_sign);
|
|
const float2 uv_offset7 = mul(true_pixel_to_tex_uv, xy_offset7 * frame_sign);
|
|
const float2 uv_offset8 = mul(true_pixel_to_tex_uv, xy_offset8 * frame_sign);
|
|
const float2 uv_offset9 = mul(true_pixel_to_tex_uv, xy_offset9 * frame_sign);
|
|
// Load samples, linearizing if necessary, etc.:
|
|
const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0).rgb;
|
|
const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1).rgb;
|
|
const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset2).rgb;
|
|
const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset3).rgb;
|
|
const float3 sample4 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset4).rgb;
|
|
const float3 sample5 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset5).rgb;
|
|
const float3 sample6 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset6).rgb;
|
|
const float3 sample7 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset7).rgb;
|
|
const float3 sample8 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset8).rgb;
|
|
const float3 sample9 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset9).rgb;
|
|
const float3 sample10 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset9).rgb;
|
|
const float3 sample11 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset8).rgb;
|
|
const float3 sample12 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset7).rgb;
|
|
const float3 sample13 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset6).rgb;
|
|
const float3 sample14 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset5).rgb;
|
|
const float3 sample15 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset4).rgb;
|
|
const float3 sample16 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset3).rgb;
|
|
const float3 sample17 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset2).rgb;
|
|
const float3 sample18 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1).rgb;
|
|
const float3 sample19 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0).rgb;
|
|
// Sum weighted samples (weight sum must equal 1.0 for each channel):
|
|
return w_sum_inv * (
|
|
w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3 +
|
|
w4 * sample4 + w5 * sample5 + w6 * sample6 + w7 * sample7 +
|
|
w8 * sample8 + w9 * sample9 + w10 * sample10 + w11 * sample11 +
|
|
w12 * sample12 + w13 * sample13 + w14 * sample14 + w15 * sample15 +
|
|
w16 * sample16 + w17 * sample17 + w18 * sample18 + w19 * sample19);
|
|
}
|
|
|
|
float3 tex2Daa24x(const sampler2D tex, const float2 tex_uv,
|
|
const float2x2 pixel_to_tex_uv, const float frame)
|
|
{
|
|
// Use a diagonally symmetric 24-superqueens pattern where no 3 points are
|
|
// exactly collinear and superqueens have a squared attack radius of 13.
|
|
// . . . . . . Q . . . . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (6.0, 0.0)/24
|
|
// . . . . . . . . . . . . . . . . Q . . . . . . . : off =(-11.5, -11.5)/24 + (16.0, 1.0)/24
|
|
// . . . . . . . . . . Q . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (10.0, 2.0)/24
|
|
// . . . . . . . . . . . . . . . . . . . . . Q . . : off =(-11.5, -11.5)/24 + (21.0, 3.0)/24
|
|
// . . . . . Q . . . . . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (5.0, 4.0)/24
|
|
// . . . . . . . . . . . . . . . Q . . . . . . . . : off =(-11.5, -11.5)/24 + (15.0, 5.0)/24
|
|
// . Q . . . . . . . . . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (1.0, 6.0)/24
|
|
// . . . . . . . . . . . Q . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (11.0, 7.0)/24
|
|
// . . . . . . . . . . . . . . . . . . . Q . . . . : off =(-11.5, -11.5)/24 + (19.0, 8.0)/24
|
|
// . . . . . . . . . . . . . . . . . . . . . . . Q : off =(-11.5, -11.5)/24 + (23.0, 9.0)/24
|
|
// . . . Q . . . . . . . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (3.0, 10.0)/24
|
|
// . . . . . . . . . . . . . . Q . . . . . . . . . : off =(-11.5, -11.5)/24 + (14.0, 11.0)/24
|
|
// . . . . . . . . . Q . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (9.0, 12.0)/24
|
|
// . . . . . . . . . . . . . . . . . . . . Q . . . : off =(-11.5, -11.5)/24 + (20.0, 13.0)/24
|
|
// Q . . . . . . . . . . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (0.0, 14.0)/24
|
|
// . . . . Q . . . . . . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (4.0, 15.0)/24
|
|
// . . . . . . . . . . . . Q . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (12.0, 16.0)/24
|
|
// . . . . . . . . . . . . . . . . . . . . . . Q . : off =(-11.5, -11.5)/24 + (22.0, 17.0)/24
|
|
// . . . . . . . . Q . . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (8.0, 18.0)/24
|
|
// . . . . . . . . . . . . . . . . . . Q . . . . . : off =(-11.5, -11.5)/24 + (18.0, 19.0)/24
|
|
// . . Q . . . . . . . . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (2.0, 20.0)/24
|
|
// . . . . . . . . . . . . . Q . . . . . . . . . . : off =(-11.5, -11.5)/24 + (13.0, 21.0)/24
|
|
// . . . . . . . Q . . . . . . . . . . . . . . . . : off =(-11.5, -11.5)/24 + (7.0, 22.0)/24
|
|
// . . . . . . . . . . . . . . . . . Q . . . . . . : off =(-11.5, -11.5)/24 + (17.0, 23.0)/24
|
|
static const float grid_size = 24.0;
|
|
assign_aa_cubic_constants();
|
|
const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance();
|
|
const float2 subpixel_support_diameter = ssd_fai.xy;
|
|
const float2 final_axis_importance = ssd_fai.zw;
|
|
const float2 xy_step = float2(1.0)/grid_size * subpixel_support_diameter;
|
|
const float2 xy_start_offset = float2(0.5 - grid_size*0.5) * xy_step;
|
|
// Get the xy offset of each sample. Exploit diagonal symmetry:
|
|
const float2 xy_offset0 = xy_start_offset + float2(6.0, 0.0) * xy_step;
|
|
const float2 xy_offset1 = xy_start_offset + float2(16.0, 1.0) * xy_step;
|
|
const float2 xy_offset2 = xy_start_offset + float2(10.0, 2.0) * xy_step;
|
|
const float2 xy_offset3 = xy_start_offset + float2(21.0, 3.0) * xy_step;
|
|
const float2 xy_offset4 = xy_start_offset + float2(5.0, 4.0) * xy_step;
|
|
const float2 xy_offset5 = xy_start_offset + float2(15.0, 5.0) * xy_step;
|
|
const float2 xy_offset6 = xy_start_offset + float2(1.0, 6.0) * xy_step;
|
|
const float2 xy_offset7 = xy_start_offset + float2(11.0, 7.0) * xy_step;
|
|
const float2 xy_offset8 = xy_start_offset + float2(19.0, 8.0) * xy_step;
|
|
const float2 xy_offset9 = xy_start_offset + float2(23.0, 9.0) * xy_step;
|
|
const float2 xy_offset10 = xy_start_offset + float2(3.0, 10.0) * xy_step;
|
|
const float2 xy_offset11 = xy_start_offset + float2(14.0, 11.0) * xy_step;
|
|
// Compute subpixel weights, and exploit diagonal symmetry for speed.
|
|
const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance);
|
|
const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance);
|
|
const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance);
|
|
const float3 w3 = eval_unorm_rgb_weights(xy_offset3, final_axis_importance);
|
|
const float3 w4 = eval_unorm_rgb_weights(xy_offset4, final_axis_importance);
|
|
const float3 w5 = eval_unorm_rgb_weights(xy_offset5, final_axis_importance);
|
|
const float3 w6 = eval_unorm_rgb_weights(xy_offset6, final_axis_importance);
|
|
const float3 w7 = eval_unorm_rgb_weights(xy_offset7, final_axis_importance);
|
|
const float3 w8 = eval_unorm_rgb_weights(xy_offset8, final_axis_importance);
|
|
const float3 w9 = eval_unorm_rgb_weights(xy_offset9, final_axis_importance);
|
|
const float3 w10 = eval_unorm_rgb_weights(xy_offset10, final_axis_importance);
|
|
const float3 w11 = eval_unorm_rgb_weights(xy_offset11, final_axis_importance);
|
|
const float3 w12 = w11.bgr;
|
|
const float3 w13 = w10.bgr;
|
|
const float3 w14 = w9.bgr;
|
|
const float3 w15 = w8.bgr;
|
|
const float3 w16 = w7.bgr;
|
|
const float3 w17 = w6.bgr;
|
|
const float3 w18 = w5.bgr;
|
|
const float3 w19 = w4.bgr;
|
|
const float3 w20 = w3.bgr;
|
|
const float3 w21 = w2.bgr;
|
|
const float3 w22 = w1.bgr;
|
|
const float3 w23 = w0.bgr;
|
|
// Get the weight sum to normalize the total to 1.0 later:
|
|
const float3 half_sum = w0 + w1 + w2 + w3 + w4 +
|
|
w5 + w6 + w7 + w8 + w9 + w10 + w11;
|
|
const float3 w_sum = half_sum + half_sum.bgr;
|
|
const float3 w_sum_inv = float3(1.0)/(w_sum);
|
|
// Scale the pixel-space to texture offset matrix by the pixel diameter.
|
|
const float2x2 true_pixel_to_tex_uv =
|
|
float2x2(pixel_to_tex_uv * aa_pixel_diameter);
|
|
// Get uv sample offsets, mirror on odd frames if directed, and exploit
|
|
// diagonal symmetry:
|
|
const float2 frame_sign = get_frame_sign(frame);
|
|
const float2 uv_offset0 = mul(true_pixel_to_tex_uv, xy_offset0 * frame_sign);
|
|
const float2 uv_offset1 = mul(true_pixel_to_tex_uv, xy_offset1 * frame_sign);
|
|
const float2 uv_offset2 = mul(true_pixel_to_tex_uv, xy_offset2 * frame_sign);
|
|
const float2 uv_offset3 = mul(true_pixel_to_tex_uv, xy_offset3 * frame_sign);
|
|
const float2 uv_offset4 = mul(true_pixel_to_tex_uv, xy_offset4 * frame_sign);
|
|
const float2 uv_offset5 = mul(true_pixel_to_tex_uv, xy_offset5 * frame_sign);
|
|
const float2 uv_offset6 = mul(true_pixel_to_tex_uv, xy_offset6 * frame_sign);
|
|
const float2 uv_offset7 = mul(true_pixel_to_tex_uv, xy_offset7 * frame_sign);
|
|
const float2 uv_offset8 = mul(true_pixel_to_tex_uv, xy_offset8 * frame_sign);
|
|
const float2 uv_offset9 = mul(true_pixel_to_tex_uv, xy_offset9 * frame_sign);
|
|
const float2 uv_offset10 = mul(true_pixel_to_tex_uv, xy_offset10 * frame_sign);
|
|
const float2 uv_offset11 = mul(true_pixel_to_tex_uv, xy_offset11 * frame_sign);
|
|
// Load samples, linearizing if necessary, etc.:
|
|
const float3 sample0 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset0).rgb;
|
|
const float3 sample1 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset1).rgb;
|
|
const float3 sample2 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset2).rgb;
|
|
const float3 sample3 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset3).rgb;
|
|
const float3 sample4 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset4).rgb;
|
|
const float3 sample5 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset5).rgb;
|
|
const float3 sample6 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset6).rgb;
|
|
const float3 sample7 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset7).rgb;
|
|
const float3 sample8 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset8).rgb;
|
|
const float3 sample9 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset9).rgb;
|
|
const float3 sample10 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset10).rgb;
|
|
const float3 sample11 = tex2Daa_tiled_linearize(tex, tex_uv + uv_offset11).rgb;
|
|
const float3 sample12 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset11).rgb;
|
|
const float3 sample13 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset10).rgb;
|
|
const float3 sample14 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset9).rgb;
|
|
const float3 sample15 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset8).rgb;
|
|
const float3 sample16 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset7).rgb;
|
|
const float3 sample17 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset6).rgb;
|
|
const float3 sample18 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset5).rgb;
|
|
const float3 sample19 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset4).rgb;
|
|
const float3 sample20 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset3).rgb;
|
|
const float3 sample21 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset2).rgb;
|
|
const float3 sample22 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset1).rgb;
|
|
const float3 sample23 = tex2Daa_tiled_linearize(tex, tex_uv - uv_offset0).rgb;
|
|
// Sum weighted samples (weight sum must equal 1.0 for each channel):
|
|
return w_sum_inv * (
|
|
w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3 +
|
|
w4 * sample4 + w5 * sample5 + w6 * sample6 + w7 * sample7 +
|
|
w8 * sample8 + w9 * sample9 + w10 * sample10 + w11 * sample11 +
|
|
w12 * sample12 + w13 * sample13 + w14 * sample14 + w15 * sample15 +
|
|
w16 * sample16 + w17 * sample17 + w18 * sample18 + w19 * sample19 +
|
|
w20 * sample20 + w21 * sample21 + w22 * sample22 + w23 * sample23);
|
|
}
|
|
|
|
float3 tex2Daa_debug_16x_regular(const sampler2D tex, const float2 tex_uv,
|
|
const float2x2 pixel_to_tex_uv, const float frame)
|
|
{
|
|
// Sample on a regular 4x4 grid. This is mainly for testing.
|
|
static const float grid_size = 4.0;
|
|
assign_aa_cubic_constants();
|
|
const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance();
|
|
const float2 subpixel_support_diameter = ssd_fai.xy;
|
|
const float2 final_axis_importance = ssd_fai.zw;
|
|
const float2 xy_step = float2(1.0)/grid_size * subpixel_support_diameter;
|
|
const float2 xy_start_offset = float2(0.5 - grid_size*0.5) * xy_step;
|
|
// Get the xy offset of each sample:
|
|
const float2 xy_offset0 = xy_start_offset + float2(0.0, 0.0) * xy_step;
|
|
const float2 xy_offset1 = xy_start_offset + float2(1.0, 0.0) * xy_step;
|
|
const float2 xy_offset2 = xy_start_offset + float2(2.0, 0.0) * xy_step;
|
|
const float2 xy_offset3 = xy_start_offset + float2(3.0, 0.0) * xy_step;
|
|
const float2 xy_offset4 = xy_start_offset + float2(0.0, 1.0) * xy_step;
|
|
const float2 xy_offset5 = xy_start_offset + float2(1.0, 1.0) * xy_step;
|
|
const float2 xy_offset6 = xy_start_offset + float2(2.0, 1.0) * xy_step;
|
|
const float2 xy_offset7 = xy_start_offset + float2(3.0, 1.0) * xy_step;
|
|
// Compute subpixel weights, and exploit diagonal symmetry for speed.
|
|
// (We can't exploit vertical or horizontal symmetry due to uncertain
|
|
// subpixel offsets. We could fix that by rotating xy offsets with the
|
|
// subpixel structure, but...no.)
|
|
const float3 w0 = eval_unorm_rgb_weights(xy_offset0, final_axis_importance);
|
|
const float3 w1 = eval_unorm_rgb_weights(xy_offset1, final_axis_importance);
|
|
const float3 w2 = eval_unorm_rgb_weights(xy_offset2, final_axis_importance);
|
|
const float3 w3 = eval_unorm_rgb_weights(xy_offset3, final_axis_importance);
|
|
const float3 w4 = eval_unorm_rgb_weights(xy_offset4, final_axis_importance);
|
|
const float3 w5 = eval_unorm_rgb_weights(xy_offset5, final_axis_importance);
|
|
const float3 w6 = eval_unorm_rgb_weights(xy_offset6, final_axis_importance);
|
|
const float3 w7 = eval_unorm_rgb_weights(xy_offset7, final_axis_importance);
|
|
const float3 w8 = w7.bgr;
|
|
const float3 w9 = w6.bgr;
|
|
const float3 w10 = w5.bgr;
|
|
const float3 w11 = w4.bgr;
|
|
const float3 w12 = w3.bgr;
|
|
const float3 w13 = w2.bgr;
|
|
const float3 w14 = w1.bgr;
|
|
const float3 w15 = w0.bgr;
|
|
// Get the weight sum to normalize the total to 1.0 later:
|
|
const float3 half_sum = w0 + w1 + w2 + w3 + w4 + w5 + w6 + w7;
|
|
const float3 w_sum = half_sum + half_sum.bgr;
|
|
const float3 w_sum_inv = float3(1.0)/(w_sum);
|
|
// Scale the pixel-space to texture offset matrix by the pixel diameter.
|
|
const float2x2 true_pixel_to_tex_uv =
|
|
float2x2(pixel_to_tex_uv * aa_pixel_diameter);
|
|
// Get uv sample offsets, taking advantage of row alignment:
|
|
const float2 uv_step_x = mul(true_pixel_to_tex_uv, float2(xy_step.x, 0.0));
|
|
const float2 uv_step_y = mul(true_pixel_to_tex_uv, float2(0.0, xy_step.y));
|
|
const float2 uv_offset0 = -1.5 * (uv_step_x + uv_step_y);
|
|
const float2 sample0_uv = tex_uv + uv_offset0;
|
|
const float2 sample4_uv = sample0_uv + uv_step_y;
|
|
const float2 sample8_uv = sample0_uv + uv_step_y * 2.0;
|
|
const float2 sample12_uv = sample0_uv + uv_step_y * 3.0;
|
|
// Load samples, linearizing if necessary, etc.:
|
|
const float3 sample0 = tex2Daa_tiled_linearize(tex, sample0_uv).rgb;
|
|
const float3 sample1 = tex2Daa_tiled_linearize(tex, sample0_uv + uv_step_x).rgb;
|
|
const float3 sample2 = tex2Daa_tiled_linearize(tex, sample0_uv + uv_step_x * 2.0).rgb;
|
|
const float3 sample3 = tex2Daa_tiled_linearize(tex, sample0_uv + uv_step_x * 3.0).rgb;
|
|
const float3 sample4 = tex2Daa_tiled_linearize(tex, sample4_uv).rgb;
|
|
const float3 sample5 = tex2Daa_tiled_linearize(tex, sample4_uv + uv_step_x).rgb;
|
|
const float3 sample6 = tex2Daa_tiled_linearize(tex, sample4_uv + uv_step_x * 2.0).rgb;
|
|
const float3 sample7 = tex2Daa_tiled_linearize(tex, sample4_uv + uv_step_x * 3.0).rgb;
|
|
const float3 sample8 = tex2Daa_tiled_linearize(tex, sample8_uv).rgb;
|
|
const float3 sample9 = tex2Daa_tiled_linearize(tex, sample8_uv + uv_step_x).rgb;
|
|
const float3 sample10 = tex2Daa_tiled_linearize(tex, sample8_uv + uv_step_x * 2.0).rgb;
|
|
const float3 sample11 = tex2Daa_tiled_linearize(tex, sample8_uv + uv_step_x * 3.0).rgb;
|
|
const float3 sample12 = tex2Daa_tiled_linearize(tex, sample12_uv).rgb;
|
|
const float3 sample13 = tex2Daa_tiled_linearize(tex, sample12_uv + uv_step_x).rgb;
|
|
const float3 sample14 = tex2Daa_tiled_linearize(tex, sample12_uv + uv_step_x * 2.0).rgb;
|
|
const float3 sample15 = tex2Daa_tiled_linearize(tex, sample12_uv + uv_step_x * 3.0).rgb;
|
|
// Sum weighted samples (weight sum must equal 1.0 for each channel):
|
|
return w_sum_inv * (
|
|
w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3 +
|
|
w4 * sample4 + w5 * sample5 + w6 * sample6 + w7 * sample7 +
|
|
w8 * sample8 + w9 * sample9 + w10 * sample10 + w11 * sample11 +
|
|
w12 * sample12 + w13 * sample13 + w14 * sample14 + w15 * sample15);
|
|
}
|
|
|
|
float3 tex2Daa_debug_dynamic(const sampler2D tex, const float2 tex_uv,
|
|
const float2x2 pixel_to_tex_uv, const float frame)
|
|
{
|
|
// This function is for testing only: Use an NxN grid with dynamic weights.
|
|
static const int grid_size = 8;
|
|
assign_aa_cubic_constants();
|
|
const float4 ssd_fai = get_subpixel_support_diam_and_final_axis_importance();
|
|
const float2 subpixel_support_diameter = ssd_fai.xy;
|
|
const float2 final_axis_importance = ssd_fai.zw;
|
|
const float grid_radius_in_samples = (float(grid_size) - 1.0)/2.0;
|
|
const float2 filter_space_offset_step =
|
|
subpixel_support_diameter/float2(grid_size);
|
|
const float2 sample0_filter_space_offset =
|
|
-grid_radius_in_samples * filter_space_offset_step;
|
|
// Compute xy sample offsets and subpixel weights:
|
|
float3 weights[64]; //originally grid_size * grid_size
|
|
float3 weight_sum = float3(0.0, 0.0, 0.0);
|
|
for(int i = 0; i < grid_size; ++i)
|
|
{
|
|
for(int j = 0; j < grid_size; ++j)
|
|
{
|
|
// Weights based on xy distances:
|
|
const float2 offset = sample0_filter_space_offset +
|
|
float2(j, i) * filter_space_offset_step;
|
|
const float3 weight = eval_unorm_rgb_weights(offset, final_axis_importance);
|
|
weights[i*grid_size + j] = weight;
|
|
weight_sum += weight;
|
|
}
|
|
}
|
|
// Get uv offset vectors along x and y directions:
|
|
const float2x2 true_pixel_to_tex_uv =
|
|
float2x2(pixel_to_tex_uv * aa_pixel_diameter);
|
|
const float2 uv_offset_step_x = mul(true_pixel_to_tex_uv,
|
|
float2(filter_space_offset_step.x, 0.0));
|
|
const float2 uv_offset_step_y = mul(true_pixel_to_tex_uv,
|
|
float2(0.0, filter_space_offset_step.y));
|
|
// Get a starting sample location:
|
|
const float2 sample0_uv_offset = -grid_radius_in_samples *
|
|
(uv_offset_step_x + uv_offset_step_y);
|
|
const float2 sample0_uv = tex_uv + sample0_uv_offset;
|
|
// Load, weight, and sum [linearized] samples:
|
|
float3 sum = float3(0.0, 0.0, 0.0);
|
|
const float3 weight_sum_inv = float3(1.0)/weight_sum;
|
|
for(int i = 0; i < grid_size; ++i)
|
|
{
|
|
const float2 row_i_first_sample_uv =
|
|
sample0_uv + i * uv_offset_step_y;
|
|
for(int j = 0; j < grid_size; ++j)
|
|
{
|
|
const float2 sample_uv =
|
|
row_i_first_sample_uv + j * uv_offset_step_x;
|
|
sum += weights[i*grid_size + j] *
|
|
tex2Daa_tiled_linearize(tex, sample_uv).rgb;
|
|
}
|
|
}
|
|
return sum * weight_sum_inv;
|
|
}
|
|
|
|
|
|
/////////////////////// ANTIALIASING CODEPATH SELECTION //////////////////////
|
|
|
|
inline float3 tex2Daa(const sampler2D tex, const float2 tex_uv,
|
|
const float2x2 pixel_to_tex_uv, const float frame)
|
|
{
|
|
#define DEBUG
|
|
#ifdef DEBUG
|
|
return tex2Daa_subpixel_weights_only(
|
|
tex, tex_uv, pixel_to_tex_uv);
|
|
#else
|
|
// Statically switch between antialiasing modes/levels:
|
|
return (aa_level < 0.5) ? tex2D_linearize(tex, tex_uv).rgb :
|
|
(aa_level < 3.5) ? tex2Daa_subpixel_weights_only(
|
|
tex, tex_uv, pixel_to_tex_uv) :
|
|
(aa_level < 4.5) ? tex2Daa4x(tex, tex_uv, pixel_to_tex_uv, frame) :
|
|
(aa_level < 5.5) ? tex2Daa5x(tex, tex_uv, pixel_to_tex_uv, frame) :
|
|
(aa_level < 6.5) ? tex2Daa6x(tex, tex_uv, pixel_to_tex_uv, frame) :
|
|
(aa_level < 7.5) ? tex2Daa7x(tex, tex_uv, pixel_to_tex_uv, frame) :
|
|
(aa_level < 11.5) ? tex2Daa8x(tex, tex_uv, pixel_to_tex_uv, frame) :
|
|
(aa_level < 15.5) ? tex2Daa12x(tex, tex_uv, pixel_to_tex_uv, frame) :
|
|
(aa_level < 19.5) ? tex2Daa16x(tex, tex_uv, pixel_to_tex_uv, frame) :
|
|
(aa_level < 23.5) ? tex2Daa20x(tex, tex_uv, pixel_to_tex_uv, frame) :
|
|
(aa_level < 253.5) ? tex2Daa24x(tex, tex_uv, pixel_to_tex_uv, frame) :
|
|
(aa_level < 254.5) ? tex2Daa_debug_16x_regular(
|
|
tex, tex_uv, pixel_to_tex_uv, frame) :
|
|
tex2Daa_debug_dynamic(tex, tex_uv, pixel_to_tex_uv, frame);
|
|
#endif
|
|
}
|
|
|
|
|
|
#endif // TEX2DANTIALIAS_H
|
|
|
|
///////////////////////// END TEX2DANTIALIAS /////////////////////////
|
|
|
|
//#include "geometry-functions.h"
|
|
|
|
///////////////////////// BEGIN GEOMETRY-FUNCTIONS /////////////////////////
|
|
|
|
#ifndef GEOMETRY_FUNCTIONS_H
|
|
#define GEOMETRY_FUNCTIONS_H
|
|
|
|
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
|
|
|
|
// crt-royale: A full-featured CRT shader, with cheese.
|
|
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
|
|
//
|
|
// This program is free software; you can redistribute it and/or modify it
|
|
// under the terms of the GNU General Public License as published by the Free
|
|
// Software Foundation; either version 2 of the License, or any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful, but WITHOUT
|
|
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
// more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License along with
|
|
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
|
// Place, Suite 330, Boston, MA 02111-1307 USA
|
|
|
|
|
|
////////////////////////////////// INCLUDES //////////////////////////////////
|
|
|
|
// already included elsewhere
|
|
//#include "../user-settings.h"
|
|
//#include "derived-settings-and-constants.h"
|
|
//#include "bind-shader-h"
|
|
|
|
|
|
//////////////////////////// MACROS AND CONSTANTS ////////////////////////////
|
|
|
|
// Curvature-related constants:
|
|
#define MAX_POINT_CLOUD_SIZE 9
|
|
|
|
|
|
///////////////////////////// CURVATURE FUNCTIONS /////////////////////////////
|
|
|
|
float2 quadratic_solve(const float a, const float b_over_2, const float c)
|
|
{
|
|
// Requires: 1.) a, b, and c are quadratic formula coefficients
|
|
// 2.) b_over_2 = b/2.0 (simplifies terms to factor 2 out)
|
|
// 3.) b_over_2 must be guaranteed < 0.0 (avoids a branch)
|
|
// Returns: Returns float2(first_solution, discriminant), so the caller
|
|
// can choose how to handle the "no intersection" case. The
|
|
// Kahan or Citardauq formula is used for numerical robustness.
|
|
const float discriminant = b_over_2*b_over_2 - a*c;
|
|
const float solution0 = c/(-b_over_2 + sqrt(discriminant));
|
|
return float2(solution0, discriminant);
|
|
}
|
|
|
|
float2 intersect_sphere(const float3 view_vec, const float3 eye_pos_vec)
|
|
{
|
|
// Requires: 1.) view_vec and eye_pos_vec are 3D vectors in the sphere's
|
|
// local coordinate frame (eye_pos_vec is a position, i.e.
|
|
// a vector from the origin to the eye/camera)
|
|
// 2.) geom_radius is a global containing the sphere's radius
|
|
// Returns: Cast a ray of direction view_vec from eye_pos_vec at a
|
|
// sphere of radius geom_radius, and return the distance to
|
|
// the first intersection in units of length(view_vec).
|
|
// http://wiki.cgsociety.org/index.php/Ray_Sphere_Intersection
|
|
// Quadratic formula coefficients (b_over_2 is guaranteed negative):
|
|
const float a = dot(view_vec, view_vec);
|
|
const float b_over_2 = dot(view_vec, eye_pos_vec); // * 2.0 factored out
|
|
const float c = dot(eye_pos_vec, eye_pos_vec) - geom_radius*geom_radius;
|
|
return quadratic_solve(a, b_over_2, c);
|
|
}
|
|
|
|
float2 intersect_cylinder(const float3 view_vec, const float3 eye_pos_vec)
|
|
{
|
|
// Requires: 1.) view_vec and eye_pos_vec are 3D vectors in the sphere's
|
|
// local coordinate frame (eye_pos_vec is a position, i.e.
|
|
// a vector from the origin to the eye/camera)
|
|
// 2.) geom_radius is a global containing the cylinder's radius
|
|
// Returns: Cast a ray of direction view_vec from eye_pos_vec at a
|
|
// cylinder of radius geom_radius, and return the distance to
|
|
// the first intersection in units of length(view_vec). The
|
|
// derivation of the coefficients is in Christer Ericson's
|
|
// Real-Time Collision Detection, p. 195-196, and this version
|
|
// uses LaGrange's identity to reduce operations.
|
|
// Arbitrary "cylinder top" reference point for an infinite cylinder:
|
|
const float3 cylinder_top_vec = float3(0.0, geom_radius, 0.0);
|
|
const float3 cylinder_axis_vec = float3(0.0, 1.0, 0.0);//float3(0.0, 2.0*geom_radius, 0.0);
|
|
const float3 top_to_eye_vec = eye_pos_vec - cylinder_top_vec;
|
|
const float3 axis_x_view = cross(cylinder_axis_vec, view_vec);
|
|
const float3 axis_x_top_to_eye = cross(cylinder_axis_vec, top_to_eye_vec);
|
|
// Quadratic formula coefficients (b_over_2 is guaranteed negative):
|
|
const float a = dot(axis_x_view, axis_x_view);
|
|
const float b_over_2 = dot(axis_x_top_to_eye, axis_x_view);
|
|
const float c = dot(axis_x_top_to_eye, axis_x_top_to_eye) -
|
|
geom_radius*geom_radius;//*dot(cylinder_axis_vec, cylinder_axis_vec);
|
|
return quadratic_solve(a, b_over_2, c);
|
|
}
|
|
|
|
float2 cylinder_xyz_to_uv(const float3 intersection_pos_local,
|
|
const float2 geom_aspect)
|
|
{
|
|
// Requires: An xyz intersection position on a cylinder.
|
|
// Returns: video_uv coords mapped to range [-0.5, 0.5]
|
|
// Mapping: Define square_uv.x to be the signed arc length in xz-space,
|
|
// and define square_uv.y = -intersection_pos_local.y (+v = -y).
|
|
// Start with a numerically robust arc length calculation.
|
|
const float angle_from_image_center = atan2(intersection_pos_local.x,
|
|
intersection_pos_local.z);
|
|
const float signed_arc_len = angle_from_image_center * geom_radius;
|
|
// Get a uv-mapping where [-0.5, 0.5] maps to a "square" area, then divide
|
|
// by the aspect ratio to stretch the mapping appropriately:
|
|
const float2 square_uv = float2(signed_arc_len, -intersection_pos_local.y);
|
|
const float2 video_uv = square_uv / geom_aspect;
|
|
return video_uv;
|
|
}
|
|
|
|
float3 cylinder_uv_to_xyz(const float2 video_uv, const float2 geom_aspect)
|
|
{
|
|
// Requires: video_uv coords mapped to range [-0.5, 0.5]
|
|
// Returns: An xyz intersection position on a cylinder. This is the
|
|
// inverse of cylinder_xyz_to_uv().
|
|
// Expand video_uv by the aspect ratio to get proportionate x/y lengths,
|
|
// then calculate an xyz position for the cylindrical mapping above.
|
|
const float2 square_uv = video_uv * geom_aspect;
|
|
const float arc_len = square_uv.x;
|
|
const float angle_from_image_center = arc_len / geom_radius;
|
|
const float x_pos = sin(angle_from_image_center) * geom_radius;
|
|
const float z_pos = cos(angle_from_image_center) * geom_radius;
|
|
// Or: z = sqrt(geom_radius**2 - x**2)
|
|
// Or: z = geom_radius/sqrt(1.0 + tan(angle)**2), x = z * tan(angle)
|
|
const float3 intersection_pos_local = float3(x_pos, -square_uv.y, z_pos);
|
|
return intersection_pos_local;
|
|
}
|
|
|
|
float2 sphere_xyz_to_uv(const float3 intersection_pos_local,
|
|
const float2 geom_aspect)
|
|
{
|
|
// Requires: An xyz intersection position on a sphere.
|
|
// Returns: video_uv coords mapped to range [-0.5, 0.5]
|
|
// Mapping: First define square_uv.x/square_uv.y ==
|
|
// intersection_pos_local.x/intersection_pos_local.y. Then,
|
|
// length(square_uv) is the arc length from the image center
|
|
// at (0.0, 0.0, geom_radius) along the tangent great circle.
|
|
// Credit for this mapping goes to cgwg: I never managed to
|
|
// understand his code, but he told me his mapping was based on
|
|
// great circle distances when I asked him about it, which
|
|
// informed this very similar (almost identical) mapping.
|
|
// Start with a numerically robust arc length calculation between the ray-
|
|
// sphere intersection point and the image center using a method posted by
|
|
// Roger Stafford on comp.soft-sys.matlab:
|
|
// https://groups.google.com/d/msg/comp.soft-sys.matlab/zNbUui3bjcA/c0HV_bHSx9cJ
|
|
const float3 image_center_pos_local = float3(0.0, 0.0, geom_radius);
|
|
const float cp_len =
|
|
length(cross(intersection_pos_local, image_center_pos_local));
|
|
const float dp = dot(intersection_pos_local, image_center_pos_local);
|
|
const float angle_from_image_center = atan2(cp_len, dp);
|
|
const float arc_len = angle_from_image_center * geom_radius;
|
|
// Get a uv-mapping where [-0.5, 0.5] maps to a "square" area, then divide
|
|
// by the aspect ratio to stretch the mapping appropriately:
|
|
const float2 square_uv_unit = normalize(float2(intersection_pos_local.x,
|
|
-intersection_pos_local.y));
|
|
const float2 square_uv = arc_len * square_uv_unit;
|
|
const float2 video_uv = square_uv / geom_aspect;
|
|
return video_uv;
|
|
}
|
|
|
|
float3 sphere_uv_to_xyz(const float2 video_uv, const float2 geom_aspect)
|
|
{
|
|
// Requires: video_uv coords mapped to range [-0.5, 0.5]
|
|
// Returns: An xyz intersection position on a sphere. This is the
|
|
// inverse of sphere_xyz_to_uv().
|
|
// Expand video_uv by the aspect ratio to get proportionate x/y lengths,
|
|
// then calculate an xyz position for the spherical mapping above.
|
|
const float2 square_uv = video_uv * geom_aspect;
|
|
// Using length or sqrt here butchers the framerate on my 8800GTS if
|
|
// this function is called too many times, and so does taking the max
|
|
// component of square_uv/square_uv_unit (program length threshold?).
|
|
//float arc_len = length(square_uv);
|
|
const float2 square_uv_unit = normalize(square_uv);
|
|
const float arc_len = square_uv.y/square_uv_unit.y;
|
|
const float angle_from_image_center = arc_len / geom_radius;
|
|
const float xy_dist_from_sphere_center =
|
|
sin(angle_from_image_center) * geom_radius;
|
|
//float2 xy_pos = xy_dist_from_sphere_center * (square_uv/FIX_ZERO(arc_len));
|
|
const float2 xy_pos = xy_dist_from_sphere_center * square_uv_unit;
|
|
const float z_pos = cos(angle_from_image_center) * geom_radius;
|
|
const float3 intersection_pos_local = float3(xy_pos.x, -xy_pos.y, z_pos);
|
|
return intersection_pos_local;
|
|
}
|
|
|
|
float2 sphere_alt_xyz_to_uv(const float3 intersection_pos_local,
|
|
const float2 geom_aspect)
|
|
{
|
|
// Requires: An xyz intersection position on a cylinder.
|
|
// Returns: video_uv coords mapped to range [-0.5, 0.5]
|
|
// Mapping: Define square_uv.x to be the signed arc length in xz-space,
|
|
// and define square_uv.y == signed arc length in yz-space.
|
|
// See cylinder_xyz_to_uv() for implementation details (very similar).
|
|
const float2 angle_from_image_center = atan2(
|
|
float2(intersection_pos_local.x, -intersection_pos_local.y),
|
|
intersection_pos_local.zz);
|
|
const float2 signed_arc_len = angle_from_image_center * geom_radius;
|
|
const float2 video_uv = signed_arc_len / geom_aspect;
|
|
return video_uv;
|
|
}
|
|
|
|
float3 sphere_alt_uv_to_xyz(const float2 video_uv, const float2 geom_aspect)
|
|
{
|
|
// Requires: video_uv coords mapped to range [-0.5, 0.5]
|
|
// Returns: An xyz intersection position on a sphere. This is the
|
|
// inverse of sphere_alt_xyz_to_uv().
|
|
// See cylinder_uv_to_xyz() for implementation details (very similar).
|
|
const float2 square_uv = video_uv * geom_aspect;
|
|
const float2 arc_len = square_uv;
|
|
const float2 angle_from_image_center = arc_len / geom_radius;
|
|
const float2 xy_pos = sin(angle_from_image_center) * geom_radius;
|
|
const float z_pos = sqrt(geom_radius*geom_radius - dot(xy_pos, xy_pos));
|
|
return float3(xy_pos.x, -xy_pos.y, z_pos);
|
|
}
|
|
|
|
inline float2 intersect(const float3 view_vec_local, const float3 eye_pos_local,
|
|
const float geom_mode)
|
|
{
|
|
return geom_mode < 2.5 ? intersect_sphere(view_vec_local, eye_pos_local) :
|
|
intersect_cylinder(view_vec_local, eye_pos_local);
|
|
}
|
|
|
|
inline float2 xyz_to_uv(const float3 intersection_pos_local,
|
|
const float2 geom_aspect, const float geom_mode)
|
|
{
|
|
return geom_mode < 1.5 ?
|
|
sphere_xyz_to_uv(intersection_pos_local, geom_aspect) :
|
|
geom_mode < 2.5 ?
|
|
sphere_alt_xyz_to_uv(intersection_pos_local, geom_aspect) :
|
|
cylinder_xyz_to_uv(intersection_pos_local, geom_aspect);
|
|
}
|
|
|
|
inline float3 uv_to_xyz(const float2 uv, const float2 geom_aspect,
|
|
const float geom_mode)
|
|
{
|
|
return geom_mode < 1.5 ? sphere_uv_to_xyz(uv, geom_aspect) :
|
|
geom_mode < 2.5 ? sphere_alt_uv_to_xyz(uv, geom_aspect) :
|
|
cylinder_uv_to_xyz(uv, geom_aspect);
|
|
}
|
|
|
|
float2 view_vec_to_uv(const float3 view_vec_local, const float3 eye_pos_local,
|
|
const float2 geom_aspect, const float geom_mode, out float3 intersection_pos)
|
|
{
|
|
// Get the intersection point on the primitive, given an eye position
|
|
// and view vector already in its local coordinate frame:
|
|
const float2 intersect_dist_and_discriminant = intersect(view_vec_local,
|
|
eye_pos_local, geom_mode);
|
|
const float3 intersection_pos_local = eye_pos_local +
|
|
view_vec_local * intersect_dist_and_discriminant.x;
|
|
// Save the intersection position to an output parameter:
|
|
intersection_pos = intersection_pos_local;
|
|
// Transform into uv coords, but give out-of-range coords if the
|
|
// view ray doesn't intersect the primitive in the first place:
|
|
return intersect_dist_and_discriminant.y > 0.005 ?
|
|
xyz_to_uv(intersection_pos_local, geom_aspect, geom_mode) : float2(1.0);
|
|
}
|
|
|
|
float3 get_ideal_global_eye_pos_for_points(float3 eye_pos,
|
|
const float2 geom_aspect, const float3 global_coords[MAX_POINT_CLOUD_SIZE],
|
|
const int num_points)
|
|
{
|
|
// Requires: Parameters:
|
|
// 1.) Starting eye_pos is a global 3D position at which the
|
|
// camera contains all points in global_coords[] in its FOV
|
|
// 2.) geom_aspect = get_aspect_vector(
|
|
// output_size.x / output_size.y);
|
|
// 3.) global_coords is a point cloud containing global xyz
|
|
// coords of extreme points on the simulated CRT screen.
|
|
// Globals:
|
|
// 1.) geom_view_dist must be > 0.0. It controls the "near
|
|
// plane" used to interpret flat_video_uv as a view
|
|
// vector, which controls the field of view (FOV).
|
|
// Eyespace coordinate frame: +x = right, +y = up, +z = back
|
|
// Returns: Return an eye position at which the point cloud spans as
|
|
// much of the screen as possible (given the FOV controlled by
|
|
// geom_view_dist) without being cropped or sheared.
|
|
// Algorithm:
|
|
// 1.) Move the eye laterally to a point which attempts to maximize the
|
|
// the amount we can move forward without clipping the CRT screen.
|
|
// 2.) Move forward by as much as possible without clipping the CRT.
|
|
// Get the allowed movement range by solving for the eye_pos offsets
|
|
// that result in each point being projected to a screen edge/corner in
|
|
// pseudo-normalized device coords (where xy ranges from [-0.5, 0.5]
|
|
// and z = eyespace z):
|
|
// pndc_coord = float3(float2(eyespace_xyz.x, -eyespace_xyz.y)*
|
|
// geom_view_dist / (geom_aspect * -eyespace_xyz.z), eyespace_xyz.z);
|
|
// Notes:
|
|
// The field of view is controlled by geom_view_dist's magnitude relative to
|
|
// the view vector's x and y components:
|
|
// view_vec.xy ranges from [-0.5, 0.5] * geom_aspect
|
|
// view_vec.z = -geom_view_dist
|
|
// But for the purposes of perspective divide, it should be considered:
|
|
// view_vec.xy ranges from [-0.5, 0.5] * geom_aspect / geom_view_dist
|
|
// view_vec.z = -1.0
|
|
static const int max_centering_iters = 1; // Keep for easy testing.
|
|
for(int iter = 0; iter < max_centering_iters; iter++)
|
|
{
|
|
// 0.) Get the eyespace coordinates of our point cloud:
|
|
float3 eyespace_coords[MAX_POINT_CLOUD_SIZE];
|
|
for(int i = 0; i < num_points; i++)
|
|
{
|
|
eyespace_coords[i] = global_coords[i] - eye_pos;
|
|
}
|
|
// 1a.)For each point, find out how far we can move eye_pos in each
|
|
// lateral direction without the point clipping the frustum.
|
|
// Eyespace +y = up, screenspace +y = down, so flip y after
|
|
// applying the eyespace offset (on the way to "clip space").
|
|
// Solve for two offsets per point based on:
|
|
// (eyespace_xyz.xy - offset_dr) * float2(1.0, -1.0) *
|
|
// geom_view_dist / (geom_aspect * -eyespace_xyz.z) = float2(-0.5)
|
|
// (eyespace_xyz.xy - offset_dr) * float2(1.0, -1.0) *
|
|
// geom_view_dist / (geom_aspect * -eyespace_xyz.z) = float2(0.5)
|
|
// offset_ul and offset_dr represent the farthest we can move the
|
|
// eye_pos up-left and down-right. Save the min of all offset_dr's
|
|
// and the max of all offset_ul's (since it's negative).
|
|
float abs_radius = abs(geom_radius); // In case anyone gets ideas. ;)
|
|
float2 offset_dr_min = float2(10.0 * abs_radius, 10.0 * abs_radius);
|
|
float2 offset_ul_max = float2(-10.0 * abs_radius, -10.0 * abs_radius);
|
|
for(int i = 0; i < num_points; i++)
|
|
{
|
|
static const float2 flipy = float2(1.0, -1.0);
|
|
float3 eyespace_xyz = eyespace_coords[i];
|
|
float2 offset_dr = eyespace_xyz.xy - float2(-0.5) *
|
|
(geom_aspect * -eyespace_xyz.z) / (geom_view_dist * flipy);
|
|
float2 offset_ul = eyespace_xyz.xy - float2(0.5) *
|
|
(geom_aspect * -eyespace_xyz.z) / (geom_view_dist * flipy);
|
|
offset_dr_min = min(offset_dr_min, offset_dr);
|
|
offset_ul_max = max(offset_ul_max, offset_ul);
|
|
}
|
|
// 1b.)Update eye_pos: Adding the average of offset_ul_max and
|
|
// offset_dr_min gives it equal leeway on the top vs. bottom
|
|
// and left vs. right. Recalculate eyespace_coords accordingly.
|
|
float2 center_offset = 0.5 * (offset_ul_max + offset_dr_min);
|
|
eye_pos.xy += center_offset;
|
|
for(int i = 0; i < num_points; i++)
|
|
{
|
|
eyespace_coords[i] = global_coords[i] - eye_pos;
|
|
}
|
|
// 2a.)For each point, find out how far we can move eye_pos forward
|
|
// without the point clipping the frustum. Flip the y
|
|
// direction in advance (matters for a later step, not here).
|
|
// Solve for four offsets per point based on:
|
|
// eyespace_xyz_flipy.x * geom_view_dist /
|
|
// (geom_aspect.x * (offset_z - eyespace_xyz_flipy.z)) =-0.5
|
|
// eyespace_xyz_flipy.y * geom_view_dist /
|
|
// (geom_aspect.y * (offset_z - eyespace_xyz_flipy.z)) =-0.5
|
|
// eyespace_xyz_flipy.x * geom_view_dist /
|
|
// (geom_aspect.x * (offset_z - eyespace_xyz_flipy.z)) = 0.5
|
|
// eyespace_xyz_flipy.y * geom_view_dist /
|
|
// (geom_aspect.y * (offset_z - eyespace_xyz_flipy.z)) = 0.5
|
|
// We'll vectorize the actual computation. Take the maximum of
|
|
// these four for a single offset, and continue taking the max
|
|
// for every point (use max because offset.z is negative).
|
|
float offset_z_max = -10.0 * geom_radius * geom_view_dist;
|
|
for(int i = 0; i < num_points; i++)
|
|
{
|
|
float3 eyespace_xyz_flipy = eyespace_coords[i] *
|
|
float3(1.0, -1.0, 1.0);
|
|
float4 offset_zzzz = eyespace_xyz_flipy.zzzz +
|
|
(eyespace_xyz_flipy.xyxy * geom_view_dist) /
|
|
(float4(-0.5, -0.5, 0.5, 0.5) * float4(geom_aspect, geom_aspect));
|
|
// Ignore offsets that push positive x/y values to opposite
|
|
// boundaries, and vice versa, and don't let the camera move
|
|
// past a point in the dead center of the screen:
|
|
offset_z_max = (eyespace_xyz_flipy.x < 0.0) ?
|
|
max(offset_z_max, offset_zzzz.x) : offset_z_max;
|
|
offset_z_max = (eyespace_xyz_flipy.y < 0.0) ?
|
|
max(offset_z_max, offset_zzzz.y) : offset_z_max;
|
|
offset_z_max = (eyespace_xyz_flipy.x > 0.0) ?
|
|
max(offset_z_max, offset_zzzz.z) : offset_z_max;
|
|
offset_z_max = (eyespace_xyz_flipy.y > 0.0) ?
|
|
max(offset_z_max, offset_zzzz.w) : offset_z_max;
|
|
offset_z_max = max(offset_z_max, eyespace_xyz_flipy.z);
|
|
}
|
|
// 2b.)Update eye_pos: Add the maximum (smallest negative) z offset.
|
|
eye_pos.z += offset_z_max;
|
|
}
|
|
return eye_pos;
|
|
}
|
|
|
|
float3 get_ideal_global_eye_pos(const float3x3 local_to_global,
|
|
const float2 geom_aspect, const float geom_mode)
|
|
{
|
|
// Start with an initial eye_pos that includes the entire primitive
|
|
// (sphere or cylinder) in its field-of-view:
|
|
const float3 high_view = float3(0.0, geom_aspect.y, -geom_view_dist);
|
|
const float3 low_view = high_view * float3(1.0, -1.0, 1.0);
|
|
const float len_sq = dot(high_view, high_view);
|
|
const float fov = abs(acos(dot(high_view, low_view)/len_sq));
|
|
// Trigonometry/similar triangles say distance = geom_radius/sin(fov/2):
|
|
const float eye_z_spherical = geom_radius/sin(fov*0.5);
|
|
const float3 eye_pos = geom_mode < 2.5 ?
|
|
float3(0.0, 0.0, eye_z_spherical) :
|
|
float3(0.0, 0.0, max(geom_view_dist, eye_z_spherical));
|
|
|
|
// Get global xyz coords of extreme sample points on the simulated CRT
|
|
// screen. Start with the center, edge centers, and corners of the
|
|
// video image. We can't ignore backfacing points: They're occluded
|
|
// by closer points on the primitive, but they may NOT be occluded by
|
|
// the convex hull of the remaining samples (i.e. the remaining convex
|
|
// hull might not envelope points that do occlude a back-facing point.)
|
|
static const int num_points = MAX_POINT_CLOUD_SIZE;
|
|
float3 global_coords[MAX_POINT_CLOUD_SIZE];
|
|
global_coords[0] = mul(local_to_global, uv_to_xyz(float2(0.0, 0.0), geom_aspect, geom_mode));
|
|
global_coords[1] = mul(local_to_global, uv_to_xyz(float2(0.0, -0.5), geom_aspect, geom_mode));
|
|
global_coords[2] = mul(local_to_global, uv_to_xyz(float2(0.0, 0.5), geom_aspect, geom_mode));
|
|
global_coords[3] = mul(local_to_global, uv_to_xyz(float2(-0.5, 0.0), geom_aspect, geom_mode));
|
|
global_coords[4] = mul(local_to_global, uv_to_xyz(float2(0.5, 0.0), geom_aspect, geom_mode));
|
|
global_coords[5] = mul(local_to_global, uv_to_xyz(float2(-0.5, -0.5), geom_aspect, geom_mode));
|
|
global_coords[6] = mul(local_to_global, uv_to_xyz(float2(0.5, -0.5), geom_aspect, geom_mode));
|
|
global_coords[7] = mul(local_to_global, uv_to_xyz(float2(-0.5, 0.5), geom_aspect, geom_mode));
|
|
global_coords[8] = mul(local_to_global, uv_to_xyz(float2(0.5, 0.5), geom_aspect, geom_mode));
|
|
// Adding more inner image points could help in extreme cases, but too many
|
|
// points will kille the framerate. For safety, default to the initial
|
|
// eye_pos if any z coords are negative:
|
|
float num_negative_z_coords = 0.0;
|
|
for(int i = 0; i < num_points; i++)
|
|
{
|
|
num_negative_z_coords += float(global_coords[0].z < 0.0);
|
|
}
|
|
// Outsource the optimized eye_pos calculation:
|
|
return num_negative_z_coords > 0.5 ? eye_pos :
|
|
get_ideal_global_eye_pos_for_points(eye_pos, geom_aspect,
|
|
global_coords, num_points);
|
|
}
|
|
|
|
float3x3 get_pixel_to_object_matrix(const float3x3 global_to_local,
|
|
const float3 eye_pos_local, const float3 view_vec_global,
|
|
const float3 intersection_pos_local, const float3 normal,
|
|
const float2 output_size_inv)
|
|
{
|
|
// Requires: See get_curved_video_uv_coords_and_tangent_matrix for
|
|
// descriptions of each parameter.
|
|
// Returns: Return a transformation matrix from 2D pixel-space vectors
|
|
// (where (+1.0, +1.0) is a vector to one pixel down-right,
|
|
// i.e. same directionality as uv texels) to 3D object-space
|
|
// vectors in the CRT's local coordinate frame (right-handed)
|
|
// ***which are tangent to the CRT surface at the intersection
|
|
// position.*** (Basically, we want to convert pixel-space
|
|
// vectors to 3D vectors along the CRT's surface, for later
|
|
// conversion to uv vectors.)
|
|
// Shorthand inputs:
|
|
const float3 pos = intersection_pos_local;
|
|
const float3 eye_pos = eye_pos_local;
|
|
// Get a piecewise-linear matrix transforming from "pixelspace" offset
|
|
// vectors (1.0 = one pixel) to object space vectors in the tangent
|
|
// plane (faster than finding 3 view-object intersections).
|
|
// 1.) Get the local view vecs for the pixels to the right and down:
|
|
const float3 view_vec_right_global = view_vec_global +
|
|
float3(output_size_inv.x, 0.0, 0.0);
|
|
const float3 view_vec_down_global = view_vec_global +
|
|
float3(0.0, -output_size_inv.y, 0.0);
|
|
const float3 view_vec_right_local =
|
|
mul(global_to_local, view_vec_right_global);
|
|
const float3 view_vec_down_local =
|
|
mul(global_to_local, view_vec_down_global);
|
|
// 2.) Using the true intersection point, intersect the neighboring
|
|
// view vectors with the tangent plane:
|
|
const float3 intersection_vec_dot_normal = float3(dot(pos - eye_pos, normal), dot(pos - eye_pos, normal), dot(pos - eye_pos, normal));
|
|
const float3 right_pos = eye_pos + (intersection_vec_dot_normal /
|
|
dot(view_vec_right_local, normal))*view_vec_right_local;
|
|
const float3 down_pos = eye_pos + (intersection_vec_dot_normal /
|
|
dot(view_vec_down_local, normal))*view_vec_down_local;
|
|
// 3.) Subtract the original intersection pos from its neighbors; the
|
|
// resulting vectors are object-space vectors tangent to the plane.
|
|
// These vectors are the object-space transformations of (1.0, 0.0)
|
|
// and (0.0, 1.0) pixel offsets, so they form the first two basis
|
|
// vectors of a pixelspace to object space transformation. This
|
|
// transformation is 2D to 3D, so use (0, 0, 0) for the third vector.
|
|
const float3 object_right_vec = right_pos - pos;
|
|
const float3 object_down_vec = down_pos - pos;
|
|
const float3x3 pixel_to_object = float3x3(
|
|
object_right_vec.x, object_down_vec.x, 0.0,
|
|
object_right_vec.y, object_down_vec.y, 0.0,
|
|
object_right_vec.z, object_down_vec.z, 0.0);
|
|
return pixel_to_object;
|
|
}
|
|
|
|
float3x3 get_object_to_tangent_matrix(const float3 intersection_pos_local,
|
|
const float3 normal, const float2 geom_aspect, const float geom_mode)
|
|
{
|
|
// Requires: See get_curved_video_uv_coords_and_tangent_matrix for
|
|
// descriptions of each parameter.
|
|
// Returns: Return a transformation matrix from 3D object-space vectors
|
|
// in the CRT's local coordinate frame (right-handed, +y = up)
|
|
// to 2D video_uv vectors (+v = down).
|
|
// Description:
|
|
// The TBN matrix formed by the [tangent, bitangent, normal] basis
|
|
// vectors transforms ordinary vectors from tangent->object space.
|
|
// The cotangent matrix formed by the [cotangent, cobitangent, normal]
|
|
// basis vectors transforms normal vectors (covectors) from
|
|
// tangent->object space. It's the inverse-transpose of the TBN matrix.
|
|
// We want the inverse of the TBN matrix (transpose of the cotangent
|
|
// matrix), which transforms ordinary vectors from object->tangent space.
|
|
// Start by calculating the relevant basis vectors in accordance with
|
|
// Christian Schüler's blog post "Followup: Normal Mapping Without
|
|
// Precomputed Tangents": http://www.thetenthplanet.de/archives/1180
|
|
// With our particular uv mapping, the scale of the u and v directions
|
|
// is determined entirely by the aspect ratio for cylindrical and ordinary
|
|
// spherical mappings, and so tangent and bitangent lengths are also
|
|
// determined by it (the alternate mapping is more complex). Therefore, we
|
|
// must ensure appropriate cotangent and cobitangent lengths as well.
|
|
// Base these off the uv<=>xyz mappings for each primitive.
|
|
const float3 pos = intersection_pos_local;
|
|
static const float3 x_vec = float3(1.0, 0.0, 0.0);
|
|
static const float3 y_vec = float3(0.0, 1.0, 0.0);
|
|
// The tangent and bitangent vectors correspond with increasing u and v,
|
|
// respectively. Mathematically we'd base the cotangent/cobitangent on
|
|
// those, but we'll compute the cotangent/cobitangent directly when we can.
|
|
float3 cotangent_unscaled, cobitangent_unscaled;
|
|
// geom_mode should be constant-folded without RUNTIME_GEOMETRY_MODE.
|
|
if(geom_mode < 1.5)
|
|
{
|
|
// Sphere:
|
|
// tangent = normalize(cross(normal, cross(x_vec, pos))) * geom_aspect.x
|
|
// bitangent = normalize(cross(cross(y_vec, pos), normal)) * geom_aspect.y
|
|
// inv_determinant = 1.0/length(cross(bitangent, tangent))
|
|
// cotangent = cross(normal, bitangent) * inv_determinant
|
|
// == normalize(cross(y_vec, pos)) * geom_aspect.y * inv_determinant
|
|
// cobitangent = cross(tangent, normal) * inv_determinant
|
|
// == normalize(cross(x_vec, pos)) * geom_aspect.x * inv_determinant
|
|
// Simplified (scale by inv_determinant below):
|
|
cotangent_unscaled = normalize(cross(y_vec, pos)) * geom_aspect.y;
|
|
cobitangent_unscaled = normalize(cross(x_vec, pos)) * geom_aspect.x;
|
|
}
|
|
else if(geom_mode < 2.5)
|
|
{
|
|
// Sphere, alternate mapping:
|
|
// This mapping works a bit like the cylindrical mapping in two
|
|
// directions, which makes the lengths and directions more complex.
|
|
// Unfortunately, I can't find much of a shortcut:
|
|
const float3 tangent = normalize(
|
|
cross(y_vec, float3(pos.x, 0.0, pos.z))) * geom_aspect.x;
|
|
const float3 bitangent = normalize(
|
|
cross(x_vec, float3(0.0, pos.yz))) * geom_aspect.y;
|
|
cotangent_unscaled = cross(normal, bitangent);
|
|
cobitangent_unscaled = cross(tangent, normal);
|
|
}
|
|
else
|
|
{
|
|
// Cylinder:
|
|
// tangent = normalize(cross(y_vec, normal)) * geom_aspect.x;
|
|
// bitangent = float3(0.0, -geom_aspect.y, 0.0);
|
|
// inv_determinant = 1.0/length(cross(bitangent, tangent))
|
|
// cotangent = cross(normal, bitangent) * inv_determinant
|
|
// == normalize(cross(y_vec, pos)) * geom_aspect.y * inv_determinant
|
|
// cobitangent = cross(tangent, normal) * inv_determinant
|
|
// == float3(0.0, -geom_aspect.x, 0.0) * inv_determinant
|
|
cotangent_unscaled = cross(y_vec, normal) * geom_aspect.y;
|
|
cobitangent_unscaled = float3(0.0, -geom_aspect.x, 0.0);
|
|
}
|
|
const float3 computed_normal =
|
|
cross(cobitangent_unscaled, cotangent_unscaled);
|
|
const float inv_determinant = rsqrt(dot(computed_normal, computed_normal));
|
|
const float3 cotangent = cotangent_unscaled * inv_determinant;
|
|
const float3 cobitangent = cobitangent_unscaled * inv_determinant;
|
|
// The [cotangent, cobitangent, normal] column vecs form the cotangent
|
|
// frame, i.e. the inverse-transpose TBN matrix. Get its transpose:
|
|
const float3x3 object_to_tangent = float3x3(cotangent, cobitangent, normal);
|
|
return object_to_tangent;
|
|
}
|
|
|
|
float2 get_curved_video_uv_coords_and_tangent_matrix(
|
|
const float2 flat_video_uv, const float3 eye_pos_local,
|
|
const float2 output_size_inv, const float2 geom_aspect,
|
|
const float geom_mode, const float3x3 global_to_local,
|
|
out float2x2 pixel_to_tangent_video_uv)
|
|
{
|
|
// Requires: Parameters:
|
|
// 1.) flat_video_uv coords are in range [0.0, 1.0], where
|
|
// (0.0, 0.0) is the top-left corner of the screen and
|
|
// (1.0, 1.0) is the bottom-right corner.
|
|
// 2.) eye_pos_local is the 3D camera position in the simulated
|
|
// CRT's local coordinate frame. For best results, it must
|
|
// be computed based on the same geom_view_dist used here.
|
|
// 3.) output_size_inv = float2(1.0)/output_size
|
|
// 4.) geom_aspect = get_aspect_vector(
|
|
// output_size.x / output_size.y);
|
|
// 5.) geom_mode is a static or runtime mode setting:
|
|
// 0 = off, 1 = sphere, 2 = sphere alt., 3 = cylinder
|
|
// 6.) global_to_local is a 3x3 matrix transforming (ordinary)
|
|
// worldspace vectors to the CRT's local coordinate frame
|
|
// Globals:
|
|
// 1.) geom_view_dist must be > 0.0. It controls the "near
|
|
// plane" used to interpret flat_video_uv as a view
|
|
// vector, which controls the field of view (FOV).
|
|
// Returns: Return final uv coords in [0.0, 1.0], and return a pixel-
|
|
// space to video_uv tangent-space matrix in the out parameter.
|
|
// (This matrix assumes pixel-space +y = down, like +v = down.)
|
|
// We'll transform flat_video_uv into a view vector, project
|
|
// the view vector from the camera/eye, intersect with a sphere
|
|
// or cylinder representing the simulated CRT, and convert the
|
|
// intersection position into final uv coords and a local
|
|
// transformation matrix.
|
|
// First get the 3D view vector (geom_aspect and geom_view_dist are globals):
|
|
// 1.) Center uv around (0.0, 0.0) and make (-0.5, -0.5) and (0.5, 0.5)
|
|
// correspond to the top-left/bottom-right output screen corners.
|
|
// 2.) Multiply by geom_aspect to preemptively "undo" Retroarch's screen-
|
|
// space 2D aspect correction. We'll reapply it in uv-space.
|
|
// 3.) (x, y) = (u, -v), because +v is down in 2D screenspace, but +y
|
|
// is up in 3D worldspace (enforce a right-handed system).
|
|
// 4.) The view vector z controls the "near plane" distance and FOV.
|
|
// For the effect of "looking through a window" at a CRT, it should be
|
|
// set equal to the user's distance from their physical screen, in
|
|
// units of the viewport's physical diagonal size.
|
|
const float2 view_uv = (flat_video_uv - float2(0.5)) * geom_aspect;
|
|
const float3 view_vec_global =
|
|
float3(view_uv.x, -view_uv.y, -geom_view_dist);
|
|
// Transform the view vector into the CRT's local coordinate frame, convert
|
|
// to video_uv coords, and get the local 3D intersection position:
|
|
const float3 view_vec_local = mul(global_to_local, view_vec_global);
|
|
float3 pos;
|
|
const float2 centered_uv = view_vec_to_uv(
|
|
view_vec_local, eye_pos_local, geom_aspect, geom_mode, pos);
|
|
const float2 video_uv = centered_uv + float2(0.5);
|
|
// Get a pixel-to-tangent-video-uv matrix. The caller could deal with
|
|
// all but one of these cases, but that would be more complicated.
|
|
#ifdef DRIVERS_ALLOW_DERIVATIVES
|
|
// Derivatives obtain a matrix very fast, but the direction of pixel-
|
|
// space +y seems to depend on the pass. Enforce the correct direction
|
|
// on a best-effort basis (but it shouldn't matter for antialiasing).
|
|
const float2 duv_dx = ddx(video_uv);
|
|
const float2 duv_dy = ddy(video_uv);
|
|
#ifdef LAST_PASS
|
|
pixel_to_tangent_video_uv = float2x2(
|
|
duv_dx.x, duv_dy.x,
|
|
-duv_dx.y, -duv_dy.y);
|
|
#else
|
|
pixel_to_tangent_video_uv = float2x2(
|
|
duv_dx.x, duv_dy.x,
|
|
duv_dx.y, duv_dy.y);
|
|
#endif
|
|
#else
|
|
// Manually define a transformation matrix. We'll assume pixel-space
|
|
// +y = down, just like +v = down.
|
|
if(geom_force_correct_tangent_matrix)
|
|
{
|
|
// Get the surface normal based on the local intersection position:
|
|
const float3 normal_base = geom_mode < 2.5 ? pos :
|
|
float3(pos.x, 0.0, pos.z);
|
|
const float3 normal = normalize(normal_base);
|
|
// Get pixel-to-object and object-to-tangent matrices and combine
|
|
// them into a 2x2 pixel-to-tangent matrix for video_uv offsets:
|
|
const float3x3 pixel_to_object = get_pixel_to_object_matrix(
|
|
global_to_local, eye_pos_local, view_vec_global, pos, normal,
|
|
output_size_inv);
|
|
const float3x3 object_to_tangent = get_object_to_tangent_matrix(
|
|
pos, normal, geom_aspect, geom_mode);
|
|
const float3x3 pixel_to_tangent3x3 =
|
|
mul(object_to_tangent, pixel_to_object);
|
|
pixel_to_tangent_video_uv = float2x2(
|
|
pixel_to_tangent3x3[0][0], pixel_to_tangent3x3[0][1], pixel_to_tangent3x3[1][0], pixel_to_tangent3x3[1][1]);//._m00_m01_m10_m11); //TODO/FIXME: needs to correct for column-major??
|
|
}
|
|
else
|
|
{
|
|
// Ignore curvature, and just consider flat scaling. The
|
|
// difference is only apparent with strong curvature:
|
|
pixel_to_tangent_video_uv = float2x2(
|
|
output_size_inv.x, 0.0, 0.0, output_size_inv.y);
|
|
}
|
|
#endif
|
|
return video_uv;
|
|
}
|
|
|
|
float get_border_dim_factor(const float2 video_uv, const float2 geom_aspect)
|
|
{
|
|
// COPYRIGHT NOTE FOR THIS FUNCTION:
|
|
// Copyright (C) 2010-2012 cgwg, 2014 TroggleMonkey
|
|
// This function uses an algorithm first coded in several of cgwg's GPL-
|
|
// licensed lines in crt-geom-curved.cg and its ancestors. The line
|
|
// between algorithm and code is nearly indistinguishable here, so it's
|
|
// unclear whether I could even release this project under a non-GPL
|
|
// license with this function included.
|
|
|
|
// Calculate border_dim_factor from the proximity to uv-space image
|
|
// borders; geom_aspect/border_size/border/darkness/border_compress are globals:
|
|
const float2 edge_dists = min(video_uv, float2(1.0) - video_uv) *
|
|
geom_aspect;
|
|
const float2 border_penetration =
|
|
max(float2(border_size) - edge_dists, float2(0.0));
|
|
const float penetration_ratio = length(border_penetration)/border_size;
|
|
const float border_escape_ratio = max(1.0 - penetration_ratio, 0.0);
|
|
const float border_dim_factor =
|
|
pow(border_escape_ratio, border_darkness) * max(1.0, border_compress);
|
|
return min(border_dim_factor, 1.0);
|
|
}
|
|
|
|
|
|
|
|
#endif // GEOMETRY_FUNCTIONS_H
|
|
|
|
///////////////////////// END GEOMETRY-FUNCTIONS /////////////////////////
|
|
|
|
/////////////////////////////////// HELPERS //////////////////////////////////
|
|
|
|
float2x2 mul_scale(float2 scale, float2x2 matrix)
|
|
{
|
|
//float2x2 scale_matrix = float2x2(scale.x, 0.0, 0.0, scale.y);
|
|
//return mul(scale_matrix, matrix);
|
|
float4 intermed = float4(matrix[0][0],matrix[0][1],matrix[1][0],matrix[1][1]) * scale.xxyy;
|
|
return float2x2(intermed.x, intermed.y, intermed.z, intermed.w);
|
|
}
|
|
|
|
#undef COMPAT_PRECISION
|
|
#undef COMPAT_TEXTURE
|
|
|
|
void main() {
|
|
gl_Position = position;
|
|
vTexCoord = texCoord * 1.0001;
|
|
tex_uv = vTexCoord.xy;
|
|
video_and_texture_size_inv =
|
|
float4(1.0, 1.0, 1.0, 1.0) / float4(video_size, texture_size);
|
|
output_size_inv = float2(1.0, 1.0)/output_size;
|
|
|
|
// Get aspect/overscan vectors from scalar parameters (likely uniforms):
|
|
const float viewport_aspect_ratio = output_size.x/output_size.y;
|
|
const float2 geom_aspect = get_aspect_vector(viewport_aspect_ratio);
|
|
const float2 geom_overscan = get_geom_overscan_vector();
|
|
geom_aspect_and_overscan = float4(geom_aspect, geom_overscan);
|
|
|
|
#ifdef RUNTIME_GEOMETRY_TILT
|
|
// Create a local-to-global rotation matrix for the CRT's coordinate
|
|
// frame and its global-to-local inverse. Rotate around the x axis
|
|
// first (pitch) and then the y axis (yaw) with yucky Euler angles.
|
|
// Positive angles go clockwise around the right-vec and up-vec.
|
|
// Runtime shader parameters prevent us from computing these globally,
|
|
// but we can still combine the pitch/yaw matrices by hand to cut a
|
|
// few instructions. Note that cg matrices fill row1 first, then row2,
|
|
// etc. (row-major order).
|
|
const float2 geom_tilt_angle = get_geom_tilt_angle_vector();
|
|
const float2 sin_tilt = sin(geom_tilt_angle);
|
|
const float2 cos_tilt = cos(geom_tilt_angle);
|
|
// Conceptual breakdown:
|
|
static const float3x3 rot_x_matrix = float3x3(
|
|
1.0, 0.0, 0.0,
|
|
0.0, cos_tilt.y, -sin_tilt.y,
|
|
0.0, sin_tilt.y, cos_tilt.y);
|
|
static const float3x3 rot_y_matrix = float3x3(
|
|
cos_tilt.x, 0.0, sin_tilt.x,
|
|
0.0, 1.0, 0.0,
|
|
-sin_tilt.x, 0.0, cos_tilt.x);
|
|
static const float3x3 local_to_global =
|
|
mul(rot_y_matrix, rot_x_matrix);
|
|
/* static const float3x3 global_to_local =
|
|
transpose(local_to_global);
|
|
const float3x3 local_to_global = float3x3(
|
|
cos_tilt.x, sin_tilt.y*sin_tilt.x, cos_tilt.y*sin_tilt.x,
|
|
0.0, cos_tilt.y, sin_tilt.y,
|
|
sin_tilt.x, sin_tilt.y*cos_tilt.x, cos_tilt.y*cos_tilt.x);
|
|
*/ // This is a pure rotation, so transpose = inverse:
|
|
const float3x3 global_to_local = transpose(local_to_global);
|
|
// Decompose the matrix into 3 float3's for output:
|
|
global_to_local_row0 = float3(global_to_local[0][0], global_to_local[0][1], global_to_local[0][2]);//._m00_m01_m02);
|
|
global_to_local_row1 = float3(global_to_local[1][0], global_to_local[1][1], global_to_local[1][2]);//._m10_m11_m12);
|
|
global_to_local_row2 = float3(global_to_local[2][0], global_to_local[2][1], global_to_local[2][2]);//._m20_m21_m22);
|
|
#else
|
|
static const float3x3 global_to_local = geom_global_to_local_static;
|
|
static const float3x3 local_to_global = geom_local_to_global_static;
|
|
#endif
|
|
|
|
// Get an optimal eye position based on geom_view_dist, viewport_aspect,
|
|
// and CRT radius/rotation:
|
|
#ifdef RUNTIME_GEOMETRY_MODE
|
|
const float geom_mode = geom_mode_runtime;
|
|
#else
|
|
static const float geom_mode = geom_mode_static;
|
|
#endif
|
|
const float3 eye_pos_global =
|
|
get_ideal_global_eye_pos(local_to_global, geom_aspect, geom_mode);
|
|
eye_pos_local = mul(global_to_local, eye_pos_global);
|
|
} |