mirror of https://github.com/bsnes-emu/bsnes.git
165 lines
4.1 KiB
C++
165 lines
4.1 KiB
C++
#pragma once
|
|
|
|
#include <nall/dsp/dsp.hpp>
|
|
|
|
//transposed direct form II biquadratic second-order IIR filter
|
|
|
|
namespace nall::DSP::IIR {
|
|
|
|
struct Biquad {
|
|
enum class Type : uint {
|
|
LowPass,
|
|
HighPass,
|
|
BandPass,
|
|
Notch,
|
|
Peak,
|
|
LowShelf,
|
|
HighShelf,
|
|
};
|
|
|
|
inline auto reset(Type type, double cutoffFrequency, double samplingFrequency, double quality, double gain = 0.0) -> void;
|
|
inline auto process(double in) -> double; //normalized sample (-1.0 to +1.0)
|
|
|
|
inline static auto shelf(double gain, double slope) -> double;
|
|
inline static auto butterworth(uint order, uint phase) -> double;
|
|
|
|
private:
|
|
Type type;
|
|
double cutoffFrequency;
|
|
double samplingFrequency;
|
|
double quality; //frequency response quality
|
|
double gain; //peak gain
|
|
double a0, a1, a2, b1, b2; //coefficients
|
|
double z1, z2; //second-order IIR
|
|
};
|
|
|
|
auto Biquad::reset(Type type, double cutoffFrequency, double samplingFrequency, double quality, double gain) -> void {
|
|
this->type = type;
|
|
this->cutoffFrequency = cutoffFrequency;
|
|
this->samplingFrequency = samplingFrequency;
|
|
this->quality = quality;
|
|
this->gain = gain;
|
|
|
|
z1 = 0.0;
|
|
z2 = 0.0;
|
|
|
|
double v = pow(10, fabs(gain) / 20.0);
|
|
double k = tan(Math::Pi * cutoffFrequency / samplingFrequency);
|
|
double q = quality;
|
|
double n = 0.0;
|
|
|
|
switch(type) {
|
|
|
|
case Type::LowPass:
|
|
n = 1 / (1 + k / q + k * k);
|
|
a0 = k * k * n;
|
|
a1 = 2 * a0;
|
|
a2 = a0;
|
|
b1 = 2 * (k * k - 1) * n;
|
|
b2 = (1 - k / q + k * k) * n;
|
|
break;
|
|
|
|
case Type::HighPass:
|
|
n = 1 / (1 + k / q + k * k);
|
|
a0 = 1 * n;
|
|
a1 = -2 * a0;
|
|
a2 = a0;
|
|
b1 = 2 * (k * k - 1) * n;
|
|
b2 = (1 - k / q + k * k) * n;
|
|
break;
|
|
|
|
case Type::BandPass:
|
|
n = 1 / (1 + k / q + k * k);
|
|
a0 = k / q * n;
|
|
a1 = 0;
|
|
a2 = -a0;
|
|
b1 = 2 * (k * k - 1) * n;
|
|
b2 = (1 - k / q + k * k) * n;
|
|
break;
|
|
|
|
case Type::Notch:
|
|
n = 1 / (1 + k / q + k * k);
|
|
a0 = (1 + k * k) * n;
|
|
a1 = 2 * (k * k - 1) * n;
|
|
a2 = a0;
|
|
b1 = a1;
|
|
b2 = (1 - k / q + k * k) * n;
|
|
break;
|
|
|
|
case Type::Peak:
|
|
if(gain >= 0) {
|
|
n = 1 / (1 + 1 / q * k + k * k);
|
|
a0 = (1 + v / q * k + k * k) * n;
|
|
a1 = 2 * (k * k - 1) * n;
|
|
a2 = (1 - v / q * k + k * k) * n;
|
|
b1 = a1;
|
|
b2 = (1 - 1 / q * k + k * k) * n;
|
|
} else {
|
|
n = 1 / (1 + v / q * k + k * k);
|
|
a0 = (1 + 1 / q * k + k * k) * n;
|
|
a1 = 2 * (k * k - 1) * n;
|
|
a2 = (1 - 1 / q * k + k * k) * n;
|
|
b1 = a1;
|
|
b2 = (1 - v / q * k + k * k) * n;
|
|
}
|
|
break;
|
|
|
|
case Type::LowShelf:
|
|
if(gain >= 0) {
|
|
n = 1 / (1 + k / q + k * k);
|
|
a0 = (1 + sqrt(v) / q * k + v * k * k) * n;
|
|
a1 = 2 * (v * k * k - 1) * n;
|
|
a2 = (1 - sqrt(v) / q * k + v * k * k) * n;
|
|
b1 = 2 * (k * k - 1) * n;
|
|
b2 = (1 - k / q + k * k) * n;
|
|
} else {
|
|
n = 1 / (1 + sqrt(v) / q * k + v * k * k);
|
|
a0 = (1 + k / q + k * k) * n;
|
|
a1 = 2 * (k * k - 1) * n;
|
|
a2 = (1 - k / q + k * k) * n;
|
|
b1 = 2 * (v * k * k - 1) * n;
|
|
b2 = (1 - sqrt(v) / q * k + v * k * k) * n;
|
|
}
|
|
break;
|
|
|
|
case Type::HighShelf:
|
|
if(gain >= 0) {
|
|
n = 1 / (1 + k / q + k * k);
|
|
a0 = (v + sqrt(v) / q * k + k * k) * n;
|
|
a1 = 2 * (k * k - v) * n;
|
|
a2 = (v - sqrt(v) / q * k + k * k) * n;
|
|
b1 = 2 * (k * k - 1) * n;
|
|
b2 = (1 - k / q + k * k) * n;
|
|
} else {
|
|
n = 1 / (v + sqrt(v) / q * k + k * k);
|
|
a0 = (1 + k / q + k * k) * n;
|
|
a1 = 2 * (k * k - 1) * n;
|
|
a2 = (1 - k / q + k * k) * n;
|
|
b1 = 2 * (k * k - v) * n;
|
|
b2 = (v - sqrt(v) / q * k + k * k) * n;
|
|
}
|
|
break;
|
|
|
|
}
|
|
}
|
|
|
|
auto Biquad::process(double in) -> double {
|
|
double out = in * a0 + z1;
|
|
z1 = in * a1 + z2 - b1 * out;
|
|
z2 = in * a2 - b2 * out;
|
|
return out;
|
|
}
|
|
|
|
//compute Q values for low-shelf and high-shelf filtering
|
|
auto Biquad::shelf(double gain, double slope) -> double {
|
|
double a = pow(10, gain / 40);
|
|
return 1 / sqrt((a + 1 / a) * (1 / slope - 1) + 2);
|
|
}
|
|
|
|
//compute Q values for Nth-order butterworth filtering
|
|
auto Biquad::butterworth(uint order, uint phase) -> double {
|
|
return -0.5 / cos(Math::Pi * (phase + order + 0.5) / order);
|
|
}
|
|
|
|
}
|