mirror of https://github.com/bsnes-emu/bsnes.git
516 lines
18 KiB
C
Executable File
516 lines
18 KiB
C
Executable File
/* vi: set sw=4 ts=4: */
|
|
/* micro-bunzip, a small, simple bzip2 decompression implementation.
|
|
Copyright 2003 by Rob Landley (rob@landley.net).
|
|
|
|
Based on bzip2 decompression code by Julian R Seward (jseward@acm.org),
|
|
which also acknowledges contributions by Mike Burrows, David Wheeler,
|
|
Peter Fenwick, Alistair Moffat, Radford Neal, Ian H. Witten,
|
|
Robert Sedgewick, and Jon L. Bentley.
|
|
|
|
I hereby release this code under the GNU Library General Public License
|
|
(LGPL) version 2, available at http://www.gnu.org/copyleft/lgpl.html
|
|
*/
|
|
|
|
#include <setjmp.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
|
|
/* Constants for huffman coding */
|
|
#define MAX_GROUPS 6
|
|
#define GROUP_SIZE 50 /* 64 would have been more efficient */
|
|
#define MAX_HUFCODE_BITS 20 /* Longest huffman code allowed */
|
|
#define MAX_SYMBOLS 258 /* 256 literals + RUNA + RUNB */
|
|
#define SYMBOL_RUNA 0
|
|
#define SYMBOL_RUNB 1
|
|
|
|
/* Status return values */
|
|
#define RETVAL_OK 0
|
|
#define RETVAL_LAST_BLOCK (-1)
|
|
#define RETVAL_NOT_BZIP_DATA (-2)
|
|
#define RETVAL_UNEXPECTED_INPUT_EOF (-3)
|
|
#define RETVAL_UNEXPECTED_OUTPUT_EOF (-4)
|
|
#define RETVAL_DATA_ERROR (-5)
|
|
#define RETVAL_OUT_OF_MEMORY (-6)
|
|
#define RETVAL_OBSOLETE_INPUT (-7)
|
|
|
|
/* Other housekeeping constants */
|
|
#define IOBUF_SIZE 4096
|
|
|
|
char *bunzip_errors[]={NULL,"Bad file checksum","Not bzip data",
|
|
"Unexpected input EOF","Unexpected output EOF","Data error",
|
|
"Out of memory","Obsolete (pre 0.9.5) bzip format not supported."};
|
|
|
|
/* This is what we know about each huffman coding group */
|
|
struct group_data {
|
|
int limit[MAX_HUFCODE_BITS],base[MAX_HUFCODE_BITS],permute[MAX_SYMBOLS];
|
|
char minLen, maxLen;
|
|
};
|
|
|
|
/* Structure holding all the housekeeping data, including IO buffers and
|
|
memory that persists between calls to bunzip */
|
|
typedef struct {
|
|
/* For I/O error handling */
|
|
jmp_buf jmpbuf;
|
|
/* Input stream, input buffer, input bit buffer */
|
|
int in_fd,inbufCount,inbufPos;
|
|
unsigned char *inbuf;
|
|
unsigned int inbufBitCount, inbufBits;
|
|
/* Output buffer */
|
|
char outbuf[IOBUF_SIZE];
|
|
int outbufPos;
|
|
/* The CRC values stored in the block header and calculated from the data */
|
|
unsigned int crc32Table[256],headerCRC, dataCRC, totalCRC;
|
|
/* Intermediate buffer and its size (in bytes) */
|
|
unsigned int *dbuf, dbufSize;
|
|
/* State for interrupting output loop */
|
|
int writePos,writeRun,writeCount,writeCurrent;
|
|
|
|
/* These things are a bit too big to go on the stack */
|
|
unsigned char selectors[32768]; /* nSelectors=15 bits */
|
|
struct group_data groups[MAX_GROUPS]; /* huffman coding tables */
|
|
} bunzip_data;
|
|
|
|
/* Return the next nnn bits of input. All reads from the compressed input
|
|
are done through this function. All reads are big endian */
|
|
static unsigned int get_bits(bunzip_data *bd, char bits_wanted)
|
|
{
|
|
unsigned int bits=0;
|
|
|
|
/* If we need to get more data from the byte buffer, do so. (Loop getting
|
|
one byte at a time to enforce endianness and avoid unaligned access.) */
|
|
while (bd->inbufBitCount<bits_wanted) {
|
|
/* If we need to read more data from file into byte buffer, do so */
|
|
if(bd->inbufPos==bd->inbufCount) {
|
|
if(!(bd->inbufCount = read(bd->in_fd, bd->inbuf, IOBUF_SIZE)))
|
|
longjmp(bd->jmpbuf,RETVAL_UNEXPECTED_INPUT_EOF);
|
|
bd->inbufPos=0;
|
|
}
|
|
/* Avoid 32-bit overflow (dump bit buffer to top of output) */
|
|
if(bd->inbufBitCount>=24) {
|
|
bits=bd->inbufBits&((1<<bd->inbufBitCount)-1);
|
|
bits_wanted-=bd->inbufBitCount;
|
|
bits<<=bits_wanted;
|
|
bd->inbufBitCount=0;
|
|
}
|
|
/* Grab next 8 bits of input from buffer. */
|
|
bd->inbufBits=(bd->inbufBits<<8)|bd->inbuf[bd->inbufPos++];
|
|
bd->inbufBitCount+=8;
|
|
}
|
|
/* Calculate result */
|
|
bd->inbufBitCount-=bits_wanted;
|
|
bits|=(bd->inbufBits>>bd->inbufBitCount)&((1<<bits_wanted)-1);
|
|
|
|
return bits;
|
|
}
|
|
|
|
/* Decompress a block of text to into intermediate buffer */
|
|
|
|
extern int read_bunzip_data(bunzip_data *bd)
|
|
{
|
|
struct group_data *hufGroup;
|
|
int dbufCount,nextSym,dbufSize,origPtr,groupCount,*base,*limit,selector,
|
|
i,j,k,t,runPos,symCount,symTotal,nSelectors,byteCount[256];
|
|
unsigned char uc, symToByte[256], mtfSymbol[256], *selectors;
|
|
unsigned int *dbuf;
|
|
|
|
/* Read in header signature (borrowing mtfSymbol for temp space). */
|
|
for(i=0;i<6;i++) mtfSymbol[i]=get_bits(bd,8);
|
|
mtfSymbol[6]=0;
|
|
/* Read CRC (which is stored big endian). */
|
|
bd->headerCRC=get_bits(bd,32);
|
|
/* Is this the last block (with CRC for file)? */
|
|
if(!strcmp(mtfSymbol,"\x17\x72\x45\x38\x50\x90"))
|
|
return RETVAL_LAST_BLOCK;
|
|
/* If it's not a valid data block, barf. */
|
|
if(strcmp(mtfSymbol,"\x31\x41\x59\x26\x53\x59"))
|
|
return RETVAL_NOT_BZIP_DATA;
|
|
|
|
dbuf=bd->dbuf;
|
|
dbufSize=bd->dbufSize;
|
|
selectors=bd->selectors;
|
|
/* We can add support for blockRandomised if anybody complains. There was
|
|
some code for this in busybox 1.0.0-pre3, but nobody ever noticed that
|
|
it didn't actually work. */
|
|
if(get_bits(bd,1)) return RETVAL_OBSOLETE_INPUT;
|
|
if((origPtr=get_bits(bd,24)) > dbufSize) return RETVAL_DATA_ERROR;
|
|
/* mapping table: if some byte values are never used (encoding things
|
|
like ascii text), the compression code removes the gaps to have fewer
|
|
symbols to deal with, and writes a sparse bitfield indicating which
|
|
values were present. We make a translation table to convert the symbols
|
|
back to the corresponding bytes. */
|
|
t=get_bits(bd, 16);
|
|
memset(symToByte,0,256);
|
|
symTotal=0;
|
|
for (i=0;i<16;i++) {
|
|
if(t&(1<<(15-i))) {
|
|
k=get_bits(bd,16);
|
|
for(j=0;j<16;j++)
|
|
if(k&(1<<(15-j))) symToByte[symTotal++]=(16*i)+j;
|
|
}
|
|
}
|
|
/* How many different huffman coding groups does this block use? */
|
|
groupCount=get_bits(bd,3);
|
|
if (groupCount<2 || groupCount>MAX_GROUPS) return RETVAL_DATA_ERROR;
|
|
/* nSelectors: Every GROUP_SIZE many symbols we select a new huffman coding
|
|
group. Read in the group selector list, which is stored as MTF encoded
|
|
bit runs. */
|
|
if(!(nSelectors=get_bits(bd, 15))) return RETVAL_DATA_ERROR;
|
|
for(i=0; i<groupCount; i++) mtfSymbol[i] = i;
|
|
for(i=0; i<nSelectors; i++) {
|
|
/* Get next value */
|
|
for(j=0;get_bits(bd,1);j++) if (j>=groupCount) return RETVAL_DATA_ERROR;
|
|
/* Decode MTF to get the next selector */
|
|
uc = mtfSymbol[j];
|
|
memmove(mtfSymbol+1,mtfSymbol,j);
|
|
mtfSymbol[0]=selectors[i]=uc;
|
|
}
|
|
/* Read the huffman coding tables for each group, which code for symTotal
|
|
literal symbols, plus two run symbols (RUNA, RUNB) */
|
|
symCount=symTotal+2;
|
|
for (j=0; j<groupCount; j++) {
|
|
unsigned char length[MAX_SYMBOLS],temp[MAX_HUFCODE_BITS+1];
|
|
int minLen, maxLen, pp;
|
|
/* Read lengths */
|
|
t=get_bits(bd, 5);
|
|
for (i = 0; i < symCount; i++) {
|
|
for(;;) {
|
|
if (t < 1 || t > MAX_HUFCODE_BITS) return RETVAL_DATA_ERROR;
|
|
if(!get_bits(bd, 1)) break;
|
|
if(!get_bits(bd, 1)) t++;
|
|
else t--;
|
|
}
|
|
length[i] = t;
|
|
}
|
|
/* Find largest and smallest lengths in this group */
|
|
minLen=maxLen=length[0];
|
|
for(i = 1; i < symCount; i++) {
|
|
if(length[i] > maxLen) maxLen = length[i];
|
|
else if(length[i] < minLen) minLen = length[i];
|
|
}
|
|
/* Calculate permute[], base[], and limit[] tables from length[].
|
|
*
|
|
* permute[] is the lookup table for converting huffman coded symbols
|
|
* into decoded symbols. base[] is the amount to subtract from the
|
|
* value of a huffman symbol of a given length when using permute[].
|
|
*
|
|
* limit[] indicates the largest numerical value a symbol with a given
|
|
* number of bits can have. It lets us know when to stop reading.
|
|
*
|
|
* To use these, keep reading bits until value<=limit[bitcount] or
|
|
* you've read over 20 bits (error). Then the decoded symbol
|
|
* equals permute[hufcode_value-base[hufcode_bitcount]].
|
|
*/
|
|
hufGroup=bd->groups+j;
|
|
hufGroup->minLen = minLen;
|
|
hufGroup->maxLen = maxLen;
|
|
/* Note that minLen can't be smaller than 1, so we adjust the base
|
|
and limit array pointers so we're not always wasting the first
|
|
entry. We do this again when using them (during symbol decoding).*/
|
|
base=hufGroup->base-1;
|
|
limit=hufGroup->limit-1;
|
|
/* Calculate permute[] */
|
|
pp = 0;
|
|
for(i=minLen;i<=maxLen;i++)
|
|
for(t=0;t<symCount;t++)
|
|
if(length[t]==i) hufGroup->permute[pp++] = t;
|
|
/* Count cumulative symbols coded for at each bit length */
|
|
for (i=minLen;i<=maxLen;i++) temp[i]=limit[i]=0;
|
|
for (i=0;i<symCount;i++) temp[length[i]]++;
|
|
/* Calculate limit[] (the largest symbol-coding value at each bit
|
|
* length, which is (previous limit<<1)+symbols at this level), and
|
|
* base[] (number of symbols to ignore at each bit length, which is
|
|
* limit-cumulative count of symbols coded for already). */
|
|
pp=t=0;
|
|
for (i=minLen; i<maxLen; i++) {
|
|
pp+=temp[i];
|
|
limit[i]=pp-1;
|
|
pp<<=1;
|
|
base[i+1]=pp-(t+=temp[i]);
|
|
}
|
|
limit[maxLen]=pp+temp[maxLen]-1;
|
|
base[minLen]=0;
|
|
}
|
|
/* We've finished reading and digesting the block header. Now read this
|
|
block's huffman coded symbols from the file and undo the huffman coding
|
|
and run length encoding, saving the result into dbuf[dbufCount++]=uc */
|
|
|
|
/* Initialize symbol occurrence counters and symbol mtf table */
|
|
memset(byteCount,0,256*sizeof(int));
|
|
for(i=0;i<256;i++) mtfSymbol[i]=(unsigned char)i;
|
|
/* Loop through compressed symbols */
|
|
runPos=dbufCount=symCount=selector=0;
|
|
for(;;) {
|
|
/* Determine which huffman coding group to use. */
|
|
if(!(symCount--)) {
|
|
symCount=GROUP_SIZE-1;
|
|
if(selector>=nSelectors) return RETVAL_DATA_ERROR;
|
|
hufGroup=bd->groups+selectors[selector++];
|
|
base=hufGroup->base-1;
|
|
limit=hufGroup->limit-1;
|
|
}
|
|
/* Read next huffman-coded symbol */
|
|
i = hufGroup->minLen;
|
|
j=get_bits(bd, i);
|
|
for(;;) {
|
|
if (i > hufGroup->maxLen) return RETVAL_DATA_ERROR;
|
|
if (j <= limit[i]) break;
|
|
i++;
|
|
|
|
j = (j << 1) | get_bits(bd,1);
|
|
}
|
|
/* Huffman decode nextSym (with bounds checking) */
|
|
j-=base[i];
|
|
if (j < 0 || j >= MAX_SYMBOLS) return RETVAL_DATA_ERROR;
|
|
nextSym = hufGroup->permute[j];
|
|
/* If this is a repeated run, loop collecting data */
|
|
if (nextSym == SYMBOL_RUNA || nextSym == SYMBOL_RUNB) {
|
|
/* If this is the start of a new run, zero out counter */
|
|
if(!runPos) {
|
|
runPos = 1;
|
|
t = 0;
|
|
}
|
|
/* Neat trick that saves 1 symbol: instead of or-ing 0 or 1 at
|
|
each bit position, add 1 or 2 instead. For example,
|
|
1011 is 1<<0 + 1<<1 + 2<<2. 1010 is 2<<0 + 2<<1 + 1<<2.
|
|
You can make any bit pattern that way using 1 less symbol than
|
|
the basic or 0/1 method (except all bits 0, which would use no
|
|
symbols, but a run of length 0 doesn't mean anything in this
|
|
context). Thus space is saved. */
|
|
if (nextSym == SYMBOL_RUNA) t += runPos;
|
|
else t += 2*runPos;
|
|
runPos <<= 1;
|
|
continue;
|
|
}
|
|
/* When we hit the first non-run symbol after a run, we now know
|
|
how many times to repeat the last literal, so append that many
|
|
copies to our buffer of decoded symbols (dbuf) now. (The last
|
|
literal used is the one at the head of the mtfSymbol array.) */
|
|
if(runPos) {
|
|
runPos=0;
|
|
if(dbufCount+t>=dbufSize) return RETVAL_DATA_ERROR;
|
|
|
|
uc = symToByte[mtfSymbol[0]];
|
|
byteCount[uc] += t;
|
|
while(t--) dbuf[dbufCount++]=uc;
|
|
}
|
|
/* Is this the terminating symbol? */
|
|
if(nextSym>symTotal) break;
|
|
/* At this point, the symbol we just decoded indicates a new literal
|
|
character. Subtract one to get the position in the MTF array
|
|
at which this literal is currently to be found. (Note that the
|
|
result can't be -1 or 0, because 0 and 1 are RUNA and RUNB.
|
|
Another instance of the first symbol in the mtf array, position 0,
|
|
would have been handled as part of a run.) */
|
|
if(dbufCount>=dbufSize) return RETVAL_DATA_ERROR;
|
|
i = nextSym - 1;
|
|
uc = mtfSymbol[i];
|
|
memmove(mtfSymbol+1,mtfSymbol,i);
|
|
mtfSymbol[0] = uc;
|
|
uc=symToByte[uc];
|
|
/* We have our literal byte. Save it into dbuf. */
|
|
byteCount[uc]++;
|
|
dbuf[dbufCount++] = (unsigned int)uc;
|
|
}
|
|
/* At this point, we've finished reading huffman-coded symbols and
|
|
compressed runs from the input stream. There are dbufCount many of
|
|
them in dbuf[]. Now undo the Burrows-Wheeler transform on dbuf.
|
|
See http://dogma.net/markn/articles/bwt/bwt.htm
|
|
*/
|
|
|
|
/* Now we know what dbufCount is, do a better sanity check on origPtr. */
|
|
if (origPtr<0 || origPtr>=dbufCount) return RETVAL_DATA_ERROR;
|
|
/* Turn byteCount into cumulative occurrence counts of 0 to n-1. */
|
|
j=0;
|
|
for(i=0;i<256;i++) {
|
|
k=j+byteCount[i];
|
|
byteCount[i] = j;
|
|
j=k;
|
|
}
|
|
/* Figure out what order dbuf would be in if we sorted it. */
|
|
for (i=0;i<dbufCount;i++) {
|
|
uc = (unsigned char)(dbuf[i] & 0xff);
|
|
dbuf[byteCount[uc]] |= (i << 8);
|
|
byteCount[uc]++;
|
|
}
|
|
/* blockRandomised support would go here. */
|
|
|
|
/* Using i as position, j as previous character, t as current character,
|
|
and uc as run count */
|
|
bd->dataCRC = 0xffffffffL;
|
|
/* Decode first byte by hand to initialize "previous" byte. Note that it
|
|
doesn't get output, and if the first three characters are identical
|
|
it doesn't qualify as a run (hence uc=255, which will either wrap
|
|
to 1 or get reset). */
|
|
if(dbufCount) {
|
|
bd->writePos=dbuf[origPtr];
|
|
bd->writeCurrent=(unsigned char)(bd->writePos&0xff);
|
|
bd->writePos>>=8;
|
|
bd->writeRun=-1;
|
|
}
|
|
bd->writeCount=dbufCount;
|
|
|
|
return RETVAL_OK;
|
|
}
|
|
|
|
/* Flush output buffer to disk */
|
|
extern void flush_bunzip_outbuf(bunzip_data *bd, int out_fd)
|
|
{
|
|
if(bd->outbufPos) {
|
|
if(write(out_fd, bd->outbuf, bd->outbufPos) != bd->outbufPos)
|
|
longjmp(bd->jmpbuf,RETVAL_UNEXPECTED_OUTPUT_EOF);
|
|
bd->outbufPos=0;
|
|
}
|
|
}
|
|
|
|
|
|
/* Undo burrows-wheeler transform on intermediate buffer to produce output.
|
|
If !len, write up to len bytes of data to buf. Otherwise write to out_fd.
|
|
Returns len ? bytes written : RETVAL_OK. Notice all errors negative #'s. */
|
|
extern int write_bunzip_data(bunzip_data *bd, int out_fd, char *outbuf, int len)
|
|
{
|
|
unsigned int *dbuf=bd->dbuf;
|
|
int count,pos,current, run,copies,outbyte,previous,gotcount=0;
|
|
|
|
for(;;) {
|
|
/* If last read was short due to end of file, return last block now */
|
|
if(bd->writeCount<0) return bd->writeCount;
|
|
/* If we need to refill dbuf, do it. */
|
|
if(!bd->writeCount) {
|
|
int i=read_bunzip_data(bd);
|
|
if(i) {
|
|
if(i==RETVAL_LAST_BLOCK) {
|
|
bd->writeCount=i;
|
|
return gotcount;
|
|
} else return i;
|
|
}
|
|
}
|
|
/* Loop generating output */
|
|
count=bd->writeCount;
|
|
pos=bd->writePos;
|
|
current=bd->writeCurrent;
|
|
run=bd->writeRun;
|
|
while(count) {
|
|
/* If somebody (like busybox tar) wants a certain number of bytes of
|
|
data from memory instead of written to a file, humor them */
|
|
if(len && bd->outbufPos>=len) goto dataus_interruptus;
|
|
count--;
|
|
/* Follow sequence vector to undo Burrows-Wheeler transform */
|
|
previous=current;
|
|
pos=dbuf[pos];
|
|
current=pos&0xff;
|
|
pos>>=8;
|
|
/* Whenever we see 3 consecutive copies of the same byte,
|
|
the 4th is a repeat count */
|
|
if(run++==3) {
|
|
copies=current;
|
|
outbyte=previous;
|
|
current=-1;
|
|
} else {
|
|
copies=1;
|
|
outbyte=current;
|
|
}
|
|
/* Output bytes to buffer, flushing to file if necessary */
|
|
while(copies--) {
|
|
if(bd->outbufPos == IOBUF_SIZE) flush_bunzip_outbuf(bd,out_fd);
|
|
bd->outbuf[bd->outbufPos++] = outbyte;
|
|
bd->dataCRC = (bd->dataCRC << 8)
|
|
^ bd->crc32Table[(bd->dataCRC >> 24) ^ outbyte];
|
|
}
|
|
if(current!=previous) run=0;
|
|
}
|
|
/* Decompression of this block completed successfully */
|
|
bd->dataCRC=~(bd->dataCRC);
|
|
bd->totalCRC=((bd->totalCRC << 1) | (bd->totalCRC >> 31)) ^ bd->dataCRC;
|
|
/* If this block had a CRC error, force file level CRC error. */
|
|
if(bd->dataCRC!=bd->headerCRC) {
|
|
bd->totalCRC=bd->headerCRC+1;
|
|
return RETVAL_LAST_BLOCK;
|
|
}
|
|
dataus_interruptus:
|
|
bd->writeCount=count;
|
|
if(len) {
|
|
gotcount+=bd->outbufPos;
|
|
memcpy(outbuf,bd->outbuf,len);
|
|
/* If we got enough data, checkpoint loop state and return */
|
|
if((len-=bd->outbufPos)<1) {
|
|
bd->outbufPos-=len;
|
|
if(bd->outbufPos)
|
|
memmove(bd->outbuf,bd->outbuf+len,bd->outbufPos);
|
|
bd->writePos=pos;
|
|
bd->writeCurrent=current;
|
|
bd->writeRun=run;
|
|
return gotcount;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Allocate the structure, read file header. If !len, src_fd contains
|
|
filehandle to read from. Else inbuf contains data. */
|
|
extern int start_bunzip(bunzip_data **bdp, int src_fd, char *inbuf, int len)
|
|
{
|
|
bunzip_data *bd;
|
|
unsigned int i,j,c;
|
|
|
|
/* Figure out how much data to allocate */
|
|
i=sizeof(bunzip_data);
|
|
if(!len) i+=IOBUF_SIZE;
|
|
/* Allocate bunzip_data. Most fields initialize to zero. */
|
|
if(!(bd=*bdp=malloc(i))) return RETVAL_OUT_OF_MEMORY;
|
|
memset(bd,0,sizeof(bunzip_data));
|
|
if(len) {
|
|
bd->inbuf=inbuf;
|
|
bd->inbufCount=len;
|
|
bd->in_fd=-1;
|
|
} else {
|
|
bd->inbuf=(char *)(bd+1);
|
|
bd->in_fd=src_fd;
|
|
}
|
|
/* Init the CRC32 table (big endian) */
|
|
for(i=0;i<256;i++) {
|
|
c=i<<24;
|
|
for(j=8;j;j--)
|
|
c=c&0x80000000 ? (c<<1)^0x04c11db7 : (c<<1);
|
|
bd->crc32Table[i]=c;
|
|
}
|
|
/* Setup for I/O error handling via longjmp */
|
|
i=setjmp(bd->jmpbuf);
|
|
if(i) return i;
|
|
/* Ensure that file starts with "BZh" */
|
|
for(i=0;i<3;i++) if(get_bits(bd,8)!="BZh"[i]) return RETVAL_NOT_BZIP_DATA;
|
|
/* Next byte ascii '1'-'9', indicates block size in units of 100k of
|
|
uncompressed data. Allocate intermediate buffer for block. */
|
|
i=get_bits(bd,8);
|
|
if (i<'1' || i>'9') return RETVAL_NOT_BZIP_DATA;
|
|
bd->dbufSize=100000*(i-'0');
|
|
if(!(bd->dbuf=malloc(bd->dbufSize * sizeof(int))))
|
|
return RETVAL_OUT_OF_MEMORY;
|
|
return RETVAL_OK;
|
|
}
|
|
|
|
/* Example usage: decompress src_fd to dst_fd. (Stops at end of bzip data,
|
|
not end of file.) */
|
|
extern char *uncompressStream(int src_fd, int dst_fd)
|
|
{
|
|
bunzip_data *bd;
|
|
int i;
|
|
|
|
if(!(i=start_bunzip(&bd,src_fd,0,0))) {
|
|
i=write_bunzip_data(bd,dst_fd,0,0);
|
|
if(i==RETVAL_LAST_BLOCK && bd->headerCRC==bd->totalCRC) i=RETVAL_OK;
|
|
}
|
|
flush_bunzip_outbuf(bd,dst_fd);
|
|
if(bd->dbuf) free(bd->dbuf);
|
|
free(bd);
|
|
return bunzip_errors[-i];
|
|
}
|
|
|
|
/* Dumb little test thing, decompress stdin to stdout */
|
|
/*int main(int argc, char *argv[])
|
|
{
|
|
char *c=uncompressStream(0,1);
|
|
fprintf(stderr,"\n%s\n", c ? c : "Completed OK");
|
|
}*/
|