bsnes/nall/image.hpp

768 lines
24 KiB
C++

#ifndef NALL_IMAGE_HPP
#define NALL_IMAGE_HPP
#include <nall/bmp.hpp>
#include <nall/filemap.hpp>
#include <nall/interpolation.hpp>
#include <nall/png.hpp>
#include <nall/stdint.hpp>
#include <algorithm>
namespace nall {
struct image {
uint8_t* data = nullptr;
unsigned width = 0;
unsigned height = 0;
unsigned pitch = 0;
unsigned size = 0;
bool endian = 0; //0 = lsb, 1 = msb
unsigned depth = 32;
unsigned stride = 4;
struct Channel {
uint64_t mask;
unsigned depth;
unsigned shift;
inline bool operator==(const Channel& source) {
return mask == source.mask && depth == source.depth && shift == source.shift;
}
inline bool operator!=(const Channel& source) {
return !operator==(source);
}
};
enum class blend : unsigned {
add,
sourceAlpha, //color = sourceColor * sourceAlpha + targetColor * (1 - sourceAlpha)
sourceColor, //color = sourceColor
targetAlpha, //color = targetColor * targetAlpha + sourceColor * (1 - targetAlpha)
targetColor, //color = targetColor
};
Channel alpha = {255u << 24, 8u, 24u};
Channel red = {255u << 16, 8u, 16u};
Channel green = {255u << 8, 8u, 8u};
Channel blue = {255u << 0, 8u, 0u};
typedef double (*interpolation)(double, double, double, double, double);
static inline unsigned bitDepth(uint64_t color);
static inline unsigned bitShift(uint64_t color);
static inline uint64_t normalize(uint64_t color, unsigned sourceDepth, unsigned targetDepth);
inline bool operator==(const image& source);
inline bool operator!=(const image& source);
inline image& operator=(const image& source);
inline image& operator=(image&& source);
inline image(const image& source);
inline image(image&& source);
inline image(bool endian, unsigned depth, uint64_t alphaMask, uint64_t redMask, uint64_t greenMask, uint64_t blueMask);
inline image(const string& filename);
inline image(const uint8_t* data, unsigned size);
inline image();
inline ~image();
inline uint64_t read(const uint8_t* data) const;
inline void write(uint8_t* data, uint64_t value) const;
inline void free();
inline bool empty() const;
inline void allocate(unsigned width, unsigned height);
inline bool crop(unsigned x, unsigned y, unsigned width, unsigned height);
inline void impose(blend mode, unsigned targetX, unsigned targetY, image source, unsigned x, unsigned y, unsigned width, unsigned height);
inline void fill(uint64_t color = 0);
inline void gradient(uint64_t a, uint64_t b, uint64_t c, uint64_t d);
inline void horizontalGradient(uint64_t a, uint64_t b);
inline void verticalGradient(uint64_t a, uint64_t b);
inline bool load(const string& filename);
//inline bool loadBMP(const uint8_t* data, unsigned size);
inline bool loadPNG(const uint8_t* data, unsigned size);
inline void scale(unsigned width, unsigned height, bool linear = true);
inline void transform(bool endian, unsigned depth, uint64_t alphaMask, uint64_t redMask, uint64_t greenMask, uint64_t blueMask);
inline void alphaBlend(uint64_t alphaColor);
protected:
inline uint8_t* allocate(unsigned width, unsigned height, unsigned stride);
alwaysinline uint64_t interpolate1D(int64_t a, int64_t b, uint32_t x);
alwaysinline uint64_t interpolate2D(int64_t a, int64_t b, int64_t c, int64_t d, uint32_t x, uint32_t y);
inline void scaleLinearWidth(unsigned width);
inline void scaleLinearHeight(unsigned height);
inline void scaleLinear(unsigned width, unsigned height);
inline void scaleNearest(unsigned width, unsigned height);
inline bool loadBMP(const string& filename);
inline bool loadPNG(const string& filename);
};
//static
unsigned image::bitDepth(uint64_t color) {
unsigned depth = 0;
if(color) while((color & 1) == 0) color >>= 1;
while((color & 1) == 1) { color >>= 1; depth++; }
return depth;
}
unsigned image::bitShift(uint64_t color) {
unsigned shift = 0;
if(color) while((color & 1) == 0) { color >>= 1; shift++; }
return shift;
}
uint64_t image::normalize(uint64_t color, unsigned sourceDepth, unsigned targetDepth) {
if(sourceDepth == 0 || targetDepth == 0) return 0;
while(sourceDepth < targetDepth) {
color = (color << sourceDepth) | color;
sourceDepth += sourceDepth;
}
if(targetDepth < sourceDepth) color >>= (sourceDepth - targetDepth);
return color;
}
//public
bool image::operator==(const image& source) {
if(width != source.width) return false;
if(height != source.height) return false;
if(pitch != source.pitch) return false;
if(endian != source.endian) return false;
if(stride != source.stride) return false;
if(alpha != source.alpha) return false;
if(red != source.red) return false;
if(green != source.green) return false;
if(blue != source.blue) return false;
return memcmp(data, source.data, width * height * stride) == 0;
}
bool image::operator!=(const image& source) {
return !operator==(source);
}
image& image::operator=(const image& source) {
free();
width = source.width;
height = source.height;
pitch = source.pitch;
size = source.size;
endian = source.endian;
stride = source.stride;
alpha = source.alpha;
red = source.red;
green = source.green;
blue = source.blue;
data = allocate(width, height, stride);
memcpy(data, source.data, source.size);
return *this;
}
image& image::operator=(image&& source) {
free();
width = source.width;
height = source.height;
pitch = source.pitch;
size = source.size;
endian = source.endian;
stride = source.stride;
alpha = source.alpha;
red = source.red;
green = source.green;
blue = source.blue;
data = source.data;
source.data = nullptr;
return *this;
}
image::image(const image& source) {
operator=(source);
}
image::image(image&& source) {
operator=(std::forward<image>(source));
}
image::image(bool endian, unsigned depth, uint64_t alphaMask, uint64_t redMask, uint64_t greenMask, uint64_t blueMask) {
this->endian = endian;
this->depth = depth;
this->stride = (depth / 8) + ((depth & 7) > 0);
alpha = {alphaMask, bitDepth(alphaMask), bitShift(alphaMask)};
red = {redMask, bitDepth(redMask), bitShift(redMask )};
green = {greenMask, bitDepth(greenMask), bitShift(greenMask)};
blue = {blueMask, bitDepth(blueMask), bitShift(blueMask )};
}
image::image(const string& filename) {
load(filename);
}
image::image(const uint8_t* data, unsigned size) {
loadPNG(data, size);
}
image::image() {
}
image::~image() {
free();
}
uint64_t image::read(const uint8_t* data) const {
uint64_t result = 0;
if(endian == 0) {
for(signed n = stride - 1; n >= 0; n--) result = (result << 8) | data[n];
} else {
for(signed n = 0; n < stride; n++) result = (result << 8) | data[n];
}
return result;
}
void image::write(uint8_t* data, uint64_t value) const {
if(endian == 0) {
for(signed n = 0; n < stride; n++) { data[n] = value; value >>= 8; }
} else {
for(signed n = stride - 1; n >= 0; n--) { data[n] = value; value >>= 8; }
}
}
void image::free() {
if(data) delete[] data;
data = nullptr;
}
bool image::empty() const {
if(data == nullptr) return true;
if(width == 0 || height == 0) return true;
return false;
}
void image::allocate(unsigned width, unsigned height) {
if(data != nullptr && this->width == width && this->height == height) return;
free();
data = allocate(width, height, stride);
pitch = width * stride;
size = height * pitch;
this->width = width;
this->height = height;
}
void image::fill(uint64_t color) {
uint8_t* dp = data;
for(unsigned n = 0; n < width * height; n++) {
write(dp, color);
dp += stride;
}
}
void image::gradient(uint64_t a, uint64_t b, uint64_t c, uint64_t d) {
//create gradient by scaling 2x2 image using linear interpolation
//replace data with gradient data to prevent extra copy
delete[] data;
nall::image gradient;
gradient.endian = endian, gradient.depth = depth, gradient.stride = stride;
gradient.alpha = alpha, gradient.red = red, gradient.green = green, gradient.blue = blue;
gradient.allocate(2, 2);
uint8_t* dp = gradient.data;
gradient.write(dp, a); dp += stride;
gradient.write(dp, b); dp += stride;
gradient.write(dp, c); dp += stride;
gradient.write(dp, d); dp += stride;
gradient.scale(width, height);
data = gradient.data;
gradient.data = nullptr;
}
void image::horizontalGradient(uint64_t a, uint64_t b) {
gradient(a, b, a, b);
}
void image::verticalGradient(uint64_t a, uint64_t b) {
gradient(a, a, b, b);
}
bool image::load(const string& filename) {
if(loadBMP(filename) == true) return true;
if(loadPNG(filename) == true) return true;
return false;
}
bool image::crop(unsigned outputX, unsigned outputY, unsigned outputWidth, unsigned outputHeight) {
if(outputX + outputWidth > width) return false;
if(outputY + outputHeight > height) return false;
uint8_t* outputData = allocate(outputWidth, outputHeight, stride);
unsigned outputPitch = outputWidth * stride;
#pragma omp parallel for
for(unsigned y = 0; y < outputHeight; y++) {
const uint8_t* sp = data + pitch * (outputY + y) + stride * outputX;
uint8_t* dp = outputData + outputPitch * y;
for(unsigned x = 0; x < outputWidth; x++) {
write(dp, read(sp));
sp += stride;
dp += stride;
}
}
delete[] data;
data = outputData;
width = outputWidth;
height = outputHeight;
pitch = outputPitch;
size = width * pitch;
return true;
}
void image::impose(blend mode, unsigned targetX, unsigned targetY, image source, unsigned sourceX, unsigned sourceY, unsigned sourceWidth, unsigned sourceHeight) {
source.transform(endian, depth, alpha.mask, red.mask, green.mask, blue.mask);
for(unsigned y = 0; y < sourceHeight; y++) {
const uint8_t* sp = source.data + source.pitch * (sourceY + y) + source.stride * sourceX;
uint8_t* dp = data + pitch * (targetY + y) + stride * targetX;
for(unsigned x = 0; x < sourceWidth; x++) {
uint64_t sourceColor = source.read(sp);
uint64_t targetColor = read(dp);
int64_t sa = (sourceColor & alpha.mask) >> alpha.shift;
int64_t sr = (sourceColor & red.mask ) >> red.shift;
int64_t sg = (sourceColor & green.mask) >> green.shift;
int64_t sb = (sourceColor & blue.mask ) >> blue.shift;
int64_t da = (targetColor & alpha.mask) >> alpha.shift;
int64_t dr = (targetColor & red.mask ) >> red.shift;
int64_t dg = (targetColor & green.mask) >> green.shift;
int64_t db = (targetColor & blue.mask ) >> blue.shift;
uint64_t a, r, g, b;
switch(mode) {
case blend::add:
a = max(sa, da);
r = min(red.mask >> red.shift, ((sr * sa) >> alpha.depth) + ((dr * da) >> alpha.depth));
g = min(green.mask >> green.shift, ((sg * sa) >> alpha.depth) + ((dg * da) >> alpha.depth));
b = min(blue.mask >> blue.shift, ((sb * sa) >> alpha.depth) + ((db * da) >> alpha.depth));
break;
case blend::sourceAlpha:
a = max(sa, da);
r = dr + (((sr - dr) * sa) >> alpha.depth);
g = dg + (((sg - dg) * sa) >> alpha.depth);
b = db + (((sb - db) * sa) >> alpha.depth);
break;
case blend::sourceColor:
a = sa;
r = sr;
g = sg;
b = sb;
break;
case blend::targetAlpha:
a = max(sa, da);
r = sr + (((dr - sr) * da) >> alpha.depth);
g = sg + (((dg - sg) * da) >> alpha.depth);
b = sb + (((db - sb) * da) >> alpha.depth);
break;
case blend::targetColor:
a = da;
r = dr;
g = dg;
b = db;
break;
}
write(dp, (a << alpha.shift) | (r << red.shift) | (g << green.shift) | (b << blue.shift));
sp += source.stride;
dp += stride;
}
}
}
void image::scale(unsigned outputWidth, unsigned outputHeight, bool linear) {
if(width == outputWidth && height == outputHeight) return; //no scaling necessary
if(linear == false) return scaleNearest(outputWidth, outputHeight);
if(width == outputWidth ) return scaleLinearHeight(outputHeight);
if(height == outputHeight) return scaleLinearWidth(outputWidth);
//find fastest scaling method, based on number of interpolation operations required
//magnification usually benefits from two-pass linear interpolation
//minification usually benefits from one-pass bilinear interpolation
unsigned d1wh = ((width * outputWidth ) + (outputWidth * outputHeight)) * 1;
unsigned d1hw = ((height * outputHeight) + (outputWidth * outputHeight)) * 1;
unsigned d2wh = (outputWidth * outputHeight) * 3;
if(d1wh <= d1hw && d1wh <= d2wh) return scaleLinearWidth(outputWidth), scaleLinearHeight(outputHeight);
if(d1hw <= d2wh) return scaleLinearHeight(outputHeight), scaleLinearWidth(outputWidth);
return scaleLinear(outputWidth, outputHeight);
}
void image::transform(bool outputEndian, unsigned outputDepth, uint64_t outputAlphaMask, uint64_t outputRedMask, uint64_t outputGreenMask, uint64_t outputBlueMask) {
if(endian == outputEndian && depth == outputDepth && alpha.mask == outputAlphaMask && red.mask == outputRedMask && green.mask == outputGreenMask && blue.mask == outputBlueMask) return;
image output(outputEndian, outputDepth, outputAlphaMask, outputRedMask, outputGreenMask, outputBlueMask);
output.allocate(width, height);
#pragma omp parallel for
for(unsigned y = 0; y < height; y++) {
const uint8_t* sp = data + pitch * y;
uint8_t* dp = output.data + output.pitch * y;
for(unsigned x = 0; x < width; x++) {
uint64_t color = read(sp);
sp += stride;
uint64_t a = (color & alpha.mask) >> alpha.shift;
uint64_t r = (color & red.mask) >> red.shift;
uint64_t g = (color & green.mask) >> green.shift;
uint64_t b = (color & blue.mask) >> blue.shift;
a = normalize(a, alpha.depth, output.alpha.depth);
r = normalize(r, red.depth, output.red.depth);
g = normalize(g, green.depth, output.green.depth);
b = normalize(b, blue.depth, output.blue.depth);
output.write(dp, (a << output.alpha.shift) | (r << output.red.shift) | (g << output.green.shift) | (b << output.blue.shift));
dp += output.stride;
}
}
operator=(std::move(output));
}
void image::alphaBlend(uint64_t alphaColor) {
uint64_t alphaR = (alphaColor & red.mask ) >> red.shift;
uint64_t alphaG = (alphaColor & green.mask) >> green.shift;
uint64_t alphaB = (alphaColor & blue.mask ) >> blue.shift;
#pragma omp parallel for
for(unsigned y = 0; y < height; y++) {
uint8_t* dp = data + pitch * y;
for(unsigned x = 0; x < width; x++) {
uint64_t color = read(dp);
uint64_t colorA = (color & alpha.mask) >> alpha.shift;
uint64_t colorR = (color & red.mask ) >> red.shift;
uint64_t colorG = (color & green.mask) >> green.shift;
uint64_t colorB = (color & blue.mask ) >> blue.shift;
double alphaScale = (double)colorA / (double)((1 << alpha.depth) - 1);
colorA = (1 << alpha.depth) - 1;
colorR = (colorR * alphaScale) + (alphaR * (1.0 - alphaScale));
colorG = (colorG * alphaScale) + (alphaG * (1.0 - alphaScale));
colorB = (colorB * alphaScale) + (alphaB * (1.0 - alphaScale));
write(dp, (colorA << alpha.shift) | (colorR << red.shift) | (colorG << green.shift) | (colorB << blue.shift));
dp += stride;
}
}
}
//protected
uint8_t* image::allocate(unsigned width, unsigned height, unsigned stride) {
//allocate 1x1 larger than requested; so that linear interpolation does not require bounds-checking
unsigned size = width * height * stride;
unsigned padding = width * stride + stride;
uint8_t* data = new uint8_t[size + padding];
memset(data + size, 0x00, padding);
return data;
}
//fixed-point reduction of: a * (1 - x) + b * x
uint64_t image::interpolate1D(int64_t a, int64_t b, uint32_t x) {
return a + (((b - a) * x) >> 32); //a + (b - a) * x
}
//fixed-point reduction of: a * (1 - x) * (1 - y) + b * x * (1 - y) + c * (1 - x) * y + d * x * y
uint64_t image::interpolate2D(int64_t a, int64_t b, int64_t c, int64_t d, uint32_t x, uint32_t y) {
a = a + (((b - a) * x) >> 32); //a + (b - a) * x
c = c + (((d - c) * x) >> 32); //c + (d - c) * x
return a + (((c - a) * y) >> 32); //a + (c - a) * y
}
void image::scaleLinearWidth(unsigned outputWidth) {
uint8_t* outputData = allocate(outputWidth, height, stride);
unsigned outputPitch = outputWidth * stride;
uint64_t xstride = ((uint64_t)(width - 1) << 32) / max(1u, outputWidth - 1);
#pragma omp parallel for
for(unsigned y = 0; y < height; y++) {
uint64_t xfraction = 0;
const uint8_t* sp = data + pitch * y;
uint8_t* dp = outputData + outputPitch * y;
uint64_t a = read(sp);
uint64_t b = read(sp + stride);
sp += stride;
unsigned x = 0;
while(true) {
while(xfraction < 0x100000000 && x++ < outputWidth) {
uint64_t A = interpolate1D((a & alpha.mask) >> alpha.shift, (b & alpha.mask) >> alpha.shift, xfraction);
uint64_t R = interpolate1D((a & red.mask ) >> red.shift , (b & red.mask ) >> red.shift, xfraction);
uint64_t G = interpolate1D((a & green.mask) >> green.shift, (b & green.mask) >> green.shift, xfraction);
uint64_t B = interpolate1D((a & blue.mask ) >> blue.shift , (b & blue.mask ) >> blue.shift, xfraction);
write(dp, (A << alpha.shift) | (R << red.shift) | (G << green.shift) | (B << blue.shift));
dp += stride;
xfraction += xstride;
}
if(x >= outputWidth) break;
sp += stride;
a = b;
b = read(sp);
xfraction -= 0x100000000;
}
}
free();
data = outputData;
width = outputWidth;
pitch = outputPitch;
size = height * pitch;
}
void image::scaleLinearHeight(unsigned outputHeight) {
uint8_t* outputData = allocate(width, outputHeight, stride);
uint64_t ystride = ((uint64_t)(height - 1) << 32) / max(1u, outputHeight - 1);
#pragma omp parallel for
for(unsigned x = 0; x < width; x++) {
uint64_t yfraction = 0;
const uint8_t* sp = data + stride * x;
uint8_t* dp = outputData + stride * x;
uint64_t a = read(sp);
uint64_t b = read(sp + pitch);
sp += pitch;
unsigned y = 0;
while(true) {
while(yfraction < 0x100000000 && y++ < outputHeight) {
uint64_t A = interpolate1D((a & alpha.mask) >> alpha.shift, (b & alpha.mask) >> alpha.shift, yfraction);
uint64_t R = interpolate1D((a & red.mask ) >> red.shift, (b & red.mask ) >> red.shift, yfraction);
uint64_t G = interpolate1D((a & green.mask) >> green.shift, (b & green.mask) >> green.shift, yfraction);
uint64_t B = interpolate1D((a & blue.mask ) >> blue.shift, (b & blue.mask ) >> blue.shift, yfraction);
write(dp, (A << alpha.shift) | (R << red.shift) | (G << green.shift) | (B << blue.shift));
dp += pitch;
yfraction += ystride;
}
if(y >= outputHeight) break;
sp += pitch;
a = b;
b = read(sp);
yfraction -= 0x100000000;
}
}
free();
data = outputData;
height = outputHeight;
size = height * pitch;
}
void image::scaleLinear(unsigned outputWidth, unsigned outputHeight) {
uint8_t* outputData = allocate(outputWidth, outputHeight, stride);
unsigned outputPitch = outputWidth * stride;
uint64_t xstride = ((uint64_t)(width - 1) << 32) / max(1u, outputWidth - 1);
uint64_t ystride = ((uint64_t)(height - 1) << 32) / max(1u, outputHeight - 1);
#pragma omp parallel for
for(unsigned y = 0; y < outputHeight; y++) {
uint64_t yfraction = ystride * y;
uint64_t xfraction = 0;
const uint8_t* sp = data + pitch * (yfraction >> 32);
uint8_t* dp = outputData + outputPitch * y;
uint64_t a = read(sp);
uint64_t b = read(sp + stride);
uint64_t c = read(sp + pitch);
uint64_t d = read(sp + pitch + stride);
sp += stride;
unsigned x = 0;
while(true) {
while(xfraction < 0x100000000 && x++ < outputWidth) {
uint64_t A = interpolate2D((a & alpha.mask) >> alpha.shift, (b & alpha.mask) >> alpha.shift, (c & alpha.mask) >> alpha.shift, (d & alpha.mask) >> alpha.shift, xfraction, yfraction);
uint64_t R = interpolate2D((a & red.mask ) >> red.shift, (b & red.mask ) >> red.shift, (c & red.mask ) >> red.shift, (d & red.mask ) >> red.shift, xfraction, yfraction);
uint64_t G = interpolate2D((a & green.mask) >> green.shift, (b & green.mask) >> green.shift, (c & green.mask) >> green.shift, (d & green.mask) >> green.shift, xfraction, yfraction);
uint64_t B = interpolate2D((a & blue.mask ) >> blue.shift, (b & blue.mask ) >> blue.shift, (c & blue.mask ) >> blue.shift, (d & blue.mask ) >> blue.shift, xfraction, yfraction);
write(dp, (A << alpha.shift) | (R << red.shift) | (G << green.shift) | (B << blue.shift));
dp += stride;
xfraction += xstride;
}
if(x >= outputWidth) break;
sp += stride;
a = b;
c = d;
b = read(sp);
d = read(sp + pitch);
xfraction -= 0x100000000;
}
}
free();
data = outputData;
width = outputWidth;
height = outputHeight;
pitch = outputPitch;
size = height * pitch;
}
void image::scaleNearest(unsigned outputWidth, unsigned outputHeight) {
uint8_t* outputData = allocate(outputWidth, outputHeight, stride);
unsigned outputPitch = outputWidth * stride;
uint64_t xstride = ((uint64_t)width << 32) / outputWidth;
uint64_t ystride = ((uint64_t)height << 32) / outputHeight;
#pragma omp parallel for
for(unsigned y = 0; y < outputHeight; y++) {
uint64_t yfraction = ystride * y;
uint64_t xfraction = 0;
const uint8_t* sp = data + pitch * (yfraction >> 32);
uint8_t* dp = outputData + outputPitch * y;
uint64_t a = read(sp);
unsigned x = 0;
while(true) {
while(xfraction < 0x100000000 && x++ < outputWidth) {
write(dp, a);
dp += stride;
xfraction += xstride;
}
if(x >= outputWidth) break;
sp += stride;
a = read(sp);
xfraction -= 0x100000000;
}
}
free();
data = outputData;
width = outputWidth;
height = outputHeight;
pitch = outputPitch;
size = height * pitch;
}
bool image::loadBMP(const string& filename) {
uint32_t* outputData;
unsigned outputWidth, outputHeight;
if(bmp::read(filename, outputData, outputWidth, outputHeight) == false) return false;
allocate(outputWidth, outputHeight);
const uint32_t* sp = outputData;
uint8_t* dp = data;
for(unsigned y = 0; y < outputHeight; y++) {
for(unsigned x = 0; x < outputWidth; x++) {
uint32_t color = *sp++;
uint64_t a = normalize((uint8_t)(color >> 24), 8, alpha.depth);
uint64_t r = normalize((uint8_t)(color >> 16), 8, red.depth);
uint64_t g = normalize((uint8_t)(color >> 8), 8, green.depth);
uint64_t b = normalize((uint8_t)(color >> 0), 8, blue.depth);
write(dp, (a << alpha.shift) | (r << red.shift) | (g << green.shift) | (b << blue.shift));
dp += stride;
}
}
delete[] outputData;
return true;
}
bool image::loadPNG(const uint8_t* pngData, unsigned pngSize) {
png source;
if(source.decode(pngData, pngSize) == false) return false;
allocate(source.info.width, source.info.height);
const uint8_t* sp = source.data;
uint8_t* dp = data;
auto decode = [&]() -> uint64_t {
uint64_t p, r, g, b, a;
switch(source.info.colorType) {
case 0: //L
r = g = b = source.readbits(sp);
a = (1 << source.info.bitDepth) - 1;
break;
case 2: //R,G,B
r = source.readbits(sp);
g = source.readbits(sp);
b = source.readbits(sp);
a = (1 << source.info.bitDepth) - 1;
break;
case 3: //P
p = source.readbits(sp);
r = source.info.palette[p][0];
g = source.info.palette[p][1];
b = source.info.palette[p][2];
a = (1 << source.info.bitDepth) - 1;
break;
case 4: //L,A
r = g = b = source.readbits(sp);
a = source.readbits(sp);
break;
case 6: //R,G,B,A
r = source.readbits(sp);
g = source.readbits(sp);
b = source.readbits(sp);
a = source.readbits(sp);
break;
}
a = normalize(a, source.info.bitDepth, alpha.depth);
r = normalize(r, source.info.bitDepth, red.depth);
g = normalize(g, source.info.bitDepth, green.depth);
b = normalize(b, source.info.bitDepth, blue.depth);
return (a << alpha.shift) | (r << red.shift) | (g << green.shift) | (b << blue.shift);
};
for(unsigned y = 0; y < height; y++) {
for(unsigned x = 0; x < width; x++) {
write(dp, decode());
dp += stride;
}
}
return true;
}
bool image::loadPNG(const string& filename) {
if(!file::exists(filename)) return false;
auto buffer = file::read(filename);
return loadPNG(buffer.data(), buffer.size());
}
}
#endif