mirror of https://github.com/bsnes-emu/bsnes.git
129 lines
3.6 KiB
C++
129 lines
3.6 KiB
C++
#pragma once
|
|
|
|
//reed-solomon product code
|
|
|
|
namespace nall::CD::RSPC {
|
|
|
|
inline auto encodeP(array_view<uint8_t> input, array_span<uint8_t> parity) -> bool {
|
|
ReedSolomon<26,24> s;
|
|
uint lo = 0, hi = 43 * 2;
|
|
for(uint x : range(43)) {
|
|
for(uint w : range(2)) { //16-bit words
|
|
uint z = 0;
|
|
for(uint y : range(24)) {
|
|
s[z++] = input[(y * 43 + x) * 2 + w];
|
|
}
|
|
s.generateParity();
|
|
parity[lo++] = s[z++];
|
|
parity[hi++] = s[z++];
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
inline auto encodeQ(array_view<uint8_t> input, array_span<uint8_t> parity) -> bool {
|
|
ReedSolomon<45,43> s;
|
|
uint lo = 0, hi = 26 * 2;
|
|
for(uint y : range(26)) {
|
|
for(uint w : range(2)) {
|
|
uint z = 0;
|
|
for(uint x : range(43)) {
|
|
s[z++] = input[((x * 44 + y * 43) * 2 + w) % (26 * 43 * 2)];
|
|
}
|
|
s.generateParity();
|
|
parity[lo++] = s[z++];
|
|
parity[hi++] = s[z++];
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
inline auto encodeMode1(array_span<uint8_t> sector) -> bool {
|
|
if(sector.size() != 2352) return false;
|
|
if(!encodeP({sector + 12, 2064}, {sector + 2076, 172})) return false;
|
|
if(!encodeQ({sector + 12, 2236}, {sector + 2248, 104})) return false;
|
|
return true;
|
|
}
|
|
|
|
//
|
|
|
|
inline auto decodeP(array_span<uint8_t> input, array_span<uint8_t> parity) -> int {
|
|
bool success = false;
|
|
bool failure = false;
|
|
ReedSolomon<26,24> s;
|
|
uint lo = 0, hi = 43 * 2;
|
|
for(uint x : range(43)) {
|
|
for(uint w : range(2)) {
|
|
uint z = 0;
|
|
for(uint y : range(24)) {
|
|
s[z++] = input[(y * 43 + x) * 2 + w];
|
|
}
|
|
s[z++] = parity[lo++];
|
|
s[z++] = parity[hi++];
|
|
auto count = s.correctErrors();
|
|
if(count < 0) {
|
|
failure = true;
|
|
}
|
|
if(count > 0) {
|
|
success = true;
|
|
z = 0;
|
|
for(uint y : range(24)) {
|
|
input[(y * 43 + x) * 2 + w] = s[z++];
|
|
}
|
|
parity[lo - 1] = s[z++];
|
|
parity[hi - 1] = s[z++];
|
|
}
|
|
}
|
|
}
|
|
if(!success && !failure) return 0; //no errors remaining
|
|
return success ? 1 : -1; //return success even if there are some failures
|
|
}
|
|
|
|
inline auto decodeQ(array_span<uint8_t> input, array_span<uint8_t> parity) -> int {
|
|
bool success = false;
|
|
bool failure = false;
|
|
ReedSolomon<45,43> s;
|
|
uint lo = 0, hi = 26 * 2;
|
|
for(uint y : range(26)) {
|
|
for(uint w : range(2)) {
|
|
uint z = 0;
|
|
for(uint x : range(43)) {
|
|
s[z++] = input[((x * 44 + y * 43) * 2 + w) % (26 * 43 * 2)];
|
|
}
|
|
s[z++] = parity[lo++];
|
|
s[z++] = parity[hi++];
|
|
auto count = s.correctErrors();
|
|
if(count < 0) {
|
|
failure = true;
|
|
}
|
|
if(count > 0) {
|
|
success = true;
|
|
z = 0;
|
|
for(uint x : range(43)) {
|
|
input[((x * 44 + y * 43) * 2 + w) % (26 * 43 * 2)] = s[z++];
|
|
}
|
|
parity[lo - 1] = s[z++];
|
|
parity[hi - 1] = s[z++];
|
|
}
|
|
}
|
|
}
|
|
if(!success && !failure) return 0;
|
|
return success ? 1 : -1;
|
|
}
|
|
|
|
inline auto decodeMode1(array_span<uint8_t> sector) -> bool {
|
|
if(sector.size() != 2352) return false;
|
|
//P corrections can allow Q corrections that previously failed to succeed, and vice versa.
|
|
//the more iterations, the more chances to correct errors, but the more computationally expensive it is.
|
|
//there must be a limit on the amount of retries, or this function may get stuck in an infinite loop.
|
|
for(uint attempt : range(4)) {
|
|
auto p = decodeP({sector + 12, 2064}, {sector + 2076, 172});
|
|
auto q = decodeQ({sector + 12, 2236}, {sector + 2248, 104});
|
|
if(p == 0 && q == 0) return true; //no errors remaining
|
|
if(p < 0 && q < 0) return false; //no more errors correctable
|
|
}
|
|
return false; //exhausted all retries with errors remaining
|
|
}
|
|
|
|
}
|