bsnes/nall/emulation/21fx.hpp

147 lines
3.2 KiB
C++

#pragma once
#include <nall/nall.hpp>
#include <nall/serial.hpp>
using namespace nall;
using int8 = Integer< 8>;
using int16 = Integer<16>;
using int24 = Integer<24>;
using int32 = Integer<32>;
using int64 = Integer<64>;
using uint8 = Natural< 8>;
using uint16 = Natural<16>;
using uint24 = Natural<24>;
using uint32 = Natural<32>;
using uint64 = Natural<64>;
struct FX {
auto open(vector<string>& arguments) -> bool;
auto close() -> void;
auto readable() -> bool;
auto read() -> uint8_t;
auto writable() -> bool;
auto write(uint8_t data) -> void;
auto read(uint offset, uint length) -> vector<uint8_t>;
auto write(uint offset, const void* buffer, uint length) -> void;
auto write(uint offset, const vector<uint8_t>& buffer) -> void { write(offset, buffer.data(), buffer.size()); }
auto execute(uint offset) -> void;
auto read(uint offset) -> uint8_t;
auto write(uint offset, uint8_t data) -> void;
serial device;
};
auto FX::open(vector<string>& arguments) -> bool {
//device name override support
string name;
for(uint n : range(arguments)) {
if(arguments[n].beginsWith("--device=")) {
name = arguments.take(n).trimLeft("--device=", 1L);
break;
}
}
if(!device.open(name)) {
print("[21fx] error: unable to open hardware device\n");
return false;
}
//flush the device (to clear floating inputs)
while(true) {
while(readable()) read();
auto iplrom = read(0x2184, 122);
auto sha256 = Hash::SHA256(iplrom.data(), iplrom.size()).digest();
if(sha256 == "41b79712a4a2d16d39894ae1b38cde5c41dad22eadc560df631d39f13df1e4b9") break;
}
return true;
}
auto FX::close() -> void {
device.close();
}
auto FX::readable() -> bool {
return device.readable();
}
//1000ns delay avoids burning CPU core at 100%; does not slow down max transfer rate at all
auto FX::read() -> uint8_t {
while(!readable()) usleep(1000);
uint8_t buffer[1] = {0};
device.read(buffer, 1);
return buffer[0];
}
auto FX::writable() -> bool {
return device.writable();
}
auto FX::write(uint8_t data) -> void {
while(!writable()) usleep(1000);
uint8_t buffer[1] = {data};
device.write(buffer, 1);
}
//
auto FX::read(uint offset, uint length) -> vector<uint8_t> {
write(0x21);
write(0x66);
write(0x78);
write(offset >> 16);
write(offset >> 8);
write(offset >> 0);
write(0x01);
write(length >> 8);
write(length >> 0);
write(0x00);
vector<uint8_t> buffer;
while(length--) buffer.append(read());
return buffer;
}
auto FX::write(uint offset, const void* data, uint length) -> void {
write(0x21);
write(0x66);
write(0x78);
write(offset >> 16);
write(offset >> 8);
write(offset >> 0);
write(0x01);
write(length >> 8);
write(length >> 0);
write(0x01);
auto buffer = (uint8_t*)data;
for(auto n : range(length)) write(buffer[n]);
write(0x00);
}
auto FX::execute(uint offset) -> void {
write(0x21);
write(0x66);
write(0x78);
write(offset >> 16);
write(offset >> 8);
write(offset >> 0);
write(0x00);
}
//
auto FX::read(uint offset) -> uint8_t {
auto buffer = read(offset, 1);
return buffer[0];
}
auto FX::write(uint offset, uint8_t data) -> void {
vector<uint8_t> buffer = {data};
write(offset, buffer);
}