bsnes/nall/dsp/iir/biquad.hpp

158 lines
3.9 KiB
C++

#pragma once
#include <nall/dsp/dsp.hpp>
//transposed direct form II biquadratic second-order IIR filter
namespace nall::DSP::IIR {
struct Biquad {
enum class Type : uint {
LowPass,
HighPass,
BandPass,
Notch,
Peak,
LowShelf,
HighShelf,
};
inline auto reset(Type type, double cutoffFrequency, double samplingFrequency, double quality, double gain = 0.0) -> void;
inline auto process(double in) -> double; //normalized sample (-1.0 to +1.0)
inline static auto butterworth(uint order, uint phase) -> double;
private:
Type type;
double cutoffFrequency;
double samplingFrequency;
double quality; //frequency response quality
double gain; //peak gain
double a0, a1, a2, b1, b2; //coefficients
double z1, z2; //second-order IIR
};
auto Biquad::reset(Type type, double cutoffFrequency, double samplingFrequency, double quality, double gain) -> void {
this->type = type;
this->cutoffFrequency = cutoffFrequency;
this->samplingFrequency = samplingFrequency;
this->quality = quality;
this->gain = gain;
z1 = 0.0;
z2 = 0.0;
double v = pow(10, fabs(gain) / 20.0);
double k = tan(Math::Pi * cutoffFrequency / samplingFrequency);
double q = quality;
double n = 0.0;
switch(type) {
case Type::LowPass:
n = 1 / (1 + k / q + k * k);
a0 = k * k * n;
a1 = 2 * a0;
a2 = a0;
b1 = 2 * (k * k - 1) * n;
b2 = (1 - k / q + k * k) * n;
break;
case Type::HighPass:
n = 1 / (1 + k / q + k * k);
a0 = 1 * n;
a1 = -2 * a0;
a2 = a0;
b1 = 2 * (k * k - 1) * n;
b2 = (1 - k / q + k * k) * n;
break;
case Type::BandPass:
n = 1 / (1 + k / q + k * k);
a0 = k / q * n;
a1 = 0;
a2 = -a0;
b1 = 2 * (k * k - 1) * n;
b2 = (1 - k / q + k * k) * n;
break;
case Type::Notch:
n = 1 / (1 + k / q + k * k);
a0 = (1 + k * k) * n;
a1 = 2 * (k * k - 1) * n;
a2 = a0;
b1 = a1;
b2 = (1 - k / q + k * k) * n;
break;
case Type::Peak:
if(gain >= 0) {
n = 1 / (1 + 1 / q * k + k * k);
a0 = (1 + v / q * k + k * k) * n;
a1 = 2 * (k * k - 1) * n;
a2 = (1 - v / q * k + k * k) * n;
b1 = a1;
b2 = (1 - 1 / q * k + k * k) * n;
} else {
n = 1 / (1 + v / q * k + k * k);
a0 = (1 + 1 / q * k + k * k) * n;
a1 = 2 * (k * k - 1) * n;
a2 = (1 - 1 / q * k + k * k) * n;
b1 = a1;
b2 = (1 - v / q * k + k * k) * n;
}
break;
case Type::LowShelf:
if(gain >= 0) {
n = 1 / (1 + sqrt(2) * k + k * k);
a0 = (1 + sqrt(2 * v) * k + v * k * k) * n;
a1 = 2 * (v * k * k - 1) * n;
a2 = (1 - sqrt(2 * v) * k + v * k * k) * n;
b1 = 2 * (k * k - 1) * n;
b2 = (1 - sqrt(2) * k + k * k) * n;
} else {
n = 1 / (1 + sqrt(2 * v) * k + v * k * k);
a0 = (1 + sqrt(2) * k + k * k) * n;
a1 = 2 * (k * k - 1) * n;
a2 = (1 - sqrt(2) * k + k * k) * n;
b1 = 2 * (v * k * k - 1) * n;
b2 = (1 - sqrt(2 * v) * k + v * k * k) * n;
}
break;
case Type::HighShelf:
if(gain >= 0) {
n = 1 / (1 + sqrt(2) * k + k * k);
a0 = (v + sqrt(2 * v) * k + k * k) * n;
a1 = 2 * (k * k - v) * n;
a2 = (v - sqrt(2 * v) * k + k * k) * n;
b1 = 2 * (k * k - 1) * n;
b2 = (1 - sqrt(2) * k + k * k) * n;
} else {
n = 1 / (v + sqrt(2 * v) * k + k * k);
a0 = (1 + sqrt(2) * k + k * k) * n;
a1 = 2 * (k * k - 1) * n;
a2 = (1 - sqrt(2) * k + k * k) * n;
b1 = 2 * (k * k - v) * n;
b2 = (v - sqrt(2 * v) * k + k * k) * n;
}
break;
}
}
auto Biquad::process(double in) -> double {
double out = in * a0 + z1;
z1 = in * a1 + z2 - b1 * out;
z2 = in * a2 - b2 * out;
return out;
}
//compute Q values for N-order butterworth filtering
auto Biquad::butterworth(uint order, uint phase) -> double {
return -0.5 / cos(Math::Pi * (phase + order + 0.5) / order);
}
}