bsnes/higan/sfc/cpu/dma.cpp

239 lines
6.4 KiB
C++

auto CPU::dmaAddClocks(uint clocks) -> void {
status.dma_clocks += clocks;
addClocks(clocks);
}
//=============
//memory access
//=============
auto CPU::dmaTransferValid(uint8 bbus, uint24 abus) -> bool {
//transfers from WRAM to WRAM are invalid; chip only has one address bus
if(bbus == 0x80 && ((abus & 0xfe0000) == 0x7e0000 || (abus & 0x40e000) == 0x0000)) return false;
return true;
}
auto CPU::dmaAddressValid(uint24 abus) -> bool {
//A-bus access to B-bus or S-CPU registers are invalid
if((abus & 0x40ff00) == 0x2100) return false; //$00-3f,80-bf:2100-21ff
if((abus & 0x40fe00) == 0x4000) return false; //$00-3f,80-bf:4000-41ff
if((abus & 0x40ffe0) == 0x4200) return false; //$00-3f,80-bf:4200-421f
if((abus & 0x40ff80) == 0x4300) return false; //$00-3f,80-bf:4300-437f
return true;
}
auto CPU::dmaRead(uint24 abus) -> uint8 {
if(!dmaAddressValid(abus)) return 0x00;
return bus.read(abus, regs.mdr);
}
//simulate two-stage pipeline for DMA transfers; example:
//cycle 0: read N+0
//cycle 1: write N+0 & read N+1 (parallel; one on A-bus, one on B-bus)
//cycle 2: write N+1 & read N+2 (parallel)
//cycle 3: write N+2
auto CPU::dmaWrite(bool valid, uint addr, uint8 data) -> void {
if(pipe.valid) bus.write(pipe.addr, pipe.data);
pipe.valid = valid;
pipe.addr = addr;
pipe.data = data;
}
auto CPU::dmaTransfer(bool direction, uint8 bbus, uint24 abus) -> void {
if(direction == 0) {
dmaAddClocks(4);
regs.mdr = dmaRead(abus);
dmaAddClocks(4);
dmaWrite(dmaTransferValid(bbus, abus), 0x2100 | bbus, regs.mdr);
} else {
dmaAddClocks(4);
regs.mdr = dmaTransferValid(bbus, abus) ? bus.read(0x2100 | bbus, regs.mdr) : (uint8)0x00;
dmaAddClocks(4);
dmaWrite(dmaAddressValid(abus), abus, regs.mdr);
}
}
//===================
//address calculation
//===================
auto CPU::dmaAddressB(uint n, uint index) -> uint8 {
switch(channel[n].transfer_mode) { default:
case 0: return (channel[n].dest_addr); //0
case 1: return (channel[n].dest_addr + (index & 1)); //0,1
case 2: return (channel[n].dest_addr); //0,0
case 3: return (channel[n].dest_addr + ((index >> 1) & 1)); //0,0,1,1
case 4: return (channel[n].dest_addr + (index & 3)); //0,1,2,3
case 5: return (channel[n].dest_addr + (index & 1)); //0,1,0,1
case 6: return (channel[n].dest_addr); //0,0 [2]
case 7: return (channel[n].dest_addr + ((index >> 1) & 1)); //0,0,1,1 [3]
}
}
inline auto CPU::dmaAddress(uint n) -> uint24 {
uint24 addr = channel[n].source_bank << 16 | channel[n].source_addr;
if(!channel[n].fixed_transfer) {
if(!channel[n].reverse_transfer) {
channel[n].source_addr++;
} else {
channel[n].source_addr--;
}
}
return addr;
}
inline auto CPU::hdmaAddress(uint n) -> uint24 {
return channel[n].source_bank << 16 | channel[n].hdma_addr++;
}
inline auto CPU::hdmaIndirectAddress(uint n) -> uint24 {
return channel[n].indirect_bank << 16 | channel[n].indirect_addr++;
}
//==============
//channel status
//==============
auto CPU::dmaEnabledChannels() -> uint {
uint count = 0;
for(auto n : range(8)) count += channel[n].dma_enabled;
return count;
}
inline auto CPU::hdmaActive(uint n) -> bool {
return channel[n].hdma_enabled && !channel[n].hdma_completed;
}
inline auto CPU::hdmaActiveAfter(uint s) -> bool {
for(uint n = s + 1; n < 8; n++) {
if(hdmaActive(n)) return true;
}
return false;
}
inline auto CPU::hdmaEnabledChannels() -> uint {
uint count = 0;
for(auto n : range(8)) count += channel[n].hdma_enabled;
return count;
}
inline auto CPU::hdmaActiveChannels() -> uint {
uint count = 0;
for(auto n : range(8)) count += hdmaActive(n);
return count;
}
//==============
//core functions
//==============
auto CPU::dmaRun() -> void {
dmaAddClocks(8);
dmaWrite(false);
dmaEdge();
for(auto n : range(8)) {
if(!channel[n].dma_enabled) continue;
uint index = 0;
do {
dmaTransfer(channel[n].direction, dmaAddressB(n, index++), dmaAddress(n));
dmaEdge();
} while(channel[n].dma_enabled && --channel[n].transfer_size);
dmaAddClocks(8);
dmaWrite(false);
dmaEdge();
channel[n].dma_enabled = false;
}
status.irq_lock = true;
}
auto CPU::hdmaUpdate(uint n) -> void {
dmaAddClocks(4);
regs.mdr = dmaRead(channel[n].source_bank << 16 | channel[n].hdma_addr);
dmaAddClocks(4);
dmaWrite(false);
if((channel[n].line_counter & 0x7f) == 0) {
channel[n].line_counter = regs.mdr;
channel[n].hdma_addr++;
channel[n].hdma_completed = channel[n].line_counter == 0;
channel[n].hdma_do_transfer = !channel[n].hdma_completed;
if(channel[n].indirect) {
dmaAddClocks(4);
regs.mdr = dmaRead(hdmaAddress(n));
channel[n].indirect_addr = regs.mdr << 8;
dmaAddClocks(4);
dmaWrite(false);
if(!channel[n].hdma_completed || hdmaActiveAfter(n)) {
dmaAddClocks(4);
regs.mdr = dmaRead(hdmaAddress(n));
channel[n].indirect_addr >>= 8;
channel[n].indirect_addr |= regs.mdr << 8;
dmaAddClocks(4);
dmaWrite(false);
}
}
}
}
auto CPU::hdmaRun() -> void {
dmaAddClocks(8);
dmaWrite(false);
for(auto n : range(8)) {
if(!hdmaActive(n)) continue;
channel[n].dma_enabled = false; //HDMA run during DMA will stop DMA mid-transfer
if(channel[n].hdma_do_transfer) {
static const uint transferLength[8] = {1, 2, 2, 4, 4, 4, 2, 4};
uint length = transferLength[channel[n].transfer_mode];
for(auto index : range(length)) {
uint addr = !channel[n].indirect ? hdmaAddress(n) : hdmaIndirectAddress(n);
dmaTransfer(channel[n].direction, dmaAddressB(n, index), addr);
}
}
}
for(auto n : range(8)) {
if(!hdmaActive(n)) continue;
channel[n].line_counter--;
channel[n].hdma_do_transfer = channel[n].line_counter & 0x80;
hdmaUpdate(n);
}
status.irq_lock = true;
}
auto CPU::hdmaInitReset() -> void {
for(auto n : range(8)) {
channel[n].hdma_completed = false;
channel[n].hdma_do_transfer = false;
}
}
auto CPU::hdmaInit() -> void {
dmaAddClocks(8);
dmaWrite(false);
for(auto n : range(8)) {
if(!channel[n].hdma_enabled) continue;
channel[n].dma_enabled = false; //HDMA init during DMA will stop DMA mid-transfer
channel[n].hdma_addr = channel[n].source_addr;
channel[n].line_counter = 0;
hdmaUpdate(n);
}
status.irq_lock = true;
}