mirror of https://github.com/bsnes-emu/bsnes.git
219 lines
5.4 KiB
C++
219 lines
5.4 KiB
C++
//SUNSOFT-5B
|
|
|
|
struct Sunsoft5B : Board {
|
|
Sunsoft5B(Markup::Node& document) : Board(document) {
|
|
}
|
|
|
|
struct Pulse {
|
|
auto clock() -> void {
|
|
if(--counter == 0) {
|
|
counter = frequency << 4;
|
|
duty ^= 1;
|
|
}
|
|
output = duty ? volume : (uint4)0;
|
|
if(disable) output = 0;
|
|
}
|
|
|
|
auto reset() -> void {
|
|
disable = 1;
|
|
frequency = 1;
|
|
volume = 0;
|
|
|
|
counter = 0;
|
|
duty = 0;
|
|
output = 0;
|
|
}
|
|
|
|
auto serialize(serializer& s) -> void {
|
|
s.integer(disable);
|
|
s.integer(frequency);
|
|
s.integer(volume);
|
|
|
|
s.integer(counter);
|
|
s.integer(duty);
|
|
s.integer(output);
|
|
}
|
|
|
|
bool disable;
|
|
uint12 frequency;
|
|
uint4 volume;
|
|
|
|
uint16 counter; //12-bit countdown + 4-bit phase
|
|
uint1 duty;
|
|
uint4 output;
|
|
} pulse[3];
|
|
|
|
auto main() -> void {
|
|
if(irqCounterEnable) {
|
|
if(--irqCounter == 0xffff) {
|
|
cpu.irqLine(irqEnable);
|
|
}
|
|
}
|
|
|
|
pulse[0].clock();
|
|
pulse[1].clock();
|
|
pulse[2].clock();
|
|
int16 output = dac[pulse[0].output] + dac[pulse[1].output] + dac[pulse[2].output];
|
|
apu.setSample(-output);
|
|
|
|
tick();
|
|
}
|
|
|
|
auto readPRG(uint addr) -> uint8 {
|
|
if(addr < 0x6000) return cpu.mdr();
|
|
|
|
uint8 bank = 0x3f; //((addr & 0xe000) == 0xe000
|
|
if((addr & 0xe000) == 0x6000) bank = prgBank[0];
|
|
if((addr & 0xe000) == 0x8000) bank = prgBank[1];
|
|
if((addr & 0xe000) == 0xa000) bank = prgBank[2];
|
|
if((addr & 0xe000) == 0xc000) bank = prgBank[3];
|
|
|
|
bool ramEnable = bank & 0x80;
|
|
bool ramSelect = bank & 0x40;
|
|
bank &= 0x3f;
|
|
|
|
if(ramSelect) {
|
|
if(!ramEnable) return cpu.mdr();
|
|
return prgram.data[addr & 0x1fff];
|
|
}
|
|
|
|
addr = (bank << 13) | (addr & 0x1fff);
|
|
return prgrom.read(addr);
|
|
}
|
|
|
|
auto writePRG(uint addr, uint8 data) -> void {
|
|
if((addr & 0xe000) == 0x6000) {
|
|
prgram.data[addr & 0x1fff] = data;
|
|
}
|
|
|
|
if(addr == 0x8000) {
|
|
mmuPort = data & 0x0f;
|
|
}
|
|
|
|
if(addr == 0xa000) {
|
|
switch(mmuPort) {
|
|
case 0: chrBank[0] = data; break;
|
|
case 1: chrBank[1] = data; break;
|
|
case 2: chrBank[2] = data; break;
|
|
case 3: chrBank[3] = data; break;
|
|
case 4: chrBank[4] = data; break;
|
|
case 5: chrBank[5] = data; break;
|
|
case 6: chrBank[6] = data; break;
|
|
case 7: chrBank[7] = data; break;
|
|
case 8: prgBank[0] = data; break;
|
|
case 9: prgBank[1] = data; break;
|
|
case 10: prgBank[2] = data; break;
|
|
case 11: prgBank[3] = data; break;
|
|
case 12: mirror = data & 3; break;
|
|
case 13:
|
|
irqEnable = data & 0x80;
|
|
irqCounterEnable = data & 0x01;
|
|
if(irqEnable == 0) cpu.irqLine(0);
|
|
break;
|
|
case 14: irqCounter = (irqCounter & 0xff00) | (data << 0); break;
|
|
case 15: irqCounter = (irqCounter & 0x00ff) | (data << 8); break;
|
|
}
|
|
}
|
|
|
|
if(addr == 0xc000) {
|
|
apuPort = data & 0x0f;
|
|
}
|
|
|
|
if(addr == 0xe000) {
|
|
switch(apuPort) {
|
|
case 0: pulse[0].frequency = (pulse[0].frequency & 0xff00) | (data << 0); break;
|
|
case 1: pulse[0].frequency = (pulse[0].frequency & 0x00ff) | (data << 8); break;
|
|
case 2: pulse[1].frequency = (pulse[1].frequency & 0xff00) | (data << 0); break;
|
|
case 3: pulse[1].frequency = (pulse[1].frequency & 0x00ff) | (data << 8); break;
|
|
case 4: pulse[2].frequency = (pulse[2].frequency & 0xff00) | (data << 0); break;
|
|
case 5: pulse[2].frequency = (pulse[2].frequency & 0x00ff) | (data << 8); break;
|
|
case 7:
|
|
pulse[0].disable = data & 0x01;
|
|
pulse[1].disable = data & 0x02;
|
|
pulse[2].disable = data & 0x04;
|
|
break;
|
|
case 8: pulse[0].volume = data & 0x0f; break;
|
|
case 9: pulse[1].volume = data & 0x0f; break;
|
|
case 10: pulse[2].volume = data & 0x0f; break;
|
|
}
|
|
}
|
|
}
|
|
|
|
auto addrCHR(uint addr) -> uint {
|
|
uint8 bank = (addr >> 10) & 7;
|
|
return (chrBank[bank] << 10) | (addr & 0x03ff);
|
|
}
|
|
|
|
auto addrCIRAM(uint addr) -> uint {
|
|
switch(mirror) {
|
|
case 0: return ((addr & 0x0400) >> 0) | (addr & 0x03ff); //vertical
|
|
case 1: return ((addr & 0x0800) >> 1) | (addr & 0x03ff); //horizontal
|
|
case 2: return 0x0000 | (addr & 0x03ff); //first
|
|
case 3: return 0x0400 | (addr & 0x03ff); //second
|
|
}
|
|
}
|
|
|
|
auto readCHR(uint addr) -> uint8 {
|
|
if(addr & 0x2000) return ppu.readCIRAM(addrCIRAM(addr));
|
|
return Board::readCHR(addrCHR(addr));
|
|
}
|
|
|
|
auto writeCHR(uint addr, uint8 data) -> void {
|
|
if(addr & 0x2000) return ppu.writeCIRAM(addrCIRAM(addr), data);
|
|
return Board::writeCHR(addrCHR(addr), data);
|
|
}
|
|
|
|
auto power() -> void {
|
|
for(signed n : range(16)) {
|
|
double volume = 1.0 / pow(2, 1.0 / 2 * (15 - n));
|
|
dac[n] = volume * 8192.0;
|
|
}
|
|
}
|
|
|
|
auto reset() -> void {
|
|
mmuPort = 0;
|
|
apuPort = 0;
|
|
|
|
for(auto& n : prgBank) n = 0;
|
|
for(auto& n : chrBank) n = 0;
|
|
mirror = 0;
|
|
irqEnable = 0;
|
|
irqCounterEnable = 0;
|
|
irqCounter = 0;
|
|
|
|
pulse[0].reset();
|
|
pulse[1].reset();
|
|
pulse[2].reset();
|
|
}
|
|
|
|
auto serialize(serializer& s) -> void {
|
|
Board::serialize(s);
|
|
|
|
s.integer(mmuPort);
|
|
s.integer(apuPort);
|
|
|
|
s.array(prgBank);
|
|
s.array(chrBank);
|
|
s.integer(mirror);
|
|
s.integer(irqEnable);
|
|
s.integer(irqCounterEnable);
|
|
s.integer(irqCounter);
|
|
|
|
pulse[0].serialize(s);
|
|
pulse[1].serialize(s);
|
|
pulse[2].serialize(s);
|
|
}
|
|
|
|
uint4 mmuPort;
|
|
uint4 apuPort;
|
|
|
|
uint8 prgBank[4];
|
|
uint8 chrBank[8];
|
|
uint2 mirror;
|
|
bool irqEnable;
|
|
bool irqCounterEnable;
|
|
uint16 irqCounter;
|
|
|
|
int16 dac[16];
|
|
};
|