mirror of https://github.com/bsnes-emu/bsnes.git
178 lines
4.7 KiB
C++
Executable File
178 lines
4.7 KiB
C++
Executable File
#ifdef DSP2_CPP
|
|
|
|
//convert bitmap to bitplane tile
|
|
void DSP2::op01() {
|
|
//op01 size is always 32 bytes input and output
|
|
//the hardware does strange things if you vary the size
|
|
|
|
unsigned char c0, c1, c2, c3;
|
|
unsigned char *p1 = status.parameters;
|
|
unsigned char *p2a = status.output;
|
|
unsigned char *p2b = status.output + 16; //halfway
|
|
|
|
//process 8 blocks of 4 bytes each
|
|
for(int j = 0; j < 8; j++) {
|
|
c0 = *p1++;
|
|
c1 = *p1++;
|
|
c2 = *p1++;
|
|
c3 = *p1++;
|
|
|
|
*p2a++ = (c0 & 0x10) << 3 |
|
|
(c0 & 0x01) << 6 |
|
|
(c1 & 0x10) << 1 |
|
|
(c1 & 0x01) << 4 |
|
|
(c2 & 0x10) >> 1 |
|
|
(c2 & 0x01) << 2 |
|
|
(c3 & 0x10) >> 3 |
|
|
(c3 & 0x01);
|
|
|
|
*p2a++ = (c0 & 0x20) << 2 |
|
|
(c0 & 0x02) << 5 |
|
|
(c1 & 0x20) |
|
|
(c1 & 0x02) << 3 |
|
|
(c2 & 0x20) >> 2 |
|
|
(c2 & 0x02) << 1 |
|
|
(c3 & 0x20) >> 4 |
|
|
(c3 & 0x02) >> 1;
|
|
|
|
*p2b++ = (c0 & 0x40) << 1 |
|
|
(c0 & 0x04) << 4 |
|
|
(c1 & 0x40) >> 1 |
|
|
(c1 & 0x04) << 2 |
|
|
(c2 & 0x40) >> 3 |
|
|
(c2 & 0x04) |
|
|
(c3 & 0x40) >> 5 |
|
|
(c3 & 0x04) >> 2;
|
|
|
|
*p2b++ = (c0 & 0x80) |
|
|
(c0 & 0x08) << 3 |
|
|
(c1 & 0x80) >> 2 |
|
|
(c1 & 0x08) << 1 |
|
|
(c2 & 0x80) >> 4 |
|
|
(c2 & 0x08) >> 1 |
|
|
(c3 & 0x80) >> 6 |
|
|
(c3 & 0x08) >> 3;
|
|
}
|
|
}
|
|
|
|
//set transparent color
|
|
void DSP2::op03() {
|
|
status.op05transparent = status.parameters[0];
|
|
}
|
|
|
|
//replace bitmap using transparent color
|
|
void DSP2::op05() {
|
|
uint8 color;
|
|
// Overlay bitmap with transparency.
|
|
// Input:
|
|
//
|
|
// Bitmap 1: i[0] <=> i[size-1]
|
|
// Bitmap 2: i[size] <=> i[2*size-1]
|
|
//
|
|
// Output:
|
|
//
|
|
// Bitmap 3: o[0] <=> o[size-1]
|
|
//
|
|
// Processing:
|
|
//
|
|
// Process all 4-bit pixels (nibbles) in the bitmap
|
|
//
|
|
// if ( BM2_pixel == transparent_color )
|
|
// pixelout = BM1_pixel
|
|
// else
|
|
// pixelout = BM2_pixel
|
|
|
|
// The max size bitmap is limited to 255 because the size parameter is a byte
|
|
// I think size=0 is an error. The behavior of the chip on size=0 is to
|
|
// return the last value written to DR if you read DR on Op05 with
|
|
// size = 0. I don't think it's worth implementing this quirk unless it's
|
|
// proven necessary.
|
|
|
|
unsigned char c1, c2;
|
|
unsigned char *p1 = status.parameters;
|
|
unsigned char *p2 = status.parameters + status.op05len;
|
|
unsigned char *p3 = status.output;
|
|
|
|
color = status.op05transparent & 0x0f;
|
|
|
|
for(int n = 0; n < status.op05len; n++) {
|
|
c1 = *p1++;
|
|
c2 = *p2++;
|
|
*p3++ = ( ((c2 >> 4) == color ) ? c1 & 0xf0 : c2 & 0xf0 ) |
|
|
( ((c2 & 0x0f) == color ) ? c1 & 0x0f : c2 & 0x0f );
|
|
}
|
|
}
|
|
|
|
//reverse bitmap
|
|
void DSP2::op06() {
|
|
// Input:
|
|
// size
|
|
// bitmap
|
|
|
|
int i, j;
|
|
for(i = 0, j = status.op06len - 1; i < status.op06len; i++, j--) {
|
|
status.output[j] = (status.parameters[i] << 4) | (status.parameters[i] >> 4);
|
|
}
|
|
}
|
|
|
|
//multiply
|
|
void DSP2::op09() {
|
|
status.out_count = 4;
|
|
|
|
status.op09word1 = status.parameters[0] | (status.parameters[1] << 8);
|
|
status.op09word2 = status.parameters[2] | (status.parameters[3] << 8);
|
|
|
|
uint32 r;
|
|
r = status.op09word1 * status.op09word2;
|
|
status.output[0] = r;
|
|
status.output[1] = r >> 8;
|
|
status.output[2] = r >> 16;
|
|
status.output[3] = r >> 24;
|
|
}
|
|
|
|
//scale bitmap
|
|
void DSP2::op0d() {
|
|
// Bit accurate hardware algorithm - uses fixed point math
|
|
// This should match the DSP2 Op0D output exactly
|
|
// I wouldn't recommend using this unless you're doing hardware debug.
|
|
// In some situations it has small visual artifacts that
|
|
// are not readily apparent on a TV screen but show up clearly
|
|
// on a monitor. Use Overload's scaling instead.
|
|
// This is for hardware verification testing.
|
|
//
|
|
// One note: the HW can do odd byte scaling but since we divide
|
|
// by two to get the count of bytes this won't work well for
|
|
// odd byte scaling (in any of the current algorithm implementations).
|
|
// So far I haven't seen Dungeon Master use it.
|
|
// If it does we can adjust the parameters and code to work with it
|
|
|
|
uint32 multiplier; // Any size int >= 32-bits
|
|
uint32 pixloc; // match size of multiplier
|
|
int i, j;
|
|
uint8 pixelarray[512];
|
|
if(status.op0dinlen <= status.op0doutlen) {
|
|
multiplier = 0x10000; // In our self defined fixed point 0x10000 == 1
|
|
} else {
|
|
multiplier = (status.op0dinlen << 17) / ((status.op0doutlen << 1) + 1);
|
|
}
|
|
|
|
pixloc = 0;
|
|
for(i = 0; i < status.op0doutlen * 2; i++) {
|
|
j = pixloc >> 16;
|
|
|
|
if(j & 1) {
|
|
pixelarray[i] = (status.parameters[j >> 1] & 0x0f);
|
|
} else {
|
|
pixelarray[i] = (status.parameters[j >> 1] & 0xf0) >> 4;
|
|
}
|
|
|
|
pixloc += multiplier;
|
|
}
|
|
|
|
for(i = 0; i < status.op0doutlen; i++) {
|
|
status.output[i] = (pixelarray[i << 1] << 4) | pixelarray[(i << 1) + 1];
|
|
}
|
|
}
|
|
|
|
#endif
|