bsnes/sfc/smp/memory.cpp

206 lines
4.6 KiB
C++

#ifdef SMP_CPP
alwaysinline uint8 SMP::ram_read(uint16 addr) {
if(addr >= 0xffc0 && status.iplrom_enable) return iplrom[addr & 0x3f];
if(status.ram_disable) return 0x5a; //0xff on mini-SNES
return apuram[addr];
}
alwaysinline void SMP::ram_write(uint16 addr, uint8 data) {
//writes to $ffc0-$ffff always go to apuram, even if the iplrom is enabled
if(status.ram_writable && !status.ram_disable) apuram[addr] = data;
}
uint8 SMP::port_read(uint2 port) const {
return apuram[0xf4 + port];
}
void SMP::port_write(uint2 port, uint8 data) {
apuram[0xf4 + port] = data;
}
uint8 SMP::op_busread(uint16 addr) {
unsigned result;
switch(addr) {
case 0xf0: //TEST -- write-only register
return 0x00;
case 0xf1: //CONTROL -- write-only register
return 0x00;
case 0xf2: //DSPADDR
return status.dsp_addr;
case 0xf3: //DSPDATA
//0x80-0xff are read-only mirrors of 0x00-0x7f
return dsp.read(status.dsp_addr & 0x7f);
case 0xf4: //CPUIO0
case 0xf5: //CPUIO1
case 0xf6: //CPUIO2
case 0xf7: //CPUIO3
synchronize_cpu();
return cpu.port_read(addr);
case 0xf8: //RAM0
return status.ram00f8;
case 0xf9: //RAM1
return status.ram00f9;
case 0xfa: //T0TARGET
case 0xfb: //T1TARGET
case 0xfc: //T2TARGET -- write-only registers
return 0x00;
case 0xfd: //T0OUT -- 4-bit counter value
result = timer0.stage3_ticks;
timer0.stage3_ticks = 0;
return result;
case 0xfe: //T1OUT -- 4-bit counter value
result = timer1.stage3_ticks;
timer1.stage3_ticks = 0;
return result;
case 0xff: //T2OUT -- 4-bit counter value
result = timer2.stage3_ticks;
timer2.stage3_ticks = 0;
return result;
}
return ram_read(addr);
}
void SMP::op_buswrite(uint16 addr, uint8 data) {
switch(addr) {
case 0xf0: //TEST
if(regs.p.p) break; //writes only valid when P flag is clear
status.clock_speed = (data >> 6) & 3;
status.timer_speed = (data >> 4) & 3;
status.timers_enable = data & 0x08;
status.ram_disable = data & 0x04;
status.ram_writable = data & 0x02;
status.timers_disable = data & 0x01;
status.timer_step = (1 << status.clock_speed) + (2 << status.timer_speed);
timer0.synchronize_stage1();
timer1.synchronize_stage1();
timer2.synchronize_stage1();
break;
case 0xf1: //CONTROL
status.iplrom_enable = data & 0x80;
if(data & 0x30) {
//one-time clearing of APU port read registers,
//emulated by simulating CPU writes of 0x00
synchronize_cpu();
if(data & 0x20) {
cpu.port_write(2, 0x00);
cpu.port_write(3, 0x00);
}
if(data & 0x10) {
cpu.port_write(0, 0x00);
cpu.port_write(1, 0x00);
}
}
//0->1 transistion resets timers
if(timer2.enable == false && (data & 0x04)) {
timer2.stage2_ticks = 0;
timer2.stage3_ticks = 0;
}
timer2.enable = data & 0x04;
if(timer1.enable == false && (data & 0x02)) {
timer1.stage2_ticks = 0;
timer1.stage3_ticks = 0;
}
timer1.enable = data & 0x02;
if(timer0.enable == false && (data & 0x01)) {
timer0.stage2_ticks = 0;
timer0.stage3_ticks = 0;
}
timer0.enable = data & 0x01;
break;
case 0xf2: //DSPADDR
status.dsp_addr = data;
break;
case 0xf3: //DSPDATA
if(status.dsp_addr & 0x80) break; //0x80-0xff are read-only mirrors of 0x00-0x7f
dsp.write(status.dsp_addr & 0x7f, data);
break;
case 0xf4: //CPUIO0
case 0xf5: //CPUIO1
case 0xf6: //CPUIO2
case 0xf7: //CPUIO3
synchronize_cpu();
port_write(addr, data);
break;
case 0xf8: //RAM0
status.ram00f8 = data;
break;
case 0xf9: //RAM1
status.ram00f9 = data;
break;
case 0xfa: //T0TARGET
timer0.target = data;
break;
case 0xfb: //T1TARGET
timer1.target = data;
break;
case 0xfc: //T2TARGET
timer2.target = data;
break;
case 0xfd: //T0OUT
case 0xfe: //T1OUT
case 0xff: //T2OUT -- read-only registers
break;
}
ram_write(addr, data); //all writes, even to MMIO registers, appear on bus
}
void SMP::op_io() {
add_clocks(24);
cycle_edge();
}
uint8 SMP::op_read(uint16 addr) {
add_clocks(12);
uint8 data = op_busread(addr);
add_clocks(12);
cycle_edge();
debugger.op_read(addr, data);
return data;
}
void SMP::op_write(uint16 addr, uint8 data) {
add_clocks(24);
op_buswrite(addr, data);
cycle_edge();
debugger.op_write(addr, data);
}
uint8 SMP::disassembler_read(uint16 addr) {
if((addr & 0xfff0) == 0x00f0) return 0x00;
if((addr & 0xffc0) == 0xffc0 && status.iplrom_enable) return iplrom[addr & 0x3f];
return apuram[addr];
}
#endif