mirror of https://github.com/bsnes-emu/bsnes.git
179 lines
4.9 KiB
C++
179 lines
4.9 KiB
C++
auto CPU::dmaCounter() const -> uint { return clockCounter & 7; }
|
|
auto CPU::joypadCounter() const -> uint { return clockCounter & 255; }
|
|
|
|
auto CPU::step(uint clocks) -> void {
|
|
status.irqLock = false;
|
|
uint ticks = clocks >> 1;
|
|
while(ticks--) {
|
|
clockCounter += 2;
|
|
tick();
|
|
if(hcounter() & 2) pollInterrupts();
|
|
if(joypadCounter() == 0) joypadEdge();
|
|
}
|
|
|
|
Thread::step(clocks);
|
|
for(auto peripheral : peripherals) synchronize(*peripheral);
|
|
|
|
if(!status.dramRefreshed && hcounter() >= status.dramRefreshPosition) {
|
|
status.dramRefreshed = true;
|
|
for(auto _ : range(5)) {
|
|
step(8);
|
|
aluEdge();
|
|
}
|
|
}
|
|
|
|
#if defined(DEBUGGER)
|
|
synchronizeSMP();
|
|
synchronizePPU();
|
|
synchronizeCoprocessors();
|
|
#endif
|
|
}
|
|
|
|
//called by ppu.tick() when Hcounter=0
|
|
auto CPU::scanline() -> void {
|
|
status.lineClocks = lineclocks();
|
|
|
|
//forcefully sync S-CPU to other processors, in case chips are not communicating
|
|
synchronize(smp);
|
|
synchronize(ppu);
|
|
for(auto coprocessor : coprocessors) synchronize(*coprocessor);
|
|
|
|
if(vcounter() == 0) {
|
|
//HDMA init triggers once every frame
|
|
status.hdmaInitPosition = (version == 1 ? 12 + 8 - dmaCounter() : 12 + dmaCounter());
|
|
status.hdmaInitTriggered = false;
|
|
|
|
status.autoJoypadCounter = 0;
|
|
}
|
|
|
|
//DRAM refresh occurs once every scanline
|
|
if(version == 2) status.dramRefreshPosition = 530 + 8 - dmaCounter();
|
|
status.dramRefreshed = false;
|
|
|
|
//HDMA triggers once every visible scanline
|
|
if(vcounter() < ppu.vdisp()) {
|
|
status.hdmaPosition = 1104;
|
|
status.hdmaTriggered = false;
|
|
}
|
|
}
|
|
|
|
auto CPU::aluEdge() -> void {
|
|
if(alu.mpyctr) {
|
|
alu.mpyctr--;
|
|
if(io.rddiv & 1) io.rdmpy += alu.shift;
|
|
io.rddiv >>= 1;
|
|
alu.shift <<= 1;
|
|
}
|
|
|
|
if(alu.divctr) {
|
|
alu.divctr--;
|
|
io.rddiv <<= 1;
|
|
alu.shift >>= 1;
|
|
if(io.rdmpy >= alu.shift) {
|
|
io.rdmpy -= alu.shift;
|
|
io.rddiv |= 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
auto CPU::dmaEdge() -> void {
|
|
//H/DMA pending && DMA inactive?
|
|
//.. Run one full CPU cycle
|
|
//.. HDMA pending && HDMA enabled ? DMA sync + HDMA run
|
|
//.. DMA pending && DMA enabled ? DMA sync + DMA run
|
|
//.... HDMA during DMA && HDMA enabled ? DMA sync + HDMA run
|
|
//.. Run one bus CPU cycle
|
|
//.. CPU sync
|
|
|
|
if(status.dmaActive) {
|
|
if(status.hdmaPending) {
|
|
status.hdmaPending = false;
|
|
if(hdmaEnabledChannels()) {
|
|
if(!dmaEnabledChannels()) {
|
|
dmaStep(8 - dmaCounter());
|
|
}
|
|
status.hdmaMode == 0 ? hdmaInit() : hdmaRun();
|
|
if(!dmaEnabledChannels()) {
|
|
step(status.clockCount - (status.dmaClocks % status.clockCount));
|
|
status.dmaActive = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(status.dmaPending) {
|
|
status.dmaPending = false;
|
|
if(dmaEnabledChannels()) {
|
|
dmaStep(8 - dmaCounter());
|
|
dmaRun();
|
|
step(status.clockCount - (status.dmaClocks % status.clockCount));
|
|
status.dmaActive = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(!status.hdmaInitTriggered && hcounter() >= status.hdmaInitPosition) {
|
|
status.hdmaInitTriggered = true;
|
|
hdmaInitReset();
|
|
if(hdmaEnabledChannels()) {
|
|
status.hdmaPending = true;
|
|
status.hdmaMode = 0;
|
|
}
|
|
}
|
|
|
|
if(!status.hdmaTriggered && hcounter() >= status.hdmaPosition) {
|
|
status.hdmaTriggered = true;
|
|
if(hdmaActiveChannels()) {
|
|
status.hdmaPending = true;
|
|
status.hdmaMode = 1;
|
|
}
|
|
}
|
|
|
|
if(!status.dmaActive) {
|
|
if(status.dmaPending || status.hdmaPending) {
|
|
status.dmaClocks = 0;
|
|
status.dmaActive = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
//called every 256 clocks; see CPU::step()
|
|
auto CPU::joypadEdge() -> void {
|
|
if(vcounter() >= ppu.vdisp()) {
|
|
//cache enable state at first iteration
|
|
if(status.autoJoypadCounter == 0) status.autoJoypadLatch = io.autoJoypadPoll;
|
|
status.autoJoypadActive = status.autoJoypadCounter <= 15;
|
|
|
|
if(status.autoJoypadActive && status.autoJoypadLatch) {
|
|
if(status.autoJoypadCounter == 0) {
|
|
SuperFamicom::peripherals.controllerPort1->latch(1);
|
|
SuperFamicom::peripherals.controllerPort2->latch(1);
|
|
SuperFamicom::peripherals.controllerPort1->latch(0);
|
|
SuperFamicom::peripherals.controllerPort2->latch(0);
|
|
}
|
|
|
|
uint2 port0 = SuperFamicom::peripherals.controllerPort1->data();
|
|
uint2 port1 = SuperFamicom::peripherals.controllerPort2->data();
|
|
|
|
io.joy1 = io.joy1 << 1 | port0.bit(0);
|
|
io.joy2 = io.joy2 << 1 | port1.bit(0);
|
|
io.joy3 = io.joy3 << 1 | port0.bit(1);
|
|
io.joy4 = io.joy4 << 1 | port1.bit(1);
|
|
}
|
|
|
|
status.autoJoypadCounter++;
|
|
}
|
|
}
|
|
|
|
//used to test for NMI/IRQ, which can trigger on the edge of every opcode.
|
|
//test one cycle early to simulate two-stage pipeline of x816 CPU.
|
|
//
|
|
//status.irq_lock is used to simulate hardware delay before interrupts can
|
|
//trigger during certain events (immediately after DMA, writes to $4200, etc)
|
|
auto CPU::lastCycle() -> void {
|
|
if(!status.irqLock) {
|
|
status.nmiPending |= nmiTest();
|
|
status.irqPending |= irqTest();
|
|
status.interruptPending = (status.nmiPending || status.irqPending);
|
|
}
|
|
}
|