mirror of https://github.com/bsnes-emu/bsnes.git
145 lines
4.2 KiB
C++
145 lines
4.2 KiB
C++
#pragma once
|
|
|
|
#include <nall/hash/sha512.hpp>
|
|
#if defined(EC_REFERENCE)
|
|
#include <nall/elliptic-curve/modulo25519-reference.hpp>
|
|
#else
|
|
#include <nall/elliptic-curve/modulo25519-optimized.hpp>
|
|
#endif
|
|
|
|
namespace nall { namespace EllipticCurve {
|
|
|
|
static const uint256_t L = (1_u256 << 252) + 27742317777372353535851937790883648493_u256;
|
|
|
|
struct Ed25519 {
|
|
auto publicKey(uint256_t privateKey) const -> uint256_t {
|
|
return compress(scalarMultiply(B, clamp(hash(privateKey)) % L));
|
|
}
|
|
|
|
auto sign(array_view<uint8_t> message, uint256_t privateKey) const -> uint512_t {
|
|
uint512_t H = hash(privateKey);
|
|
uint256_t a = clamp(H) % L;
|
|
uint256_t A = compress(scalarMultiply(B, a));
|
|
|
|
uint512_t r = hash(upper(H), message) % L;
|
|
uint256_t R = compress(scalarMultiply(B, r));
|
|
|
|
uint512_t k = hash(R, A, message) % L;
|
|
uint256_t S = (k * a + r) % L;
|
|
|
|
return uint512_t(S) << 256 | R;
|
|
}
|
|
|
|
auto verify(array_view<uint8_t> message, uint512_t signature, uint256_t publicKey) const -> bool {
|
|
auto R = decompress(lower(signature));
|
|
auto A = decompress(publicKey);
|
|
if(!R || !A) return false;
|
|
|
|
uint256_t S = upper(signature) % L;
|
|
uint512_t r = hash(lower(signature), publicKey, message) % L;
|
|
|
|
auto p = scalarMultiply(B, S);
|
|
auto q = edwardsAdd(R(), scalarMultiply(A(), r));
|
|
if(!onCurve(p) || !onCurve(q)) return false;
|
|
if(p.x * q.z - q.x * p.z) return false;
|
|
if(p.y * q.z - q.y * p.z) return false;
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
using field = Modulo25519;
|
|
struct point { field x, y, z, t; };
|
|
const field D = -field(121665) * reciprocal(field(121666));
|
|
const point B = *decompress((field(4) * reciprocal(field(5)))());
|
|
const BarrettReduction<256> L = BarrettReduction<256>{EllipticCurve::L};
|
|
|
|
inline auto input(Hash::SHA512&) const -> void {}
|
|
|
|
template<typename... P> inline auto input(Hash::SHA512& hash, uint256_t value, P&&... p) const -> void {
|
|
for(uint byte : range(32)) hash.input(uint8_t(value >> byte * 8));
|
|
input(hash, forward<P>(p)...);
|
|
}
|
|
|
|
template<typename... P> inline auto input(Hash::SHA512& hash, array_view<uint8_t> value, P&&... p) const -> void {
|
|
hash.input(value);
|
|
input(hash, forward<P>(p)...);
|
|
}
|
|
|
|
template<typename... P> inline auto hash(P&&... p) const -> uint512_t {
|
|
Hash::SHA512 hash;
|
|
input(hash, forward<P>(p)...);
|
|
uint512_t result;
|
|
for(auto byte : reverse(hash.output())) result = result << 8 | byte;
|
|
return result;
|
|
}
|
|
|
|
inline auto clamp(uint256_t p) const -> uint256_t {
|
|
p &= (1_u256 << 254) - 8;
|
|
p |= (1_u256 << 254);
|
|
return p;
|
|
}
|
|
|
|
inline auto onCurve(point p) const -> bool {
|
|
if(!p.z) return false;
|
|
if(p.x * p.y - p.z * p.t) return false;
|
|
if(square(p.y) - square(p.x) - square(p.z) - square(p.t) * D) return false;
|
|
return true;
|
|
}
|
|
|
|
inline auto decompress(uint256_t c) const -> maybe<point> {
|
|
field y = c & ~0_u256 >> 1;
|
|
field x = squareRoot((square(y) - 1) * reciprocal(D * square(y) + 1));
|
|
if(c >> 255) x = -x;
|
|
point p{x, y, 1, x * y};
|
|
if(!onCurve(p)) return nothing;
|
|
return p;
|
|
}
|
|
|
|
inline auto compress(point p) const -> uint256_t {
|
|
field r = reciprocal(p.z);
|
|
field x = p.x * r;
|
|
field y = p.y * r;
|
|
return (x & 1) << 255 | (y & ~0_u256 >> 1);
|
|
}
|
|
|
|
inline auto edwardsDouble(point p) const -> point {
|
|
field a = square(p.x);
|
|
field b = square(p.y);
|
|
field c = square(p.z);
|
|
field d = -a;
|
|
field e = square(p.x + p.y) - a - b;
|
|
field g = d + b;
|
|
field f = g - (c + c);
|
|
field h = d - b;
|
|
return {e * f, g * h, f * g, e * h};
|
|
}
|
|
|
|
inline auto edwardsAdd(point p, point q) const -> point {
|
|
field a = (p.y - p.x) * (q.y - q.x);
|
|
field b = (p.y + p.x) * (q.y + q.x);
|
|
field c = (p.t + p.t) * q.t * D;
|
|
field d = (p.z + p.z) * q.z;
|
|
field e = b - a;
|
|
field f = d - c;
|
|
field g = d + c;
|
|
field h = b + a;
|
|
return {e * f, g * h, f * g, e * h};
|
|
}
|
|
|
|
inline auto scalarMultiply(point q, uint256_t exponent) const -> point {
|
|
point p{0, 1, 1, 0}, c;
|
|
for(uint bit : reverse(range(253))) {
|
|
p = edwardsDouble(p);
|
|
c = edwardsAdd(p, q);
|
|
bool condition = exponent >> bit & 1;
|
|
cmove(condition, p.x, c.x);
|
|
cmove(condition, p.y, c.y);
|
|
cmove(condition, p.z, c.z);
|
|
cmove(condition, p.t, c.t);
|
|
}
|
|
return p;
|
|
}
|
|
};
|
|
|
|
}}
|